Skip to main content

Advertisement

Log in

Brain Angiotensin II: New Developments, Unanswered Questions and Therapeutic Opportunities

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. There are two Angiotensin II systems in the brain. The discovery of brain Angiotensin II receptors located in neurons inside the blood brain barrier confirmed the existence of an endogenous brain Angiotensin II system, responding to Angiotensin II generated in and/or transported into the brain. In addition, Angiotensin II receptors in circumventricular organs and in cerebrovascular endothelial cells respond to circulating Angiotensin II of peripheral origin. Thus, the brain responds to both circulating and tissue Angiotensin II, and the two systems are integrated.

2. The neuroanatomical location of Angiotensin II receptors and the regulation of the receptor number are most important to determine the level of activation of the brain Angiotensin II systems.

3. Classical, well-defined actions of Angiotensin II in the brain include the regulation of hormone formation and release, the control of the central and peripheral sympathoadrenal systems, and the regulation of water and sodium intake. As a consequence of changes in the hormone, sympathetic and electrolyte systems, feed back mechanisms in turn modulate the activity of the brain Angiotensin II systems. It is reasonable to hypothesize that brain Angiotensin II is involved in the regulation of multiple additional functions in the brain, including brain development, neuronal migration, process of sensory information, cognition, regulation of emotional responses, and cerebral blood flow.

4. Many of the classical and of the hypothetical functions of brain Angiotensin II are mediated by stimulation of Angiotensin II AT1 receptors.

5. Brain AT2 receptors are highly expressed during development. In the adult, AT2 receptors are restricted to areas predominantly involved in the process of sensory information. However, the role of AT2 receptors remains to be clarified.

6. Subcutaneous or oral administration of a selective and potent non-peptidic AT1 receptor antagonist with very low affinity for AT2 receptors and good bioavailability blocked AT1 receptors not only outside but also inside the blood brain barrier. The blockade of the complete brain Angiotensin II AT1 system allowed us to further clarify some of the central actions of the peptide and suggested some new potential therapeutic avenues for this class of compounds.

7. Pretreatment with peripherally administered AT1 antagonists completely prevented the hormonal and sympathoadrenal response to isolation stress. A similar pretreatment prevented the development of stress-induced gastric ulcers. These findings strongly suggest that blockade of brain AT1 receptors could be considered as a novel therapeutic approach in the treatment of stress-related disorders.

8. Peripheral administration of AT1 receptor antagonists strongly affected brain circulation and normalized some of the profound alterations in cerebrovascular structure and function characteristic of chronic genetic hypertension. AT1 receptor antagonists were capable of reversing the pathological cerebrovascular remodeling in hypertension and the shift to the right in the cerebral autoregulation, normalizing cerebrovascular compliance. In addition, AT1 receptor antagonists normalized the expression of cerebrovascular nitric oxide synthase isoenzymes and reversed the inflammatory reaction characteristic of cerebral vessels in hypertension. As a consequence of the normalization of cerebrovascular compliance and the prevention of inflammation, there was, in genetically hypertensive rats a decreased vulnerability to brain ischemia. After pretreatment with AT1 antagonists, there was a protection of cerebrovascular flow during experimental stroke, decreased neuronal death, and a substantial reduction in the size of infarct after occlusion of the middle cerebral artery. At least part of the protective effect of AT1 receptor antagonists was related to the inhibition of the Angiotensin II system, and not to the normalization of blood pressure. These results indicate that treatment with AT1 receptor antagonists appears to be a major therapeutic avenue for the prevention of ischemia and inflammatory diseases of the brain.

9. Thus, orally administered AT1 receptor antagonists may be considered as novel therapeutic compounds for the treatment of diseases of the central nervous system when stress, inflammation and ischemia play major roles.

10. Many questions remain. How is brain Angiotensin II formed, metabolized, and distributed? What is the role of brain AT2 receptors? What are the molecular mechanisms involved in the cerebrovascular remodeling and inflammation which are promoted by AT1 receptor stimulation? How does Angiotensin II regulate the stress response at higher brain centers? Does the degree of activity of the brain Angiotensin II system predict vulnerability to stress and brain ischemia? We look forward to further studies in this exiting and expanding field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilera, G., Kiss, A., and Luo, X. (1995a). Increased expression of type1 angiotensin II receptors in the hypothalamic paraventricular nucleus following stress and glucocorticoid administration. J. Neuroendocrinol. 7:775–783.

    Google Scholar 

  • Aguilera, G., Young, W. S., Kiss, A., and Bathia, A. (1995b). Direct regulation of hypothalamic corticotropin-releasing-hormone neurons by angiotensin II. Neuroendocrinology 61:437–444.

    Google Scholar 

  • Amin-Hanjani, S. H., Stagliano, N. E., Yamada, M., Huang, P. L., Liao, J. K., and Moskowitz, M. A. (2001). Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke 32:980–986.

    PubMed  Google Scholar 

  • Ando, H., Zhou, J., Macota, M., Imboden, H., and Saavedra, J. M. (2004). Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke 25:1726–1731.

    Article  Google Scholar 

  • Armando, I., Carranza, A., Nishimura, Y., Hoe, K. L., Barontini, M., Terrón, J. A., Falcón-Neri, A., Ito, T., Juorio, A. V., and Saavedra, J. M. (2001). Peripheral administration of an angiotensin II AT1 receptor antagonist decreases the hypothalamic-pituitary-adrenal response to stress. Endocrinology 142:3880–3889.

    Article  PubMed  Google Scholar 

  • Bain, J. S., and Ferguson, A. V. (1995). Paraventricular nucleus neurons projecting to the spinal cord receive excitatory input from the subfornical organ. Am. J. Physiol. 268:R625–R633.

    PubMed  Google Scholar 

  • Barnes, J. M., Stewards, L. J., Barber, P. C., and Barnes, N. M. (1993). Identification and characterization of angiotensin II receptors subtypes in human brain. Eur. J. Pharmacol. 230:251–258.

    Article  PubMed  Google Scholar 

  • Baumbach, G. L., and Heistad, D. D. (1992). Drug-induced changes in mechanics and structure of cerebral arterioles. Journal of Hypertension 10(Suppl. 6):S137–S140.

    PubMed  Google Scholar 

  • Blezer, E. L. A., Klaas, N., Bar, D., Goldschmeding, R., Jansen, G. H., Koomans, H. A., and Joles, J. A. (1998). Enalapril prevents imminent and reduces manifest cerebral edema in stroke-prone hypertensive rats. Stroke 29:1671–1678.

    PubMed  Google Scholar 

  • Braun-Menéndez, E., Fasciolo, J. C., Leloir, L. F., and Muñoz, J. M. (1940). The substance causing renal hypertension. J. Physiol. (Lond) 98:283–298.

    Google Scholar 

  • Brecher, P., Tercyak, A., and Chobanian, A. V. (1981). Properties of angiotensin-converting enzyme in intact cerebral micro vessels. Hypertension 3:198–204.

    PubMed  Google Scholar 

  • Bregonzio, C., Armando, I., Ando, H., Jezova, M., Baiardi, G., and Saavedra, J. M. (2003). Anti-inflammatory effects of Angiotensin II AT1 receptor antagonism prevent stress-induced gastric injury. Am. J. Physiol. Gastrointest. Liver Physiol. 285:G414–G423.

    PubMed  Google Scholar 

  • Bremmer, J. D., Innis, R. B., Southwick, S. M., Staib, L., Zoghbi, S., and Charney, D. S. (2000). Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. Am. J. Psychiatry 157:1120–1126.

    Article  PubMed  Google Scholar 

  • Briones, A. M., Alonso, M. J., Hernanz, R., Miguel, M., and Salaices, M. (2002). Alterations of the nitric oxide pathway in cerebral arteries from spontaneously hypertensive rats. J Cardiovasc. Pharmacol. 39:378–388.

    Article  PubMed  Google Scholar 

  • Buckley, J. P. (1988). The central effects of the renin-angiotensin system. Clin. Exp. Hypertens. (A) 10:1–16.

    Google Scholar 

  • Brunson, K. L., Grigoriadis, D. E., Lorang, M. T., and Baram, T. Z. (2002). Corticotropin-releasing hormone (CRH) downregulates the function of its receptor (CRF1) and induces CRF1 expression in hippocampal and cortical regions of the immature rat brain. Exp. Neurol. 176:75–86.

    Article  PubMed  Google Scholar 

  • Bumpus, F. M., Pucell, A. G., Daud, A. I., and Hussain, A. (1988). Angiotensin II: An intraovarian regulatory peptide. Am. J. Med. Sci. 295:406–408.

    PubMed  Google Scholar 

  • Cahill, P. A., Redmond, E. M., Foster, C., and Sitzmann, J. V. (1995). Nitric oxide regulates angiotensin II receptors in vascular smooth muscle cells. Eur. J. Pharmacol. 288:219–229.

    Article  PubMed  Google Scholar 

  • Castrén, E., and Saavedra, J. M. (1988). Repeated stress increases the density of angiotensin II binding sites in the rat paraventricular nucleus and subfornical organ. Endocrinology 122:370–372.

    PubMed  Google Scholar 

  • Castrén, E., and Saavedra, J. M. (1989). Angiotensin II receptors in paraventricular nucleus, subfornical organ, and pituitary gland of hypophysectomized, adrenalectomized, and vasopressin-deficient rats. Proc. Natl. Acad. Sci. U.S.A. 86:725–729.

    PubMed  Google Scholar 

  • Chou, T. C., Yen, M. H., Chi-Yuan, L., and Ding, Y. A. (1998) Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension 31:643–648.

    PubMed  Google Scholar 

  • Clauser, E., Curnow, K. M., Davies, E., Conchon, S., Teutsch, B., Vianello, B., Monnot, C., and Corvol, P. (1996). Angiotensin II receptors: Protein and gene structure, expression and potential pathological involvement. Eur. J. Endocrinol. 134:403–411.

    PubMed  Google Scholar 

  • Cromheeke, K. M., Kockx, M. M., De Meyer, G. R. Y., Bosmans, J. M., Bult, H., Beelaerts, W. J. F., Vrints, C. J., and Herman, A. G., (1999). Inducible nitric oxide synthase colocalizes with signs of lipid oxidation-peroxidation in human atherosclerotic plaques. Cardiovasc. Res. 43:744–754.

    Article  PubMed  Google Scholar 

  • De Gasparo, M., Catt, K. J., Inagami, T., Wright, J. W., and Unger, T. H. (2000). International Union of Pharmacology. XXIII. The angiotensin receptors. Pharmacol. Rev. 52:415–472.

    PubMed  Google Scholar 

  • De Gasparo, M., and Siragy, H. M. (1999). The AT2 receptor: fact, fancy and fantasy. Regul. Pept. 81:11–24.

    Article  PubMed  Google Scholar 

  • Edvinsson, L. (1975). Neurogenic mechanisms in the cerebrovascular bed. Autonomic nerves, amine receptors and their effects on cerebral blood flow. Acta Physiol. Scand. 427(Suppl):1–35.

    Google Scholar 

  • Edvinsson, L., Hardebo, J. E., and Owman, C. (1979). Effects of angiotensin II on cerebral blood vessels. Acta Physiol. Scand. 105:381–383.

    PubMed  Google Scholar 

  • Filaretova, L. P., Filaretov, A. A., and Makara, G. B. (1998). Corticosterone increase inhibits stress-induced gastric erosions in rats. Am. J. Physiol. 274:G1024–G1030.

    PubMed  Google Scholar 

  • Fujii, K., Weno, B. L., Baumbach, G. L., and Heistad, D. D. (1992). Effect of antihypertensive treatment on focal cerebral infarction. Hypertension 19:713–716.

    PubMed  Google Scholar 

  • Gallinat, S., Busche, S., Raizada, M., and Sumners, C. (2000). The angiotensin II type 2 receptor: and enigma with multiple variations. Amer. J. Physiol. 278:E357–E374.

    Google Scholar 

  • Ganong, W. F. (1993). Blood, pituitary, and brain Renin-Angiotensin Systems and regulation of secretion of anterior pituitary gland. Front. Neuroendocrinol. 14:233–249.

    Article  PubMed  Google Scholar 

  • Ganong, W. F., and Murakami, K. (1987). The role of angiotensin II in the regulation of ACTH secretion. Ann. N.Y Acad. Sci. 512:176–186.

    PubMed  Google Scholar 

  • Ganten, D., Lang, R. E., Lehmann, E., and Unger, T. (1984). Brain angiotensin: On the way to becoming a well-studied neuropeptide system. Biochem. Pharmacol. 33:3523–3528.

    Article  PubMed  Google Scholar 

  • Ganten, D., Mullins, J., and Lindpaintner, K. (1989). The tissue renin-angiotensin system: a target for angiotensin-converting enzyme inhibitors. J. Hum. Hypertens. 3(Suppl 1):63–70.

    Google Scholar 

  • Gehlert, D. R., Speth, R. C., and Wamsley, J. K. (1986). Distribution of [125I] angiotensin II binding sites in the rat brain: A quantitative autoradiographic study. Neuroscience 18:837–856.

    Article  PubMed  Google Scholar 

  • Griendling, K. K., Lassègue, B., and Alexander, R. W. (1996). Angiotensin receptors and their therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 36:281–306.

    Article  PubMed  Google Scholar 

  • Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., and Alexander, R. W. (1994). Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 74:1141–1148.

    PubMed  Google Scholar 

  • Griffin, S. A., Brown, W. C. B., MacPherson, F., McGrath, J. C., Wilson, V. G., Korsgaard, N., Mulvany, M. J., and Lever, A. F. (1991). Angiotensin II causes vascular hypertrophy in part by a non-pressor mechanism. Hypertension 17:626–635.

    PubMed  Google Scholar 

  • Guo, D. F., Uno, S., Ishihata, A., Nakamura, N., and Inagami, T. (1995). Identification of a cis-acting Glucocorticoid responsive element in the rat angiotensin II type 1A promoter. Circ. Res. 77:249–257.

    PubMed  Google Scholar 

  • Hajdu, M. A., Heistad, D. D., Ghoneim, S., and Baumbach, G. F. (1991). Effects of antihypertensive treatment on composition of cerebral arterioles. Hypertension 18(Suppl. II):II-1115–II-1121.

    Google Scholar 

  • Hamaguchi, M., Watanabe, T., Higuchi, K., Tominaga, K., Fujiwara, Y., Arakawa, T. (2001). Mechanisms and roles of neutrophil infiltration in stress-induced gastric injury in rats. Dig. Dis. Sci. 46:2708–15.

    Article  PubMed  Google Scholar 

  • Harrison, D. G. (1997). Cellular and molecular mechanisms of endothelial cell dysfunction. J. Clin. Invest. 100:2153–2157.

    PubMed  Google Scholar 

  • Häuser, W., Jöhren, O., and Saavedra, J. M. (1998). Characterization and distribution of angiotensin II receptor subtypes in the mouse brain. Eur. J. Pharmacol. 348:101–114.

    Article  PubMed  Google Scholar 

  • Healy, D. P., Maciejewski, A. R., and Printz, M. P. (1986). Localization of central angiotensin II receptors with [125I]-sarl, ile8-angiotensin II: periventricular sites of the anterior third ventricle. Neuroendocrinology 44:15–21.

    PubMed  Google Scholar 

  • Heinemann, A., Sattler, V., Jocic, M., Wienen, W., and Holzer, P. (1999). Effect of angiotensin II and telmisartan, an angiotensin1 receptor antagonist, on rat mucosal gastric blood flow. Aliment. Pharmacol. Ther. 13:347–355.

    Article  PubMed  Google Scholar 

  • Hirasawa, K., Sato, Y., Hosoda, Y., Yamamoto, T., and Hanai, H. (2002). Immunohistochemical localization of Angiotensin II receptor and local Renin-Angiotensin System in human colonic mucosa. J. Histochem. Cytochem. 50:275–282.

    PubMed  Google Scholar 

  • Inagami, T., Guo, D.-F., and Kitami, Y. (1994). Molecular biology of angiotensin II receptors: An overview. J. Hypertens. 12:583–594.

    Google Scholar 

  • Intengan, H. D., and Schiffrin, E. L., (2001). Vascular remodeling in hypertension roles of apoptosis, inflammation and fibrosis. Hypertension 38:(Pt 2):581–587.

    PubMed  Google Scholar 

  • Israel, A., Strömberg, C., Tsutsumi, K., Garrido, M. D. R., Torres, M., and Saavedra, J. M. (1995). Angiotensin II receptor subtypes and phosphoinositide hydrolysis in rat adrenal medulla. Brain Res. Bull. 38:441–446.

    Article  PubMed  Google Scholar 

  • Ito, T., Nishimura, Y., and Saavedra, J. M. (2001). Pre-treatment with candesartan protects from cerebral ischemia. J. Renin Ang. Aldost. Syst. 2:174–179.

    Google Scholar 

  • Ito, T., Yamakawa, H., Bregonzio, C., Terrón, J. A., Falcón-Neri, A., and Saavedra, J. M. (2002). Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an Angiotensin II AT1 antagonist. Stroke 33:2297–2303.

    Article  PubMed  Google Scholar 

  • Jezova, M., Armando, I., Bregonzio, C., Yu, Zu-Xi., Qian, S., Ferrans, V. J., Imboden, H., and Saavedra, J. M. (2003). Angiotensin II AT1 and AT2 receptors contribute to maintain basal adrenomedullary norepinephrine synthesis and tyrosine hydroxylase transcription. Endocrinology 144:2092–2101.

    Article  PubMed  Google Scholar 

  • Jezova, D., Ochedalski, T., Kiss, A., and Aguilera, G. (1998). Brain angiotensin II modulates sympathoadrenal and hypothalamic pituitary adrenocortical activation during stress. J. Neuroendocrinol. 10:67–72.

    Article  PubMed  Google Scholar 

  • Jöhren, O., Inagami, T., and Saavedra, J. M. (1995). AT1A, AT1B, and AT2 angiotensin II receptor subtype gene expression in rat brain. Neuroreport 6:2549–2551.

    PubMed  Google Scholar 

  • Jöhren, O., Inagami, T., and Saavedra, J. M. (1996). Localization of AT2 angiotensin receptor gene expression in rat brain by in situ hybridization histochemistry. Brain Res. Mol. Brain Res. 37:192–200.

    Article  PubMed  Google Scholar 

  • Jöhren, O., and Saavedra, J. M. (1996a). Gene expression of angiotensin II receptor subtypes in the cerebellar cortex of young rats. Neuroreport 7:1349–1352.

    Google Scholar 

  • Jöhren, O., and Saavedra, J. M. (1996b). Expression of AT1A$ and AT1B angiotensin II receptor messenger RNA in forebrain of two-week-old rats. Am. J. Physiol. 271:E104–E112.

    Google Scholar 

  • Jones, A., and Woods, D. R. (2003). Skeletal muscle RAS and exercise performance. Int. J. Biochem. Cell. Biol. 35:855–866.

    Article  PubMed  Google Scholar 

  • Jonsson, J. R., Game, P. A., Head, R. J., and Frewin, D. B. (1994). The expression and localization of the angiotensin-converting enzyme mRNA in human adipose tissue. Blood Press. 3:72–75.

    PubMed  Google Scholar 

  • Kakar, S. S., Sellers, J. C., Devor, D. C., Musgrove, L. C., and Neill, J. D. (1992). Angiotensin II type-1 receptor subtype cDNAs: Differential tissue expression and hormonal regulation. Biochem. Biophys. Res Commun. 183:1090–1096.

    Article  PubMed  Google Scholar 

  • Kambayashi, Y., Bardhan, S., Takahashi, K., Tsuzuki, S., Inui, H., Hamakubo, T., and Inagami, T. (1993). Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J. Biol. Chem. 268:24543–23546.

    PubMed  Google Scholar 

  • Keck, M. E., and Holsboer, F. (2001). Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 22:835–844.

    Article  PubMed  Google Scholar 

  • Leker, R. R., Teichner, A., Ovadia, H., Keshet, E., Reinherz, E. and Ben-Hur, T. (2001). Expression of endothelial nitric oxide synthase in the ischemic penumbra: Relationship to expression of neuronal nitric oxide synthase and vascular endothelial growth factor. Brain Res. 909:1–7.

    Article  PubMed  Google Scholar 

  • Leong, D. S., Terrón, J. A., Falcón-Neri, A., Armando, I., Ito, T., Jöhren, O., Tonelli, L. H., Hoe, K.-L., and Saavedra, J. M. (2002). Restraint stress modulates brain, pituitary and adrenal expression of angiotensin II AT1A, AT1B and AT2 receptors. Neuroendocrinology 75:227–240.

    Article  PubMed  Google Scholar 

  • Leung, P. S., and Carlsson, P. O. (2001). Tissue renin-angiotensin system: Its expression, localization, regulation and potential role in the pancreas. J. Mol. Endocrinol. 26:155–164.

    Article  PubMed  Google Scholar 

  • Lind, R. W., Swanson, L. W., and Ganten, D. (1985). Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40:2–24.

    PubMed  Google Scholar 

  • Medina, J. H., Novas, M. L., Wolfman, C. N. V., De Stein, M. L., and De Robertis, E. (1983). Benzodiazepine receptors in rat cerebral cortex and hippocampus undergo rapid and reversible changes alter acute stress. Neuroscience 9:331–335.

    Article  PubMed  Google Scholar 

  • Mendelsohn, F. A. O., Quirion, R., Saavedra, J. M., Aguilera, G., and Catt, K. J. (1984). Autoradiographic localization of angiotensin II receptors in rat brain. Proc. Natl. Acad. Sci. USA 81:1575–1579.

    PubMed  Google Scholar 

  • Millan, M. A., and Aguilera, G. (1988). Angiotensin II receptors in testes. Endocrinology 122:1984–1990.

    PubMed  Google Scholar 

  • Millatt, L. J., Abdel-Rahman, E. M., and Siragy, H. M., (1999). Angiotensin II and nitric oxide: A question of balance. Regul. Pept. 81:1–10.

    Article  PubMed  Google Scholar 

  • Morsing, P., (1999). Candesartan: A new generation Angiotensin II AT1 receptor blocker: pharmacology, antihypertensive efficacy, renal function, and renoprotection. J. Am. Soc. Nephrol. 10:S248–S254.

    PubMed  Google Scholar 

  • Mulvany, M. J., Baumbach, G. L., Aalkjaer, C., Heagerty, A. M., Korsgaard, N., Schiffrin, E. L., and Heistad, D. D. (1996). Vascular remodeling. Hypertension 28:505–506.

    PubMed  Google Scholar 

  • Näveri, L., Strömberg, C., and Saavedra, J. M. (1994). Angiotensin II AT1 receptor mediated contraction of the perfused rat cerebral artery. Neuroreport 5:2278–2280.

    PubMed  Google Scholar 

  • Nishimura, Y., Ito, T., Hoe, K.-L., and Saavedra, J. M. (2000a). Chronic peripheral administration of the angiotensin II AT1 receptor antagonist candesartan blocks brain AT1 receptors. Brain Res. 871:29–38.

    Article  Google Scholar 

  • Nishimura, Y., Ito, T., and Saavedra, J. M. (2000b). Angiotensin II AT1 blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 31:2478–2486.

    Google Scholar 

  • Nishimura, Y., Xu, T., Jöhren, O., Häuser, W., and Saavedra, J. M. (1998). The angiotensin AT1 receptor antagonist candesartan regulates cerebral blood flow and brain angiotensin AT1 receptor expression. Basic Res. Cardiol. 93(Suppl. 2):63–68.

    Article  Google Scholar 

  • Page, I. H. (1987). Hypertension Mechanisms. Grune & Stratton, New York, p. 1102.

    Google Scholar 

  • Page, I. H., and Helmer, O. M. (1940). A crystalline pressor substance (angiotensin) resulting from the reaction between renin and renin activator. J. Exp. Med. 71:29–42.

    Article  Google Scholar 

  • Peng, J., and Phillips, M. I. (2001). Opposite regulation of brain angiotensin type1 and type 2 receptors in cold-induced hypertension. Regul. Pept. 97:91–102.

    Article  PubMed  Google Scholar 

  • Phillips, M. I., and Sumners, C. (1998). Angiotensin II in central nervous system physiology. Regul. Pept. 78:1–11.

    Article  PubMed  Google Scholar 

  • Pieruzzi, F., Abassi, Z. A., and Keiser, H. R. (1995). Expression of renin-angiotensin system components in the heart, kidneys, and lungs of rats with experimental heart failure. Circulation 92:3105–3112.

    PubMed  Google Scholar 

  • Rajagopalan, S., Kurz, S., Münzel, T., Tarpey, M., Freeman, B. A., Griendling, K. K., and Harrison, D. G. (1996). Angiotensin II-mediated hypertension in the rat increases vascular superoxide to production via membrane NADH/NADPH oxidase activation. J. Clin. Invest. 97:1916–1923.

    PubMed  Google Scholar 

  • Ross, R. (1993). The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362:801–809.

    PubMed  Google Scholar 

  • Rudic, R. D., and Sessa, W. C. (1999). Human genetics’99: The cardiovascular system nitric oxide in endothelial dysfunction and vascular remodeling: Clinical correlates and experimental links. Am. J. Hum. Gene. 64:673–677.

    Article  Google Scholar 

  • Rudic, R. D., Shesely, E. G., Maeda, N., Smithies, O., Segal, S. S., and Sessa, W. C. (1998). Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J. Clin. Invest. 101:731–736.

    PubMed  Google Scholar 

  • Saavedra, J. M. (1992). Brain and pituitary angiotensin. Endocrinol. Rev. 13:329–380.

    Article  Google Scholar 

  • Saavedra, J. M. (1999). Emerging features of brain angiotensin receptors. Regul. Pept. 85:31–45.

    Article  PubMed  Google Scholar 

  • Saavedra, J. M., Israel, A., Plunkett, L. M., Kurihara, M., Shigematsu, K., and Correa, F. M. A. (1986). Quantitative distribution of angiotensin II binding sites in rat brain by autoradiography. Peptides 7:679–687.

    Article  PubMed  Google Scholar 

  • Saavedra, J. M., and Nishimura, Y. (1999). Angiotensin and cerebral blood flow. Cell Mol. Neurobiol. 19:553–573.

    Article  PubMed  Google Scholar 

  • Sasaki, K., Yamano, Y., Bardhan, S., Iwai, N., Murria, J., Hasegawa, M., Matsuda, Y., and Inagami, T. (1991). Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351:230–233.

    Article  PubMed  Google Scholar 

  • Serra, M., Concas, A., Mostallino, M. C., Chessa, M. F., Stomati, M., Petraglia, F., Genazzani, A. R., and Biggio, G. (1999). Antagonism by pivagabine of stress-induced changes in GABAA receptor function and corticotropin-releasing factor concentrations in rat brain. Psychoneuroendocrinology 24:269–284.

    Article  PubMed  Google Scholar 

  • Sever, P. S. (1999). Key features of candesartan cilexetil and a comparison with other angiotensin II receptor antagonists. J. Hum. Hypertens. 13(Suppl. 1):S3–S10.

    Article  Google Scholar 

  • Shigematsu, K., Saavedra, J. M., Plunkett, L. M., Kurihara, M., and Correa, F. M. A. (1986). Angiotensin II binding site in the anteroventral-third ventricle (AV3V) area and related structures of the rat brain. Neurosci. Lett. 67:37–41.

    Article  PubMed  Google Scholar 

  • Smith, T. A. (2001). Type A gamma-aminobutyric acid (GABAA) receptor subunits and benzodiazepine binding: Significance to clinical syndromes and their treatment. Br. J. Biomed. Sci. 58:111–121.

    PubMed  Google Scholar 

  • Speth, R. C., and Harik, S. I. (1985). Angiotensin II receptor binding sites in brain microvessels. Proc. Natl. Acad. Sci. U.S.A. 82:6340–6343.

    PubMed  Google Scholar 

  • Sumitomo, T., Suda, T., Nakano, Y., Tozawa, F., Yamada, M., and Demura, H. (1991). Angiotensin II increases the corticotropin-releasing factor messenger ribonucleic acid levels in the rat hypothalamus. Endocrinology 128:2248–2252.

    PubMed  Google Scholar 

  • Timmermans, P. B. (1999). Pharmacological properties of angiotensin II receptor antagonists. Can. J. Cardiol. 15(Suppl. 7):26 F–28 F.

    Google Scholar 

  • Timmermans, P. B. M. W. M., Inagami, T., Saavedra, J. M., Ardaillou, R., Rosenfeld, C. R., and Mendelsohn, F. A. O. (1995). Angiotensin receptor subtypes and their pharmacology. In Cuello, A. C., and Collier, B. (eds.), Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Birkhauser Verlag, Basel, Switzerland, pp. 37–58.

    Google Scholar 

  • Timmermans, P. B. M. W. M., Wong, P. C., Chiu, A. T., Herblin, W. F., Benfield, P., Carini, D. J., Lee, R. J., Wexler, R. R., Saye, J. A. M., and Smith, R. D. (1993). Angiotensin II receptors and angiotensin II receptors antagonists. Pharmacol. Rev. 45:205–251.

    PubMed  Google Scholar 

  • Tsutsumi, K., and Saavedra, J. M. (1991a). Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am. J. Physiol. 261:R209–R216.

    Google Scholar 

  • Tsutsumi, K., and Saavedra, J. M. (1991b). Angiotensin II receptor subtypes in median eminence and basal forebrain areas involved in the regulation of pituitary function. Endocrinology 129:3001–3008.

    Google Scholar 

  • Tsutsumi, K., and Saavedra, J. M. (1991c). Characterization of AT2 angiotensin II receptors in rat anterior cerebral arteries. Am. J. Physiol. 261:H667–H670.

    Google Scholar 

  • Tsutsumi, K., Strömberg, C., Viswanathan, M., and Saavedra, J. M. (1991a). Angiotensin-II receptor subtypes in fetal tissues of the rat: Autoradiography, guanine nucleotide sensitivity, and association with phosphoinositide hydrolysis. Endocrinology 129:1075–1082.

    Google Scholar 

  • Tsutsumi, K., Viswanathan, M., Strömberg, C., and Saavedra, J. M. (1991b). Type-1 and type-2 angiotensin receptors in fetal rat brain. Eur. J. Pharmacol. 198:89–92.

    Article  Google Scholar 

  • Vraamak, T., Waldemar, G., Strandgaard, S., and Paulson, S. (1995). Angiotensin II receptor antagonist candesartan and cerebral blood flow autoregulation. J. Hypertens. 13:755–761.

    PubMed  Google Scholar 

  • Van Houten, M., Schiffrin, E. L., Mann, J. F. E., Posner, B. I., and Boucher, R. (1980). Radioautographic localization of specific binding sites for blood-borne angiotensin II in the rat brain. Brain Res. 186:480–485.

    Article  PubMed  Google Scholar 

  • Wong, P. C., Hart, S. D., Zaspel, A. M., Chiu, A. T., Ardecky, R. J., Smith, R. D., and Timmermans, P. B. (1990). Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (AII-1) and PD 123177 (AII-2). J. Pharmacol. Exp. Ther. 255:584–592.

    PubMed  Google Scholar 

  • Xang, G., Xi, Z. X., Wan, Y., Wang, H., and Bi, G. (1993). Changes in circulating and tissue angiotensin II during acute and chronic stress. Biol. Signals 2:166–172.

    PubMed  Google Scholar 

  • Yamakawa, H., Jezova, M., Ando, H., and Saavedra, J. M. (2003). Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J. Cereb. Blood Flow Metab. 23:371–380.

    Article  PubMed  Google Scholar 

  • Yang, G., Wan, Y., and Zhu, Y. (1996). Angiotensin II- An important stress hormone. Biol. Signals 5:1–8.

    PubMed  Google Scholar 

  • Yogo, K., Shimokawa, H., Funakoshi, H., Kandabashi, T., Miyata, K., Okamoto, S., Egashire, K., Huang, P., Akaike, T., and Takeshita, A. (2000). Different vasculoprotective roles of NO synthase isoforms in vascular lesion formation in mice. Arteriosc. Thromb. Vasc. Biol. 20:e96–e100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Saavedra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saavedra, J.M. Brain Angiotensin II: New Developments, Unanswered Questions and Therapeutic Opportunities. Cell Mol Neurobiol 25, 485–512 (2005). https://doi.org/10.1007/s10571-005-4011-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-4011-5

Key Words

Navigation