Skip to main content
Log in

Plasticity and impact of the central renin–angiotensin system during development of ethanol dependence

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Pharmacological and genetic interference with the renin–angiotensin system (RAS) seems to alter voluntary ethanol consumption. However, understanding the influence of the RAS on ethanol dependence and its treatment requires modeling the neuroadaptations that occur with prolonged exposure to ethanol. Increased ethanol consumption was induced in rats through repeated cycles of intoxication and withdrawal. Expression of angiotensinogen, angiotensin-converting enzyme, and the angiotensin II receptor, AT1a, was examined by quantitative reverse transcription polymerase chain reaction. Increased ethanol consumption after a history of dependence was associated with increased angiotensinogen expression in medial prefrontal cortex but not in nucleus accumbens or amygdala. Increased angiotensinogen expression also demonstrates that the astroglia is an integral part of the plasticity underlying the development of dependence. The effects of low central RAS activity on increased ethanol consumption were investigated using either spirapril, a blood–brain barrier-penetrating inhibitor of angiotensin-converting enzyme, or transgenic rats (TGR(ASrAOGEN)680) with reduced central angiotensinogen expression. Spirapril reduced ethanol intake in dependent rats compared to controls. After induction of dependence, TGR(ASrAOGEN)680 rats had increased ethanol consumption but to a lesser degree than Wistar rats with the same history of dependence. These data suggest that the central RAS is sensitized in its modulatory control of ethanol consumption in the dependent state, but pharmacological or genetic blockade of the system appears to be insufficient to halt the progression of dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. von Bohlen und Halbach HO (2005) The renin–angiotensin system in the mammalian central nervous system. Curr Protein Pept Sci 6:355–371

    Article  Google Scholar 

  2. Fuxe K, Ganten D, Hokfelt T, Bolme P (1976) Immunohistochemical evidence for existence of angiotensin Ii containing nerve-terminals in brain and spinal-cord in rat. Neurosci Lett 2:229–234

    Article  CAS  PubMed  Google Scholar 

  3. Mendelsohn FA, Jenkins TA, Berkovic SF (1993) Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Res 613:221–229

    Article  PubMed  CAS  Google Scholar 

  4. Aguilera G, Young WS, Kiss A, Bathia A (1995) Direct regulation of hypothalamic corticotropin-releasing-hormone neurons by angiotensin II. Neuroendocrinology 61:437–444

    PubMed  CAS  Google Scholar 

  5. Bader M, Peters J, Baltatu O, Muller DN, Luft FC, Ganten D (2001) Tissue renin–angiotensin systems: new insights from experimental animal models in hypertension research. J Mol Med 79:76–102

    Article  PubMed  CAS  Google Scholar 

  6. Weisinger RS, Blair-West JR, Denton DA, McBurnie MI (1999) Angiotensin II stimulates intake of ethanol in C57BL/6J mice. Physiol Behav 67:369–376

    Article  PubMed  CAS  Google Scholar 

  7. Weisinger RS, Blair-West JR, Burns P, Denton DA (1999) Intracerebroventricular infusion of angiotensin II increases water and ethanol intake in rats. Am J Physiol 277:R162–R172

    PubMed  CAS  Google Scholar 

  8. Fitts DA (1993) Angiotensin and captopril increase alcohol intake. Pharmacol Biochem Behav 45:35–43

    Article  PubMed  CAS  Google Scholar 

  9. Garrib A, Peters T (1998) Angiotensin-converting enzyme (ACE) gene polymorphism and alcoholism. Biochem Soc Trans 26:S136

    PubMed  CAS  Google Scholar 

  10. Maul B, Siems WE, Hoehe MR, Grecksch G, Bader M, Walther T (2001) Alcohol consumption is controlled by angiotensin II. FASEB J 15:1640–1642

    PubMed  CAS  Google Scholar 

  11. Maul B, Krause W, Pankow K, Becker M, Gembardt F, Alenina N, Walther T, Bader M, Siems WE (2005) Central angiotensin II controls alcohol consumption via its AT1 receptor. FASEB J 19:1474–1481

    Article  PubMed  CAS  Google Scholar 

  12. Grupp LA (1992) Effects of angiotensin II and an angiotensin converting enzyme inhibitor on alcohol intake in P and NP rats. Pharmacol Biochem Behav 41:105–108

    Article  PubMed  CAS  Google Scholar 

  13. Saba L, Bhave SV, Grahame N, Bice P, Lapadat R, Belknap J, Hoffman PL, Tabakoff B (2006) Candidate genes and their regulatory elements: alcohol preference and tolerance. Mamm Genome 17:669–688

    Article  PubMed  CAS  Google Scholar 

  14. Rodd ZA, Bertsch BA, Strother WN, Le-Niculescu H, Balaraman Y, Hayden E, Jerome RE, Lumeng L, Nurnberger JI, Edenberg HJ Jr, McBride WJ, Niculescu AB (2006) Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach. Pharmacogenomics J 6:1–3

    Article  CAS  Google Scholar 

  15. Dackis CA, O’Brien CP (2005) Neurobiology of addiction: treatment and public policy ramifications. Nat Neurosci 8:1431–1436

    Article  PubMed  CAS  Google Scholar 

  16. Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8:1442–1444

    Article  PubMed  CAS  Google Scholar 

  17. Rimondini R, Arlinde C, Sommer W, Heilig M (2002) Long-lasting increase in voluntary ethanol consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol. FASEB J 16:27–35

    Article  PubMed  CAS  Google Scholar 

  18. Roberts AJ, Heyser CJ, Cole M, Griffin P, Koob GF (2000) Excessive ethanol drinking following a history of dependence: animal model of allostasis. Neuropsychopharmacology 22:581–594

    Article  PubMed  CAS  Google Scholar 

  19. Breese GR, Overstreet DH, Knapp DJ (2005) Conceptual framework for the etiology of alcoholism: a “kindling”/stress hypothesis. Psychopharmacology (Berl) 178:367–380

    Article  CAS  Google Scholar 

  20. Rimondini R, Sommer W, Heilig M (2003) A temporal threshold for induction of persistent alcohol preference: behavioral evidence in a rat model of intermittent intoxication. J Stud Alcohol 64:445–449

    PubMed  Google Scholar 

  21. Heyser CJ, Schulteis G, Durbin P, Koob GF (1998) Chronic acamprosate eliminates the alcohol deprivation effect while having limited effects on baseline responding for ethanol in rats. Neuropsychopharmacology 18:125–133

    Article  PubMed  CAS  Google Scholar 

  22. Spanagel R, Zieglgansberger W (1997) Anti-craving compounds for ethanol: new pharmacological tools to study addictive processes. Trends Pharmacol Sci 18:54–59

    Article  PubMed  CAS  Google Scholar 

  23. Egli M (2005) Can experimental paradigms and animal models be used to discover clinically effective medications for alcoholism? Addict Biol 10:309–319

    Article  PubMed  CAS  Google Scholar 

  24. Valdez GR, Koob GF (2004) Allostasis and dysregulation of corticotropin-releasing factor and neuropeptide Y systems: implications for the development of alcoholism. Pharmacol Biochem Behav 79:671–689

    Article  PubMed  CAS  Google Scholar 

  25. Sommer WH, Rimondini R, Hansson AC, Heilig M (2007) Up-regulation of voluntary alcohol intake, behavioral sensitivity to stress, and amygdala Crhr1 expression following a history of dependence. Biol Psychiatry DOI 10.1016/j.biopsych.2007.01.010

  26. Heilig M, Koob GF (2007) A critical role for corticotropin-releasing factor (CRF) in alcohol dependence and relapse to alcohol seeking. Trends Neurosci 30:399–406

    Article  PubMed  CAS  Google Scholar 

  27. Takai S, Song K, Tanaka T, Okunishi H, Miyazaki M (1996) Antinociceptive effects of angiotensin-converting enzyme inhibitors and an angiotensin II receptor antagonist in mice. Life Sci 59:L331–L336

    Article  Google Scholar 

  28. Schinke M, Baltatu O, Bohm M, Peters J, Rascher W, Bricca G, Lippoldt A, Ganten D, Bader M (1999) Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. Proc Natl Acad Sci USA 96:3975–3980

    Article  PubMed  CAS  Google Scholar 

  29. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  30. Vandesompele J, De PK, Pattyn F, Poppe B, Van RN, De PA, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  31. Bjork K, Saarikoski ST, Arlinde C, Kovanen L, Osei-Hyiaman D, Ubaldi M, Reimers M, Hyytia P, Heilig M, Sommer WH (2006) Glutathione-S-transferase expression in the brain: possible role in ethanol preference and longevity. FASEB J 20:1826–1835

    Article  PubMed  CAS  Google Scholar 

  32. O’Dell LE, Roberts AJ, Smith RT, Koob GF (2004) Enhanced alcohol self-administration after intermittent versus continuous alcohol vapor exposure. Alcohol Clin Exp Res 28:1676–1682

    Article  PubMed  CAS  Google Scholar 

  33. Hansson AC, Bermudez-Silva FJ, Malinen H, Hyytia P, Sanchez-Vera I, Rimondini R, de Rodriguez FF, Kunos G, Sommer WH, Heilig M (2006) Genetic impairment of frontocortical endocannabinoid degradation and high alcohol preference. Neuropsychopharmacology 32:117–126

    Article  PubMed  CAS  Google Scholar 

  34. Hallberg M, Nyberg F (2003) Neuropeptide conversion to bioactive fragments—an important pathway in neuromodulation. Curr Protein Pept Sci 4:31–44

    Article  PubMed  CAS  Google Scholar 

  35. Lingham T, Perlanski E, Grupp LA (1990) Angiotensin converting enzyme inhibitors reduce alcohol consumption: some possible mechanisms and important conditions for its therapeutic use. Alcohol Clin Exp Res 14:92–99

    Article  PubMed  CAS  Google Scholar 

  36. Naranjo CA, Kadlec KE, Sanhueza P, Woodley-Remus D, Sellers EM (1991) Enalapril effects on alcohol intake and other consummatory behaviors in alcoholics. Clin Pharmacol Ther 50:96–106

    Article  PubMed  CAS  Google Scholar 

  37. Robertson JM, Harding S, Grupp LA (1994) The reduction in alcohol intake produced by enalapril is not attenuated by centrally administered angiotensin inhibitors. Alcohol 11:295–299

    Article  PubMed  CAS  Google Scholar 

  38. Spinosa G, Perlanski E, Leenen FH, Stewart RB, Grupp LA (1988) Angiotensin converting enzyme inhibitors: animal experiments suggest a new pharmacological treatment for alcohol abuse in humans. Alcohol Clin Exp Res 12:65–70

    Article  PubMed  CAS  Google Scholar 

  39. Sybertz EJ, Watkins RW, Ahn HS, Baum T, La RP, Patrick J, Leitz F (1987) Pharmacologic, metabolic, and toxicologic profile of spirapril (SCH 33844), a new angiotensin converting inhibitor. J Cardiovasc Pharmacol 10(Suppl 7):S105–S108

    Article  PubMed  CAS  Google Scholar 

  40. Rimondini R, Thorsell A, Heilig M (2005) Suppression of ethanol self-administration by the neuropeptide Y (NPY) Y2 receptor antagonist BIIE0246: evidence for sensitization in rats with a history of dependence. Neurosci Lett 375:129–133

    Article  PubMed  CAS  Google Scholar 

  41. Rodriguez de Fonseca F, Roberts AJ, Bilbao A, Koob GF, Navarro M (1999) Cannabinoid receptor antagonist SR141716A decreases operant ethanol self administration in rats exposed to ethanol-vapor chambers. Zhongguo Yao Li Xue Bao 20:1109–1114

    PubMed  CAS  Google Scholar 

  42. Hansson AC, Cippitelli A, Sommer WH, Fedeli A, Bjork K, Soverchia L, Terasmaa A, Massi M, Heilig M, Ciccocioppo R (2006) Variation at the rat Crhr1 locus and sensitivity to relapse into alcohol seeking induced by environmental stress. Proc Natl Acad Sci USA 103:15236–15241

    Article  PubMed  CAS  Google Scholar 

  43. Gehlert DR, Cippitelli A, Thorsell A, Le AD, Hipskind PA, Hamdouchi C, Lu J, Hembre EJ, Cramer J, Song M, McKinzie D, Morin M, Ciccocioppo R, Heilig M (2007) 3-(4-Chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl-imidazo[1,2-b]pyridazine: a novel brain-penetrant, orally available corticotropin-releasing factor receptor 1 antagonist with efficacy in animal models of alcoholism. J Neurosci 27:2718–2726

    Article  PubMed  CAS  Google Scholar 

  44. Monti J, Schinke M, Bohm M, Ganten D, Bader M, Bricca G (2001) Glial angiotensinogen regulates brain angiotensin II receptors in transgenic rats TGR(ASrAOGEN). Am J Physiol Regul Integr Comp Physiol 280:R233–R240

    PubMed  CAS  Google Scholar 

  45. Kasper SO, Carter CS, Ferrario CM, Ganten D, Ferder LF, Sonntag WE, Gallagher PE, Diz DI (2005) Growth, metabolism, and blood pressure disturbances during aging in transgenic rats with altered brain renin–angiotensin systems. Physiol Genomics 23:311–317

    Article  PubMed  CAS  Google Scholar 

  46. Voigt JP, Hortnagl H, Bader M, Fink H (2005) Effect of brain angiotensin on body weight. Behav Pharmacol 16:S66

    Article  Google Scholar 

  47. Valdez GR, Roberts AJ, Chan K, Davis H, Brennan M, Zorrilla EP, Koob GF (2002) Increased ethanol self-administration and anxiety-like behavior during acute ethanol withdrawal and protracted abstinence: regulation by corticotropin-releasing factor. Alcohol Clin Exp Res 26:1494–1501

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported by EC through TARGALC grant to M.H. (QLG3-CT-2002-01048) and by DFG through a grant to M.B. (BA1374/11-1). Spirapril was provided by H. Jainta (Arzneimittelwerk, Dresden, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, W.H., Rimondini, R., Marquitz, M. et al. Plasticity and impact of the central renin–angiotensin system during development of ethanol dependence. J Mol Med 85, 1089–1097 (2007). https://doi.org/10.1007/s00109-007-0255-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0255-5

Keywords

Navigation