Skip to main content

Brain Renin-Angiotensin System: A Novel Therapeutic Target for Psychostimulant and Alcohol Related Disorders?

  • Chapter
Psychiatry and Neuroscience Update

Abstract

The renin angiotensin system (RAS) is involved not only in the regulation of blood pressure and fluid homeostasis, but also in the modulation of multiple additional functions in the brain. In this sense, it was found to be involved in many neuroadaptive responses induced by drugs such as cocaine, amphetamines, alcohol, as well as others.

It is known that the dopaminergic neurotransmission in the nucleus accumbens and caudate-putamen plays a critical role in the rewarding effects of psychostimulant drugs and alcohol. The main and more studied actions of RAS are mediated by the neuropeptide Angiotensin II (Ang II) that belongs to the group of peptides known to stimulate dopamine release.

There is growing evidence showing the key role of RAS in the development of neuroadaptive changes related to behavioral sensitization induced by natural reinforcers and drugs known to be abused. Recently, we found evidence involving the AT1 receptors in the neuroadaptive changes induced by amphetamine. Moreover, others found evidence that Ang II AT1 receptors are strongly involved in ethanol intake in rodents.

Our goal is to present and discuss the evidence supporting an important role of brain RAS in neuroadaptive responses induced by two of the most abused drugs: amphetamine and alcohol, proposing this system as a potential therapeutic target in the treatment of disorders related to these drugs of choice for abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen AM, Zhuo J, Mendelsohn FA. Localization and function of angiotensin AT1 receptors. Am J Hypertens. 2000;13(1 Pt 2):31S–8.

    Article  CAS  PubMed  Google Scholar 

  2. Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C. Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol. 1997;18(4):383–439.

    Article  CAS  PubMed  Google Scholar 

  3. Bader M, Ganten D. It’s renin in the brain: transgenic animals elucidate the brain renin angiotensin system. Circ Res. 2002;90(1):8–10.

    CAS  PubMed  Google Scholar 

  4. Campbell DJ. Angiotensin peptides in the brain. Adv Exp Med Biol. 1995;377:349–55.

    Article  CAS  PubMed  Google Scholar 

  5. Phillips MI. Functions of angiotensin in the central nervous system. Annu Rev Physiol. 1987;49:413–35.

    Article  CAS  PubMed  Google Scholar 

  6. Pan HL. Brain angiotensin II and synaptic transmission. Neuroscientist. 2004;10(5):422–31.

    Article  CAS  PubMed  Google Scholar 

  7. Ferguson AV, Bains JS. Actions of angiotensin in the subfornical organ and area postrema: implications for long term control of autonomic output. Clin Exp Pharmacol Physiol. 1997;24(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  8. Ferguson AV, Washburn DL, Latchford KJ. Hormonal and neurotransmitter roles for angiotensin in the regulation of central autonomic function. Exp Biol Med (Maywood). 2001;226(2):85–96.

    CAS  Google Scholar 

  9. Brown DC, Steward LJ, Ge J, Barnes NM. Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br J Pharmacol. 1996;118(2):414–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Daubert DL, Meadows GG, Wang JH, Sanchez PJ, Speth RC. Changes in angiotensin II receptors in dopamine-rich regions of the mouse brain with age and ethanol consumption. Brain Res. 1999;816(1):8–16.

    Article  CAS  PubMed  Google Scholar 

  11. Wright JW, Harding JW. Brain angiotensin receptor subtypes in the control of physiological and behavioral responses. Neurosci Biobehav Rev. 1994;18(1):21–53.

    Article  CAS  PubMed  Google Scholar 

  12. Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR. Astrocytes synthesize angiotensinogen in brain. Science. 1988;242(4884):1444–6.

    Article  CAS  PubMed  Google Scholar 

  13. Ganong WF. Origin of the angiotensin II secreted by cells. Proc Soc Exp Biol Med. 1994;205(3):213–9.

    Article  CAS  PubMed  Google Scholar 

  14. Chai SY, Mendelsohn FA, Paxinos G. Angiotensin converting enzyme in rat brain visualized by quantitative in vitro autoradiography. Neuroscience. 1987;20(2):615–27.

    Article  CAS  PubMed  Google Scholar 

  15. Johnston CI. Biochemistry and pharmacology of the renin-angiotensin system. Drugs. 1990;39 Suppl 1:21–31.

    Article  CAS  PubMed  Google Scholar 

  16. Lippoldt A, Paul M, Fuxe K, Ganten D. The brain renin-angiotensin system: molecular mechanisms of cell to cell interactions. Clin Exp Hypertens. 1995;17(1–2):251–66.

    Article  CAS  PubMed  Google Scholar 

  17. Saavedra JM. Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol. 2005;25(3–4):485–512.

    Article  CAS  PubMed  Google Scholar 

  18. Bumpus FM, Catt KJ, Chiu AT, DeGasparo M, Goodfriend T, Husain A, et al. Nomenclature for angiotensin receptors. A report of the Nomenclature Committee of the Council for High Blood Pressure Research. Hypertension. 1991;17(5):720–1.

    Article  CAS  PubMed  Google Scholar 

  19. Lind RW, Swanson LW, Ganten D. Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study. Neuroendocrinology. 1985;40(1):2–24.

    Article  CAS  PubMed  Google Scholar 

  20. Song K, Allen AM, Paxinos G, Mendelsohn FA. Mapping of angiotensin II receptor subtype heterogeneity in rat brain. J Comp Neurol. 1992;316(4):467–84.

    Article  CAS  PubMed  Google Scholar 

  21. Allen AM, Moeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY, et al. Angiotensin receptors in the nervous system. Brain Res Bull. 1998;47(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  22. Wright JW, Harding JW. Regulatory role of brain angiotensins in the control of physiological and behavioral responses. Brain Res Brain Res Rev. 1992;17(3):227–62.

    Article  CAS  PubMed  Google Scholar 

  23. Peach MJ. Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev. 1977;57(2):313–70.

    CAS  PubMed  Google Scholar 

  24. Bunnemann B, Fuxe K, Ganten D. The renin-angiotensin system in the brain: an update 1993. Regul Pept. 1993;46(3):487–509.

    Article  CAS  PubMed  Google Scholar 

  25. Mendelsohn FA, Allen AM, Chai SY, McKinley MJ, Oldfield BJ, Paxinos G. The brain angiotensin system: insights from mapping its components. Trends Endocrinol Metab. 1990;1(4):189–98.

    Article  CAS  PubMed  Google Scholar 

  26. Tchekalarova J, Pechlivanova D, Kambourova T, Matsoukas J, Georgiev V. The effects of sarmesin, an Angiotensin II analogue on seizure susceptibility, memory retention and nociception. Regul Pept. 2003;111(1–3):191–7.

    Article  CAS  PubMed  Google Scholar 

  27. Denny JB, Polan-Curtain J, Wayner MJ, Armstrong DL. Angiotensin II blocks hippocampal long-term potentiation. Brain Res. 1991;567(2):321–4.

    Article  CAS  PubMed  Google Scholar 

  28. Pederson ES, Harding JW, Wright JW. Attenuation of scopolamine-induced spatial learning impairments by an angiotensin IV analog. Regul Pept. 1998;74(2–3):97–103.

    Article  CAS  PubMed  Google Scholar 

  29. Georgiev V, Getova D, Opitz M. Mechanisms of the angiotensin II effects on the exploratory behavior of rats in open field. I. Interaction of angiotensin II with saralasin and catecholaminergic drugs. Methods Find Exp Clin Pharmacol. 1987;9(5):297–301.

    CAS  PubMed  Google Scholar 

  30. Gard PR. The role of angiotensin II in cognition and behaviour. Eur J Pharmacol. 2002;438(1–2):1–14.

    Article  CAS  PubMed  Google Scholar 

  31. Raghavendra V, Chopra K, Kulkarni SK. Modulation of motor functions involving the dopaminergic system by AT1 receptor antagonist, losartan. Neuropeptides. 1998;32(3):275–80.

    Article  CAS  PubMed  Google Scholar 

  32. Tchekalarova J, Georgiev V. Further evidence for interaction between angiotensin II and dopamine receptors (experiments on apomorphine stereotypy). Methods Find Exp Clin Pharmacol. 1998;20(5):419–24.

    Article  CAS  PubMed  Google Scholar 

  33. Banks RJ, Mozley L, Dourish CT. The angiotensin converting enzyme inhibitors captopril and enalapril inhibit apomorphine-induced oral stereotypy in the rat. Neuroscience. 1994;58(4):799–805.

    Article  CAS  PubMed  Google Scholar 

  34. Gelband CH, Sumners C, Lu D, Raizada MK. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling. Regul Pept. 1998;73(3):141–7.

    Article  CAS  PubMed  Google Scholar 

  35. Nahmod VE, Finkielman S, Benarroch EE, Pirola CJ. Angiotensin regulates release and synthesis of serotonin in brain. Science. 1978;202(4372):1091–3.

    Article  CAS  PubMed  Google Scholar 

  36. Barnes KL, DeWeese DM, Andresen MC. Angiotensin potentiates excitatory sensory synaptic transmission to medial solitary tract nucleus neurons. Am J Physiol Regul Integr Comp Physiol. 2003;284(5):R1340–53.

    Article  CAS  PubMed  Google Scholar 

  37. Oz M, Yang KH, O’Donovan MJ, Renaud LP. Presynaptic angiotensin II AT1 receptors enhance inhibitory and excitatory synaptic neurotransmission to motoneurons and other ventral horn neurons in neonatal rat spinal cord. J Neurophysiol. 2005;94(2):1405–12.

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez-Pallares J, Quiroz CR, Parga JA, Guerra MJ, Labandeira-Garcia JL. Angiotensin II increases differentiation of dopaminergic neurons from mesencephalic precursors via angiotensin type 2 receptors. Eur J Neurosci. 2004;20(6):1489–98.

    Article  CAS  PubMed  Google Scholar 

  39. Allen AM, MacGregor DP, Chai SY, Donnan GA, Kaczmarczyk S, Richardson K, et al. Angiotensin II receptor binding associated with nigrostriatal dopaminergic neurons in human basal ganglia. Ann Neurol. 1992;32(3):339–44.

    Article  CAS  PubMed  Google Scholar 

  40. Allen AM, Paxinos G, McKinley MJ, Chai SY, Mendelsohn FA. Localization and characterization of angiotensin II receptor binding sites in the human basal ganglia, thalamus, midbrain pons, and cerebellum. J Comp Neurol. 1991;312(2):291–8.

    Article  CAS  PubMed  Google Scholar 

  41. McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, et al. The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol. 2003;35(6):901–18.

    Article  CAS  PubMed  Google Scholar 

  42. von Bohlen und Halbach O, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res. 2006;326(2):599–616.

    Article  Google Scholar 

  43. Allen AM, MacGregor DP, McKinley MJ, Mendelsohn FA. Angiotensin II receptors in the human brain. Regul Pept. 1999;79(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  44. Barnes JM, Steward LJ, Barber PC, Barnes NM. Identification and characterisation of angiotensin II receptor subtypes in human brain. Eur J Pharmacol. 1993;230(3):251–8.

    Article  CAS  PubMed  Google Scholar 

  45. Mendelsohn FA, Jenkins TA, Berkovic SF. Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Res. 1993;613(2):221–9.

    Article  CAS  PubMed  Google Scholar 

  46. Jenkins TA, Mendelsohn FA, Chai SY. Angiotensin-converting enzyme modulates dopamine turnover in the striatum. J Neurochem. 1997;68(3):1304–11.

    Article  CAS  PubMed  Google Scholar 

  47. Georgiev V, Gyorgy L, Getova D, Markovska V. Some central effects of angiotensin II. Interactions with dopaminergic transmission. Acta Physiol Pharmacol Bulg. 1985;11(4):19–26.

    CAS  PubMed  Google Scholar 

  48. Georgiev V, Stancheva S, Kambourova T, Getova D. Effect of angiotensin II on the Vogel conflict paradigm and on the content of dopamine and noradrenaline in rat brain. Acta Physiol Pharmacol Bulg. 1990;16(1):32–7.

    CAS  PubMed  Google Scholar 

  49. Jenkins TA, Chai SY, Howells DW, Mendelsohn FA. Intrastriatal angiotensin II induces turning behaviour in 6-hydroxydopamine lesioned rats. Brain Res. 1995;691(1–2):213–6.

    Article  CAS  PubMed  Google Scholar 

  50. Hoebel BG, Rada P, Mark GP, Hernandez L. The power of integrative peptides to reinforce behavior by releasing dopamine. Ann N Y Acad Sci. 1994;739:36–41.

    Article  CAS  PubMed  Google Scholar 

  51. Nicolaidis S. Role des recepteurs internes et externes dans la prise d’eau regulatrice et non regulatrice. In: In Rein et Foie, Maladies de la Nutrition; 1974. p. 159–74.

    Google Scholar 

  52. Xue B, Zhang Z, Johnson RF, Johnson AK. Sensitization of slow pressor angiotensin II (Ang II)-initiated hypertension: induction of sensitization by prior Ang II treatment. Hypertension. 2012;59(2):459–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Clark JJ, Bernstein IL. Reciprocal cross-sensitization between amphetamine and salt appetite. Pharmacol Biochem Behav. 2004;78(4):691–8.

    Article  CAS  PubMed  Google Scholar 

  54. Kalivas PW. Cocaine and amphetamine-like psychostimulants: neurocircuitry and glutamate neuroplasticity. Dialogues Clin Neurosci. 2007;9(4):389–97.

    PubMed Central  PubMed  Google Scholar 

  55. Stewart J, Badiani A. Tolerance and sensitization to the behavioral effects of drugs. Behav Pharmacol. 1993;4(4):289–312.

    CAS  PubMed  Google Scholar 

  56. Pierce RC, Kalivas PW. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev. 1997;25(2):192–216.

    Article  CAS  PubMed  Google Scholar 

  57. Vanderschuren LJ, Kalivas PW. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl). 2000;151(2–3):99–120.

    Article  CAS  Google Scholar 

  58. Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Herve D, Girault JA. Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology. 2010;35(2):401–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Vanderschuren LJ, Schmidt ED, De Vries TJ, Van Moorsel CA, Tilders FJ, Schoffelmeer AN. A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci. 1999;19(21):9579–86.

    CAS  PubMed  Google Scholar 

  60. Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev. 1991;16(3):223–44.

    Article  CAS  PubMed  Google Scholar 

  61. Na ES, Morris MJ, Johnson RF, Beltz TG, Johnson AK. The neural substrates of enhanced salt appetite after repeated sodium depletions. Brain Res. 2007;1171:104–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Voorhies AC, Bernstein IL. Induction and expression of salt appetite: effects on Fos expression in nucleus accumbens. Behav Brain Res. 2006;172(1):90–6.

    Article  CAS  PubMed  Google Scholar 

  63. Roitman MF, Na E, Anderson G, Jones TA, Bernstein IL. Induction of a salt appetite alters dendritic morphology in nucleus accumbens and sensitizes rats to amphetamine. J Neurosci. 2002;22(11):RC225.

    PubMed  Google Scholar 

  64. Acerbo MJ, Johnson AK. Behavioral cross-sensitization between DOCA-induced sodium appetite and cocaine-induced locomotor behavior. Pharmacol Biochem Behav. 2011;98(3):440–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Paz MC, Assis MA, Cabrera RJ, Cancela LM, Bregonzio C. The AT angiotensin II receptor blockade attenuates the development of amphetamine-induced behavioral sensitization in a two-injection protocol. Synapse. 2011;65(6):505–12.

    Article  CAS  PubMed  Google Scholar 

  66. Paz M, Marchese M, Cancela L, Bregonzio C. Angiotensin II AT1 receptors are involved in neuronal activation induced by amphetamine in a two-injection protocol. BioMed Res Int. 2013;2013: 534817.

    Google Scholar 

  67. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18(3):247–91.

    Article  CAS  PubMed  Google Scholar 

  68. Paz MC, Marchese NA, Stroppa MM, Gerez de Burgos NM, Imboden H, Baiardi G, et al. Involvement of the brain renin-angiotensin system (RAS) in the neuroadaptive responses induced by amphetamine in a two-injection protocol. Behav Brain Res. 2014;272C:314–23.

    Article  Google Scholar 

  69. Straus R. Alcohol and alcohol problems. The United States. Br J Addict. 1986;81(10):315–25.

    Article  CAS  PubMed  Google Scholar 

  70. Grup L. The renin-angiotensin system: a multidimensional source of control over alcohol consumption. Alcohol Suppl. 1991; 1:421–6.

    Google Scholar 

  71. Grupp L, Harding S.The reduction in alcohol drinking by peripherally injected angiotensin II is selectively mediated by the AT1 receptor subtype.Pharmacol Biochem Behav. 1994; 47(3):385–92.

    Google Scholar 

  72. Spinosa G, Perlanski E, Leenen F, Stewart R, Grupp L. Angiotensin converting enzyme inhibitors: animal experiments suggest a new pharmacological treatment for alcohol abuse in man. Alcohol Clin Exp Res. 1988;12:65–70.

    Article  CAS  PubMed  Google Scholar 

  73. Katner S, Weiss F. Neurochemical characteristics associated with ethanol preference in selected alcohol-preferring and -nonpreferring rats: a quantitative microdialysis study. Alcohol Clin Exp Res. 2001;25(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  74. Gessa G, Muntoni F, Collu M, Vargiu L, Mereu G. Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res. 1985;348(1):201–3.

    Article  CAS  PubMed  Google Scholar 

  75. Brodie M, Shefner S, Dunwiddie T. Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res. 1990;508(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  76. Brodie M, Pesold C, Appel S. Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res. 1999;23(11):1848–52.

    Article  CAS  PubMed  Google Scholar 

  77. Di Chiara G, Imperato A. Ethanol preferentially stimulates dopamine release in the nucleus accumbens of freely moving rats. Eur J Pharmacol. 1985;115(1):131–2.

    Article  PubMed  Google Scholar 

  78. Yim H, Gonzales R. Ethanol-induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition. Alcohol. 2000;22(2):107–15.

    Article  CAS  PubMed  Google Scholar 

  79. Yoshimoto K, McBride W, Lumeng L, Li T. Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens. Alcohol. 1992;9(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  80. Yoshimoto K, McBride W, Lumeng L, Li T. Ethanol enhances the release of dopamine and serotonin in the nucleus accumbens of HAD and LAD lines of rats. Alcohol Clin Exp Res. 1992;16(4):781–5.

    Article  CAS  PubMed  Google Scholar 

  81. Katner S, Kerr T, Weiss F. Ethanol anticipation enhances dopamine efflux in the nucleus accumbens of alcohol-preferring (P) but not Wistar rats. Behav Pharmacol. 1996;7(7):669–74.

    Article  CAS  PubMed  Google Scholar 

  82. Melendez R, Rodd-Henricks Z, Engleman E, Li T, McBride W, Murphy J. Microdialysis of dopamine in the nucleus accumbens of alcohol-preferring (P) rats during anticipation and operant self-administration of ethanol. Alcohol Clin Exp Res. 2002;26(3):318–25.

    Article  CAS  PubMed  Google Scholar 

  83. Weiss F, Lorang M, Bloom F, Koob G. Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. J Pharmacol Exp Ther. 1993;267(1):250–8.

    CAS  PubMed  Google Scholar 

  84. Deehan J, Engleman E, Ding Z, McBride W, Rodd Z. Microinjections of acetaldheyde or salsolinol into the posterior ventral tegmental area increase dopamine release in the nucleus accumbens shell. Alcohol Clin Exp Res. 2013;37(5):722–729.

    Google Scholar 

  85. Sommer WH, Saavedra JM. Targeting brain angiotensin and corticotrophin-releasing hormone systems interaction for the treatment of mood and alcohol use disorders. J Mol Med. 2008;86(6):723–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Sommer WH, Rimondini R, Marquitz M, Lidstrom J, Siems WE, Bader M, et al. Plasticity and impact of the central renin-angiotensin system during development of ethanol dependence. J Mol Med (Berl). 2007;85(10):1089–97.

    Article  CAS  Google Scholar 

  87. Maul B, Siems W, Hoehe M, Grecksch G, Bader M, Walther T. Alcohol consumption is controlled by angiotensin II. FASEB J. 2001;15(9):1640–2.

    CAS  PubMed  Google Scholar 

  88. Maul B, Krause W, Pankow K, Becker M, Gembardt F, Alenina N, et al. Central angiotensin II controls alcohol consumption via its AT1 receptor. FASEB J. 2005;19(11):1474–81.

    Article  CAS  PubMed  Google Scholar 

  89. Phillips T, Brown K, Burkhart-Kasch S, Wenger C, Kelly M, Rubinstein M, et al. Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptor. Nat Neurosci. 1998;1:610–5.

    Article  CAS  PubMed  Google Scholar 

  90. Weisinger R, Blair-West J, Denton D, McBurnie M. Angiotensin II stimulates intake of ethanol in C57BL/6J mice. Physiol Behav. 1999;67(3):369–76.

    Article  CAS  PubMed  Google Scholar 

  91. Koutsoukos G, Harding S, Grupp L. Increased alcohol consumption in weight-reduced rats is modulated by the renin-angiotensin system. Alcohol. 1995;12(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  92. Fitts D. Angiotensin and captopril increase alcohol intake. Pharmacol Biochem Behav. 1993;45(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  93. Grupp L, Harding S. Intracerebroventricularly infused angiotensin II or III do not alter voluntary alcohol intake in rats. Pharmacol Biochem Behav. 1995;51(4):593–9.

    Article  CAS  PubMed  Google Scholar 

  94. Grupp L. Effects of angiotensin II and an angiotensin converting enzyme inhibitor on alcohol intake in P and NP rats. Pharmacol Biochem Behav. 1992;41(1):105–8.

    Article  CAS  PubMed  Google Scholar 

  95. Lingham T, Perlanski E, Grupp L. Angiotensin converting enzyme inhibitors reduce alcohol consumption: some possible mechanisms and important conditions for its therapeutic use. Alcohol Clin Exp Res. 1990;14(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  96. Grupp L, Chow S. Time-dependent effect of the angiotensin converting enzyme inhibitor, abutapril, on voluntary alcohol intake in the rat. Alcohol Alcohol. 1992;27(3):267–71.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Constanza Paz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paz, M.C., Marchese, N.A., Bregonzio, C., Baiardi, G.C. (2015). Brain Renin-Angiotensin System: A Novel Therapeutic Target for Psychostimulant and Alcohol Related Disorders?. In: Gargiulo, P., Arroyo, H. (eds) Psychiatry and Neuroscience Update. Springer, Cham. https://doi.org/10.1007/978-3-319-17103-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17103-6_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17102-9

  • Online ISBN: 978-3-319-17103-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics