Skip to main content

Prevention of Stress-Induced Cognitive Impairment: Today and Tomorrow

  • Chapter
Psychiatry and Neuroscience Update

Abstract

Stress is an integral part of our daily lives. The level of sensitivity/vulnerability to stress, and thus, the magnitude of reaction/response, is crucial for the ultimate impact it has on us. Stress can be a mobilizing factor having beneficial effects, but beyond a certain limit it becomes our proverbial ball and chain. One of the negative effects that stress has on us is impairment of cognitive functions. In this chapter we will discuss currently available strategies of protection of cognitive functions against the negative impact of stress, as well as those being developed. Antidepressants are currently used for the treatment of cognitive impairments caused by stress, and there are attempts to use new anticonvulsants. However, both these groups of drugs cause a number of side effects, and there are several contraindications to their use. Therefore, our own search for an effective treatment headed toward natural products. First, we used Hypericum perforatum extract, then the well-known adaptogen Ginkgo biloba extract was examined, and we have also shown some protective effects of omega-3 fatty acids. Beneficial effects of angiotensin II AT1 receptor blockers have been shown as pharmacological agents. But the most interesting results were obtained after the use of ciproxifan, a H3 receptor antagonist. Other agents that could possibly be considered for alleviation of stress-induced memory impairment are curcumin, saffron extract, and canabinoids.

Pursuing some of the above research lines might bring discovery of cheap, harmless, and easy to use cure for the ever-increasing burden of stress-induced memory loss.

It’s not stress that kills us, it is our reaction to it.

Hans Selye

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lupien SJ, Lepage M. Stress, memory, and the hippocampus: can’t live with it, can’t live without it. Behav Brain Res. 2001;127(1–2):137–58.

    Article  CAS  PubMed  Google Scholar 

  2. McEwen BS. Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann N Y Acad Sci. 2001;933:265–77.

    Article  CAS  PubMed  Google Scholar 

  3. Magariños AM, Verdugo JM, McEwen BS. Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci U S A. 1997;94(25):14002–8.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lupien SJ, McEwen BS. The acute effects of corticosteroids on cognition: integration of animal and human model studies. Brain Res Rev. 1997;24(1):1–27.

    Article  CAS  PubMed  Google Scholar 

  5. Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience. 2000;97:253–66.

    Article  CAS  PubMed  Google Scholar 

  6. Cook SC, Wellman CL. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol. 2004;60(2):236–48.

    Article  PubMed  Google Scholar 

  7. Galea LA, McEwen BS, Tanapat P, Deak T, Spence RL, Dhabhar FS. Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience. 1997;81(3):689–97.

    Article  CAS  PubMed  Google Scholar 

  8. McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886(1–2):172–89.

    Article  CAS  PubMed  Google Scholar 

  9. Arnsten AF. Stress signaling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10(6):410–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Radley JJ, Sisti HM, Rocher AB, Hao J, McCall T, Hof PR, McEwen BS, Morrison JH. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience. 2004;125(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  11. Bennur S, Shankaranarayana Rao BS, Pawlak R, Strickland S, McEwen BS, Chattarji S. Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience. 2007;144(1):8–16.

    Article  CAS  PubMed  Google Scholar 

  12. Magariños AM, McEwen BS, Flügge G, Fuchs E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci. 1996;16(10):3534–40.

    PubMed  Google Scholar 

  13. Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excittotoxicity. Cell Calcium. 2003;34(4–5):325–37.

    Article  CAS  PubMed  Google Scholar 

  14. McEwen BS, Gianaros PJ. Stress- and allostasis-induced brain plasticity. Annu Rev Med. 2011;62:431–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Goldwater DS, Pavlides C, Hunter RG, Bloss EB, Hof PR, McEwen BS, Morrison JH. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience. 2009;164(2):798–808.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Walesiuk A, Braszko JJ. Gingkoselect alleviates chronic corticosterone-induced spatial memory deficits in rats. Fitoterapia. 2010;81(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  17. Morales-Medina JC, Sanchez F, Flores G, Dumont Y, Quirion R. Morphological reorganization after repeated corticosterone administration in the hippocampus, nucleus accumbens and amygdala in the rat. J Chem Neuroanat. 2009;38(4):266–72.

    Article  CAS  PubMed  Google Scholar 

  18. Jorgensen H, Knigge U, Kjaer A, Moller M, Warberg J. Serotonergic stimulation of corticotropin-releasing hormone and pro-opiomelanocortin gene expression. J Neuroendocrinol. 2002;14(10):788–95.

    Article  CAS  PubMed  Google Scholar 

  19. Larsen PJ, Hay-Schmidt A, Vrang N, Mikkelsen JD. Origin of projections from the midbrain raphe nuclei to the hypothalamic paraventricular nucleus in the rat: a combined retrograde and anterograde tracing study. Neuroscience. 1996;70(4):963–88.

    Article  CAS  PubMed  Google Scholar 

  20. Holmes MC, Di RG, Beckford U, Gillham B, Jones MT. Role of serotonin in the control of secretion of corticotrophin releasing factor. J Endocrinol. 1982;93(2):151–60.

    Article  CAS  PubMed  Google Scholar 

  21. Kageyama K, Tozawa F, Horiba N, Watanobe H, Suda T. Serotonin stimulates corticotropin-releasing factor gene expression in the hypothalamic paraventricular nucleus of conscious rats. Neurosci Lett. 1998;243(1–3):17–20.

    Article  CAS  PubMed  Google Scholar 

  22. Jørgensen H, Knigge U, Kjaer A, Warberg J. Adrenocorticotropic hormone secretion in rats induced by stimulation with serotonergic compounds. J Neuroendocrinol. 1999;11(4):283–90.

    Article  PubMed  Google Scholar 

  23. Vicentic A, Li Q, Battaglia G, Van de Kar LD. WAY-100635 inhibits 8-OH-DPAT-stimulated oxytocin, ACTH and corticosterone, but not prolactin secretion. Eur J Pharmacol. 1998;346(2–3):261–6.

    Article  CAS  PubMed  Google Scholar 

  24. Bambico FR, Nguyen NT, Gobbi G. Decline in serotonergic firing activity and desensitization of 5-HT1A autoreceptors after chronic unpredictable stress. Eur Neuropsychopharmacol. 2009;19(3):215–28.

    Article  CAS  PubMed  Google Scholar 

  25. Czyrak A, Maćkowiak M, Chocyk A, Fijał K, Tokarski K, Bijak M, Wedzony K. Prolonged corticosterone treatment alters the responsiveness of 5-HT1A receptors to 8-OH-DPAT in rat CA1 hippocampal neurons. Naunyn Schmiedebergs Arch Pharmacol. 2002;366(4):357–67.

    Article  CAS  PubMed  Google Scholar 

  26. McAllister-Williams RH, Ferrier IN, Young AH. Mood and neuropsychological function in depression: the role of corticosteroids and serotonin. Psychol Med. 1998;28(3):573–84.

    Article  CAS  PubMed  Google Scholar 

  27. Jankord R, Herman JP. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci. 2008;1148:64–73.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lanfumey L, Pardon MC, Laaris N, Joubert C, Hanoun N, Hamon M, Cohen-Salmon C. 5-HT1A autoreceptor desensitization by chronic ultramild stress in mice. Neuroreport. 1999;10(16):3369–74.

    Article  CAS  PubMed  Google Scholar 

  29. Lopez JF, Liberzon I, Vazquez DM, Young EA, Watson SJ. Serotonin 1A receptor messenger RNA regulation in the hippocampus after acute stress. Biol Psychiatry. 1999;45(7):934–7.

    Article  CAS  PubMed  Google Scholar 

  30. Inder WJ, Prickett TC, Mulder RT, Donald RA, Joyce PR. Reduction in basal afternoon plasma ACTH during early treatment of depression with fluoxetine. Psychopharmacology (Berl). 2001;156(1):73–8.

    Article  CAS  Google Scholar 

  31. Cabib S, Puglisi-Allegra S. The mesoaccumbens dopamine in coping with stress. Neurosci Biobehav Rev. 2012;36(1):79–89.

    Article  CAS  PubMed  Google Scholar 

  32. Pacchioni AM, Cador M, Bregonzio C, Cancela LM. A glutamate-dopamine interaction in the persistent enhanced response to amphetamine in nucleus accumbens core but not shell following a single restraint stress. Neuropsychopharmacology. 2007;32(3):682–92.

    Article  CAS  PubMed  Google Scholar 

  33. Moore H, Rose HJ, Grace AA. Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology. 2001;24(4):410–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kompagne H, Bardos G, Szenasi G, Gacsalyi I, Harsing LG, Levay G. Chronic mild stress generates clear depressive but ambiguous anxiety-like behaviour in rats. Behav Brain Res. 2008;193(2):311–4.

    Article  PubMed  Google Scholar 

  35. Hensleigh E, Pritchard LM. Glucocorticoid receptor expression and sub-cellular localization in dopamine neurons of the rat midbrain. Neurosci Lett. 2013;556:191–5.

    Article  CAS  PubMed  Google Scholar 

  36. Belda X, Armario A. Dopamine D1 and D2 dopamine receptors regulate immobilization stress-induced activation of the hypothalamus-pituitary-adrenal axis. Psychopharmacology (Berl). 2009;206(3):355–65.

    Article  CAS  Google Scholar 

  37. Zahrt J, Taylor JR, Mathew RG, Arnsten AFT. Supranormal stimulation of dopamine D1 receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci. 1997;17(21):8528–35.

    CAS  PubMed  Google Scholar 

  38. Izquierdo I, Izquierdo LA, Barros DM, Mello e Souza T, De Souza MM, Quevedo J, Rodrigues C, Sant’Anna MK, Madruga M, Medina JH. Differential involvement of cortical receptor mechanisms in working, short-term and long-term memory. Behav Pharmacol. 1998;9(5–6):421–7.

    Article  CAS  PubMed  Google Scholar 

  39. Murphy BL, Arnsten AF, Goldman-Rakic PS, Roth RH. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci U S A. 1996;93(3):1325–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Taylor JR, Birnbaum S, Ubriani R, Arnsten AF. Activation of cAMP-dependent protein kinase A in prefrontal cortex impairs working memory performance. J Neurosci. 1999;19(18):RC23.

    CAS  PubMed  Google Scholar 

  41. Pickel VM, Colago EE, Mania I, Molosh AI, Rainnie DG. Dopamine D1 receptors co-distribute with N-methyl-D-aspartic acid type-1 subunits and modulate synaptically-evoked N-methyl-D-aspartic acid currents in rat basolateral amygdala. Neuroscience. 2006;142(3):671–90.

    Article  CAS  PubMed  Google Scholar 

  42. Goldman-Rakic PS, Muly 3rd EC, Williams GV. D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev. 2000;31(2–3):295–301.

    Article  CAS  PubMed  Google Scholar 

  43. Arnsten AFT, Goldman-Rakic PS. Alpha-2 adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985;230(4731):1273–6.

    Article  CAS  PubMed  Google Scholar 

  44. Birnbaum SG, Gobeske KT, Auerbach J, Taylor JR, Arnsten AFT. A role for norepinephrine in stress-induced cognitive deficits: α-1-adrenoceptor mediation in prefrontal cortex. Biol Psychiatry. 1999;46(9):1266–74.

    Article  CAS  PubMed  Google Scholar 

  45. Ramos B, Colgan L, Nou E, Ovadia S, Wilson SR, Arnsten AF. The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biol Psychiatry. 2005;58(11):894–900.

    Article  CAS  PubMed  Google Scholar 

  46. Yerkes RM, Dodson JD. The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol. 1908;18:459–82.

    Article  Google Scholar 

  47. Li B-M, Mei Z-T. Delayed response deficit induced by local injection of the alpha-2 adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behav Neural Biol. 1994;62(2):134–9.

    Article  CAS  PubMed  Google Scholar 

  48. Birnbaum SG, Podell DM, Arnsten AFT. Noradrenergic alpha-2 receptor agonists reverse working memory deficits induced by the anxiogenic drug, FG7142, in rats. Pharmacol Biochem Behav. 2000;67(3):397–403.

    Article  CAS  PubMed  Google Scholar 

  49. Ramos B, Stark D, Verduzco L, van Dyck CH, Arnsten AFT. Alpha-2A-adrenoceptor stimulation improves prefrontal cortical regulation of behavior through inhibition of cAMP signaling in aging animals. Learn Mem. 2006;13(6):770–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Arnsten AFT, Mathew R, Ubriani R, Taylor JR, Li BM. α-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry. 1999;45(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  51. Raskind MA, Thompson C, Petrie EC, Dobie DJ, Rein RJ, Hoff DJ, McFall ME, Peskind ER. Prazosin reduces nightmares in combat veterans with posttraumatic stress disorder. J Clin Psychiatry. 2002;63(7):565–8.

    Article  CAS  PubMed  Google Scholar 

  52. Buffalari DM, Grace AA. Noradrenergic modulation of basolateral amygdala neuronal activity: opposing influences of alpha-2 and beta receptor activation. J Neurosci. 2007;27(45):12358–66.

    Article  CAS  PubMed  Google Scholar 

  53. Campbell AM, Park CR, Zoladz PR, Muñoz C, Fleshner M, Diamond DM. Pre-training administration of tianeptine, but not propranolol, protects hippocampus-dependent memory from being impaired by predator stress. Eur Neuropsychopharmacol. 2008;18(2):87–98.

    Article  CAS  PubMed  Google Scholar 

  54. Alexander JK, Hillier A, Smith RM, Tivarus ME, Beversdorf DQ. Beta-adrenergic modulation of cognitive flexibility during stress. J Cogn Neurosci. 2007;19(3):468–78.

    Article  PubMed  Google Scholar 

  55. Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, Vijayraghavan S, Brennan A, Dudley A, Nou E, Mazer JA, McCormick DA, Arnsten AF. α2A-adrenoceptor stimulation strengthens working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell. 2007;129(2):397–410.

    Article  CAS  PubMed  Google Scholar 

  56. Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci. 2007;10(3):376–84.

    Article  CAS  PubMed  Google Scholar 

  57. Grundemann D, Schechinger B, Rappold GA, Schomig E. Molecular identification of the cortisone-sensitive extraneuronal catecholamine transporter. Nat Neurosci. 1998;1(5):349–51.

    Article  CAS  PubMed  Google Scholar 

  58. Schaaf MJ, De Kloet ER, Vreugdenhil E. Corticosterone effects on BDNF expression in the hippocampus. Implications for memory formation. Stress. 2000;3(3):201–8.

    Article  CAS  PubMed  Google Scholar 

  59. Belanoff JK, Gross K, Yager A, Schatzberg AF. Corticosteroids and cognition. J Psychiatry Res. 2001;35(3):127–45.

    Article  CAS  Google Scholar 

  60. Rothman SM, Mattson MP. Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience. 2013;239:228–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Honig WK. Studies of working memory in the pigeon. In: Hulse SH, Fowler H, Honig WK, editors. Cognitive processes in animal behavior. Hillsdale, NJ: Lawrence Erlbaum; 1978. p. 211–48.

    Google Scholar 

  62. De Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6(6):463–75.

    Article  PubMed  CAS  Google Scholar 

  63. Finsterwald C, Alberini CM. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: From adaptive responses to psychopathologies. Neurobiol Learn Mem. 2014;112:1729. pii: S1074-7427(13)00194-9.

    Article  CAS  Google Scholar 

  64. Rodrigues SM, LeDoux JE, Sapolsky RM. The influence of stress hormones on fear circuitry. Annu Rev Neurosci. 2009;32:289–313.

    Article  CAS  PubMed  Google Scholar 

  65. Roozendaal B, McReynolds JR, McGaugh JL. The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. J Neurosci. 2004;24(6):1385–92.

    Article  CAS  PubMed  Google Scholar 

  66. Jones MT, Gillham B, Altaher AR, Nicholson SA, Campbell EA, Watts SM, Thody A. Clinical and experimental studies on the role of GABA in the regulation of ACTH secretion: a review. Psychoneuroendocrinology. 1984;9(2):107–23.

    Article  CAS  PubMed  Google Scholar 

  67. Imaki T, Wang XQ, Shibasaki T, Harada S, Chikada N, Takahashi C, Naruse M, Demura H. Chlordiazepoxide attenuates stress-induced activation of neurons, corticotropin-releasing factor (CRF) gene transcription and CRF biosynthesis in the paraventricular nucleus (PVN). Mol Brain Res. 1995;32(2):261–70.

    Article  CAS  PubMed  Google Scholar 

  68. Grottoli S, Giordano R, Maccagno B, Pellegrino M, Ghigo E, Arvat E. The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. J Clin Endocrinol Metab. 2002;87(10):4616–20.

    Article  CAS  PubMed  Google Scholar 

  69. Drugan RC, Basile AS, Crawley JN, Paul SM, Skolnick P. Inescapable shock reduces [3H]Ro 5–4864 binding to “peripheral-type” benzodiazepine receptors in the rat. Pharmacol Biochem Behav. 1986;24(6):1673–7.

    Article  CAS  PubMed  Google Scholar 

  70. Armando I, Lemoine AP, Segura ET, Barontini MB. The stress-induced reduction in monoamine oxidase (MAO) A activity is reversed by benzodiazepines: role of peripheral benzodiazepine receptors. Cell Mol Neurobiol. 1993;13(6):593–600.

    Article  CAS  PubMed  Google Scholar 

  71. Izquierdo I, Medina JH, Da-Cunha C, Wolfman C, Jerusalinsky D, Ferreira MB. Memory modulation by brain benzodiazepines. Braz J Med Biol Res. 1991;24(9):865–81.

    CAS  PubMed  Google Scholar 

  72. Izquierdo I, da Cunha C, Rosat R, Jerusalinsky D, Ferreira MB, Medina JH. Neurotransmitter receptors involved in post-training memory processing by the amygdala, medial septum, and hippocampus of the rat. Behav Neural Biol. 1992;58(1):16–26.

    Article  CAS  PubMed  Google Scholar 

  73. da Cunha C, Roozendaal B, Vazdarjanova A, McGaugh JL. Microinfusions of flumazenil into the basolateral but not the central nucleus of the amygdala enhance memory consolidation in rats. Neurobiol Learn Mem. 1999;72(1):1–7.

    Article  PubMed  Google Scholar 

  74. Luine V, Villegas M, Martinez C, McEwen BS. Repeated stress causes reversible impairments of spatial memory performance. Brain Res. 1994;639(1):167–70.

    Article  CAS  PubMed  Google Scholar 

  75. Luine V, Villegas M, Martinez C, McEwen BS. Stress-dependent impairments of spatial memory. Role of 5-HT. Ann N Y Acad Sci. 1994;746:403–4.

    Article  CAS  PubMed  Google Scholar 

  76. McEwen BS, Chattarji S, Diamond DM, Jay TM, Reagan LP, Svenningsson P, Fuchs E. The neurobiological properties of Tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation. Mol Psychiatry. 2010;15(3):237–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Calabrese F, Guidotti G, Molteni R, Racagni G, Mancini M, Riva MA. Stress-induced changes of hippocampal NMDA receptors: modulation by duloxetine treatment. PLoS One. 2012;7(5):e37916.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Kasper S, McEwen BS. Neurobiological and clinical effects of the antidepressant tianeptine. CNS Drugs. 2008;22(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  79. Conrad CD, Galea LA, Kuroda Y, McEwen BS. Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci. 1996;110(6):1321–34.

    Article  CAS  PubMed  Google Scholar 

  80. Wagstaff AJ, Ormrod D, Spencer CM. Tianeptine A review of its use in depressive disorders. CNS Drugs. 2001;15(3):231–59.

    Article  CAS  PubMed  Google Scholar 

  81. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20(24):9104–10.

    CAS  PubMed  Google Scholar 

  82. Jayatissa MN, Bisgaard C, Tingström A, Papp M, Wiborg O. Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology. 2006;31(11):2395–404.

    Article  CAS  PubMed  Google Scholar 

  83. Duman RS, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology. 2001;25(6):836–44.

    Article  CAS  PubMed  Google Scholar 

  84. Dagyte G, Trentani A, Postema F, Luiten PG, Den Boer JA, Gabriel C, Mocaër E, Meerlo P, Van der Zee EA. The novel antidepressant agomelatine normalizes hippocampal neuronal activity and promotes neurogenesis in chronically stressed rats. CNS Neurosci Ther. 2010;16(4):195–207.

    Article  CAS  PubMed  Google Scholar 

  85. First M, Gil-Ad I, Taler M, Tarasenko I, Novak N, Weizman A. The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression. J Mol Neurosci. 2011;45(2):246–55.

    Article  CAS  PubMed  Google Scholar 

  86. First M, Gil-Ad I, Taler M, Tarasenko I, Novak N, Weizman A. The effects of reboxetine treatment on depression-like behavior, brain neurotrophins, and ERK expression in rats exposed to chronic mild stress. J Mol Neurosci. 2013;50(1):88–97.

    Article  CAS  PubMed  Google Scholar 

  87. Elizalde N, Gil-Bea FJ, Ramírez MJ, Aisa B, Lasheras B, Del Rio J, Tordera RM. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacology (Berl). 2008;199(1):1–14.

    Article  CAS  Google Scholar 

  88. Orsetti M, Colella L, Dellarole A, Canonico PL, Ghi P. Modification of spatial recognition memory and object discrimination after chronic administration of haloperidol, amitriptyline, sodium valproate or olanzapine in normal and anhedonic rats. Int J Neuropsychopharmacol. 2007;10(3):345–57.

    Article  CAS  PubMed  Google Scholar 

  89. Naudon L, Hotte M, Jay TM. Effects of acute and chronic antidepressant treatments on memory performance: a comparison between paroxetine and imipramine. Psychopharmacology (Berl). 2007;191(2):353–64.

    Article  CAS  Google Scholar 

  90. Watanabe Y, Gould E, Cameron HA, Daniels DC, McEwen BS. Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus. 1992;2(4):431–5.

    Article  CAS  PubMed  Google Scholar 

  91. Hui Z, Guang-Yu M, Chong-Tao X, Quan Y, Xiao-Hu X. Phenytoin reverses the chronic stress-induced impairment of memory consolidation for water maze training and depression of LTP in rat hippocampal CA1 region, but does not affect motor activity. Brain Res Cogn Brain Res. 2005;24(3):380–5.

    Article  PubMed  CAS  Google Scholar 

  92. Brown ES, Frol AB, Khan DA, Larkin GL, Bret ME. Impact of levetiracetam on mood and cognition during prednisone therapy. Eur Psychiatry. 2007;22(7):448–52.

    Article  PubMed  Google Scholar 

  93. Brown ES, Stuard G, Liggin JD, Hukovic N, Frol A, Dhanani N, Khan DA, Jeffress J, Larkin GL, McEwen BS, Rosenblatt R, Mageto Y, Hanczyc M, Cullum CM. Effect of phenytoin on mood and declarative memory during prescription corticosteroid therapy. Biol Psychiatry. 2005;57(5):543–8.

    Article  CAS  PubMed  Google Scholar 

  94. Yeh MS, Mari JJ, Costa MC, Andreoli SB, Bressan RA, Mello MF. A double-blind randomized controlled trial to study the efficacy of topiramate in a civilian sample of PTSD. CNS Neurosci Ther. 2011;17(5):305–10.

    Article  CAS  PubMed  Google Scholar 

  95. Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev. 2009;89(2):535–606.

    Article  CAS  PubMed  Google Scholar 

  96. Tsutsumi K, Saavedra JM. Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am J Physiol. 1991;261(1 Pt 2):R209–16.

    CAS  PubMed  Google Scholar 

  97. Bali A, Jaggi AS. Angiotensin as stress mediator: role of its receptor and interrelationships among other stress mediators and receptors. Pharmacol Res. 2013;76:49–57.

    Article  CAS  PubMed  Google Scholar 

  98. Raasch W, Wittmershaus C, Dendorfer A, Voges I, Pahlke F, Dodt C, Dominiak P, Jöhren O. Angiotensin II inhibition reduces stress sensitivity of hypothalamo-pituitary-adrenal axis in spontaneously hypertensive rats. Endocrinology. 2006;147(7):3539–46.

    Article  CAS  PubMed  Google Scholar 

  99. Saavedra JM, Sanchez-Lemus E, Benicky J. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: therapeutic implications. Psychoneuroendocrinology. 2011;36(1):1–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Llano López LH, Caif F, García S, Fraile M, Landa AI, Baiardi G, Lafuente JV, Braszko JJ, Bregonzio C, Gargiulo PA. Anxiolytic-like effect of losartan injected into amygdala of the acutely stressed rats. Pharmacol Rep. 2012;64(1):54–63.

    Article  PubMed  Google Scholar 

  101. Saavedra JM, Armando I, Bregonzio C, Juorio A, Macova M, Pavel J, Sanchez-Lemus E. A centrally acting, anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF1 receptor and benzodiazepine binding. Neuropsychopharmacology. 2006;31(6):1123–34.

    CAS  PubMed  Google Scholar 

  102. Braszko JJ, Wincewicz D, Jakubów P. Candesartan prevents impairment of recall caused by repeated stress in rats. Psychopharmacology (Berl). 2013;225(2):421–8.

    Article  CAS  Google Scholar 

  103. Wincewicz D, Braszko JJ. Telmisartan attenuates cognitive imairment caused by chronić stress in rats. Pharmacol Rep. 2014;66(3):436–41. http://jra.sagepub.com/content/early/2014/03/07/1470320314526269.

  104. Bregonzio C, Seltzer A, Armando I, Pavel J, Saavedra JM. Angiotensin II AT(1) receptor blockade selectively enhances brain AT(2) receptor expression, and abolishes the cold-restraint stress-induced increase in tyrosine hydroxylase mRNA in the locus coeruleus of spontaneously hypertensive rats. Stress. 2008;11(6):457–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Aguilera G, Kiss A, Luo X. Increased expression of type 1 angiotensin II receptors in the hypothalamic paraventricular nucleus following stress and glucocorticoid administration. J Neuroendocrinol. 1995;7(10):775–83.

    Article  CAS  PubMed  Google Scholar 

  106. Ganong WF, Murakami K. The role of angiotensin in the regulation of ACTH secretion. Ann N Y Acad Sci. 1987;46(3):231–5.

    Google Scholar 

  107. Itil T, Martorano D. Natural substances in psychiatry (Ginkgo biloba in dementia). Psychopharmacol Bull. 1995;31(1):147–58.

    CAS  PubMed  Google Scholar 

  108. Porsolt RD, Martin P, Lenegre A, Fromage S, Drieu K. Effects of an extract of Ginkgo biloba (EGB 761) on “learned helplessness” and other models of stress in rodents. Pharmacol Biochem Behav. 1990;36(4):963–71.

    Article  CAS  PubMed  Google Scholar 

  109. Ni Y, Zhao B, Hou J, Xin W. Preventive effect of Ginkgo biloba extract on apoptosis in rat cerebellar neuronal cells induced by hydroxyl radicals. Neurosci Lett. 1996;214(2–3):115–8.

    Article  CAS  PubMed  Google Scholar 

  110. Nada SE, Shah ZA. Preconditioning with Ginkgo biloba (EGb 761®) provides neuroprotection through HO1 and CRMP2. Neurobiol Dis. 2012;46(1):180–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Tendi EA, Bosetti F, DasGupta F, Stella AMG, Drieu K, Rapoport SI. Gingko biloba extracts EGB 761 and bilobalide increase NADH dehydrogenase mRNA level and mitochondrial respiratory control ratio in PC12 cells. Neurochem Res. 2002;27(4):319–23.

    Article  CAS  PubMed  Google Scholar 

  112. Yin Y, Ren Y, Wu W, Wang Y, Cao M, Zhu Z, Wang M, Li W. Protective effects of bilobalide on Aβ(25–35) induced learning and memory impairments in male rats. Pharmacol Biochem Behav. 2013;106:77–84.

    Article  CAS  PubMed  Google Scholar 

  113. Muller WE. Nootropics, the therapy of dementia: between aspiration and reality. Drug News Perspect. 1989;2:295–300.

    Google Scholar 

  114. Kehr J, Yoshitake S, Ijiri S, Koch E, Nöldner M, Yoshitake T. Ginkgo biloba leaf extract (EGb 761®) and its specific acylated flavonol constituents increase dopamine and acetylcholine levels in the rat medial prefrontal cortex: possible implications for the cognitive enhancing properties of EGb 761®. Int Psychogeriatr. 2012;24 Suppl 1:S25–34.

    Article  PubMed  Google Scholar 

  115. Marcilhac A, Dakine N, Bourhim N, Guillaume V, Grino M, Drieu K, Oliver C. Effect of chronic administration of Ginkgo biloba extract or Ginkgolide on the hypothalamic-pituitary-adrenal axis in the rat. Life Sci. 1998;62(25):2329–40.

    Article  CAS  PubMed  Google Scholar 

  116. Amri H, Drieu K, Papadopoulus V. Transcriptional suppression of the adrenalcortical peripheral-type benzodiazepine receptor gene and inhibition of steroid synthesis by ginkolide B. Biochem Pharmacol. 2003;65:717–29.

    Article  CAS  PubMed  Google Scholar 

  117. Papadopoulos V, Widmaier EP, Amri H, Zilz A, Li H, Culty M, Castello R, Philip GH, Sridaran R, Drieu K. In vivo studies on the role of the peripheral benzodiazepine receptor (PBR) in steroidogenesis. Endocr Res. 1998;24(3–4):479–87.

    Article  CAS  PubMed  Google Scholar 

  118. Walesiuk A, Trofimiuk E, Braszko JJ. Gingko biloba extract diminishes stress-induced memory deficits in rats. Pharmacol Rep. 2005;57(2):176–87.

    PubMed  Google Scholar 

  119. Walesiuk A, Trofimiuk E, Braszko JJ. Ginkgo biloba normalizes stress- and corticosterone-induced impairment of recall in rats. Pharmacol Res. 2006;53(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  120. Walesiuk A, Braszko JJ. Preventive action of Ginkgo biloba in stress- and corticosterone-induced impairment of spatial memory in rats. Phytomedicine. 2009;16(1):40–6.

    Article  PubMed  Google Scholar 

  121. Kellermann AJ, Kloft C. Is there a risk of bleeding associated with standardized Ginkgo biloba extract therapy? A systematic review and meta-analysis. Pharmacotherapy. 2011;31(5):490–502.

    Article  CAS  PubMed  Google Scholar 

  122. Khalifa AE. Hypericum perforatum as a nootropic drug: enhancement of retrieval memory of a passive avoidance conditioning paradigm in mice. J Etnopharmacol. 2001;76(1):49–57.

    Article  CAS  Google Scholar 

  123. Widy-Tyszkiewicz E, Piechal A, Joniec I, Blecharz-Klin K. Long term administration of Hypericum perforatum improves spatial learning and memory in the water maze. Biol Pharm Bull. 2002;25(10):1289–94.

    Article  CAS  PubMed  Google Scholar 

  124. Trofimiuk E, Walesiuk A, Braszko JJ. St John’s wort (Hypericum perforatum) diminishes cognitive impairment caused by the chronic restraint stress in rats. Pharmacol Res. 2005;51(3):239–46.

    Article  CAS  PubMed  Google Scholar 

  125. Trofimiuk E, Holownia A, Braszko JJ. Activation of CREB by St. John’s wort may diminish deletorious effects of aging on spatial memory. Arch Pharm Res. 2010;33(3):469–77.

    Article  CAS  PubMed  Google Scholar 

  126. Trofimiuk E, Braszko JJ. Alleviation by Hypericum perforatum of the stress-induced impairment of spatial working memory in rats. Naunyn Schmiedebergs Arch Pharmacol. 2008;376(6):463–71.

    Article  CAS  PubMed  Google Scholar 

  127. Butterweck V, Hegger M, Winterhoff H. Flavonoids of St. John’s Wort reduce HPA axis function in the rat. Planta Med. 2004;70(10):1008–11.

    Article  CAS  PubMed  Google Scholar 

  128. Trofimiuk E, Walesiuk A, Braszko JJ. St John’s wort (Hypericum perforatum) counteracts deleterious effects of the chronic restraint stress on recall in rats. Acta Neurobiol Exp (Wars). 2006;66(2):129–38.

    Google Scholar 

  129. Trofimiuk E, Holownia A, Braszko JJ. St. John’s wort may relieve negative effects of stress on spatial working memory by changing synaptic plasticity. Naunyn Schmiedebergs Arch Pharmacol. 2011;383(4):415–22.

    Article  CAS  PubMed  Google Scholar 

  130. Butterweck V, Böckers T, Korte B, Wittkowski W, Winterhoff W. Long-term effects of St. John’s wort and hypericin on monoamine levels in rat hypothalamus and hippocampus. Brain Res. 2002;930(1–2):21–9.

    Article  CAS  PubMed  Google Scholar 

  131. ESCOP 2003: ESCOP Monographs: The Scientific Foundation for Herbal Medicinal Products, 2nd edition. Hyperici herba (St John’s wort). Exeter (UK): European Scientific Cooperative on Phytotherapy and Thieme; 2003, 257–28.

    Google Scholar 

  132. Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui D-H, Tabira T. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic disfunction. J Neurosci. 2000;20(4):1568–74.

    CAS  PubMed  Google Scholar 

  133. Murphy BL, Arnsten AF, Goldman-Rakic PS, Roth RH. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci U S A. 1996;93(3):1325–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Lindley SE, Bengoechea TG, Schatzberg AF, Wong DL. Glucocorticoids effects on mesotelencephalic dopamine neurotransmission. Neuropsychopharmacology. 1999;21(3):399–407.

    Article  CAS  PubMed  Google Scholar 

  135. Beck KD, Luine VN. Food deprivation modulates chronic stress effects on object recognition in male rats: role monoamines and amino acids. Brain Res. 1999;830(1):56–71.

    Article  CAS  PubMed  Google Scholar 

  136. Brezun JM, Daszuta A. Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafed with foetal raphe neurons. Eur J Neurosci. 2000;12(1):391–6.

    Article  CAS  PubMed  Google Scholar 

  137. Clinton SM, Sucharski IL, Finlay JM. Desipramine attenuates working memory impairments induced by partial loss of catecholamines in the rat medial prefrontal cortex. Psychopharmacology (Berl). 2006;183(4):404–12.

    Article  CAS  Google Scholar 

  138. Chen F, Rezvani AH, Lawrence AJ. Autoradiographic quantification of neurochemical markers of serotonin, dopamine and opioid systems in rat brain mesolimbic regions following chronic St. John’s wort treatment. Naunyn Schmiedebergs Arch Pharmacol. 2003;367(2):126–33.

    Article  CAS  PubMed  Google Scholar 

  139. Ogren SO, Razani H, Elvander-Tottie E, Kehr J. The neuropeptide galanin as an in vivo modulator of brain 5-HT1A receptors: possible relevance for affective disorders. Physiol Behav. 2007;92(1–2):172–9.

    Article  PubMed  CAS  Google Scholar 

  140. Imperato A, Puglisi-Allegra S, Casolini P, Zocchi A, Angelluci L. Stress-induced enhancement of dopamine and acetylcholine release in limbic structure: role of corticosterone. Eur J Pharmacol. 1989;165(2–3):337–8.

    Article  CAS  PubMed  Google Scholar 

  141. Kumar V, Mdzinarishvili A, Kiewert C, Abbruscato T, Bickel U, van der Schyf CJ, Klein J. NMDA receptor-antagonistic properties of hyperforin, a constituent of St. John’s wort. J Pharmacol Sci. 2006;102(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  142. Teufel-Mayer R, Gleitz J. Effects of long-term administration of hypericum extracts on the affinity and density of the central serotoninergic 5HT1A and 5HT2A receptors. Pharmacopsychiatry. 1997;30 Suppl 2:113–6.

    Article  CAS  PubMed  Google Scholar 

  143. Dziedzicka-Wasylewska M, Willner P, Papp M. Changes in dopamine receptor mRNA expression following chronic mild stress and chronic antidepressant treatment. Behav Pharmacol. 1997;8(6–7):607–18.

    Article  CAS  PubMed  Google Scholar 

  144. Simbrey K, Winterhoff H, Butterweck V. Extracts of St. John’s wort and various constituents affect beta-adrenergic binding in rat frontal cortex. Life Sci. 2004;74(8):1027–38.

    Article  CAS  PubMed  Google Scholar 

  145. Xu H, He J, Richardson JS, Li XM. The response of synaptophysin and microtubule-associated protein 1 to restraint stress in rat hippocampus and its modulation by venlafaxine. J Neurochem. 2004;91(6):1380–8.

    Article  CAS  PubMed  Google Scholar 

  146. Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ. Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol. 1997;56(8):933–44.

    Article  CAS  PubMed  Google Scholar 

  147. Trofimiuk E, Braszko JJ. Long-term administration of cod liver oil ameliorates cognitive impairment induced by chronic stress in rats. Lipids. 2011;46(5):417–23.

    Article  CAS  PubMed  Google Scholar 

  148. Trofimiuk E, Braszko JJ. Concomitant docosahexaenoic acid administration ameliorates stress-induced cognitive impairment in rats. Physiol Behav. 2013;118:171–7.

    Article  CAS  PubMed  Google Scholar 

  149. Crawford MA, Golfetto I, Ghebremeskel K, Min Y, Moodley T, Poston L, Phylactos A, Cunnane S, Schmidt W. The potential role for arachidonic and docosahexaenoic acids in protection against some central nervous system injuries in preterm infants. Lipids. 2003;38(4):303–15.

    Article  CAS  PubMed  Google Scholar 

  150. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56(8):365–79.

    Article  CAS  PubMed  Google Scholar 

  151. Das UN. Essential fatty acids: a review. Curr Pharm Biotechnol. 2006;7(6):467–82.

    Article  CAS  PubMed  Google Scholar 

  152. DeFilippis AP, Sperling LS. Understanding omega-3’s. Am Heart J. 2006;151(3):564–70.

    Article  CAS  PubMed  Google Scholar 

  153. Horrocks LA, Farooqui AA. Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids. 2004;70:361–72.

    Article  CAS  PubMed  Google Scholar 

  154. Faxén-Irving G, Freund-Levi Y, Eriksdotter-Jönhagen M, Basun H, Hjorth E, Palmblad J, Vedin I, Cederholm T, Wahlund LO. Effects on transthyretin in plasma and cerebrospinal fluid by DHA-rich n - 3 fatty acid supplementation in patients with Alzheimer’s disease: the OmegAD study. J Alzheimers Dis. 2013;36(1):1–6.

    PubMed  Google Scholar 

  155. Levant B, Ozias MK, Davis PF, Winter M, Russell KL, Carlson SE, Reed GA, McCarson KE. Decreased brain docosahexaenoic acid content produces neurobiological effects associated with depression: interactions with reproductive status in female rats. Psychoneuroendocrinology. 2008;33(9):1279–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Chung WL, Chen JJ, Su HM. Fish oil supplementation of control and (n-3) fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels. J Nutr. 2008;138:1165–71.

    Article  CAS  PubMed  Google Scholar 

  157. Gamoh S, Hashimoto M, Sugioka K, Shahdat Hossain M, Hata N, Misawa Y, et al. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience. 1999;93:237–41.

    Article  CAS  PubMed  Google Scholar 

  158. Tanabe Y, Hashimoto M, Sugioka K, Maruyama M, Fujii Y, Hagiwara R, et al. Improvement of spatial cognition with dietary docosahexaenoic acid is associated with an increase in Fos expression in rat CA1 hippocampus. Clin Exp Pharmacol Physiol. 2004;31(10):700–3.

    Article  CAS  PubMed  Google Scholar 

  159. Wu A, Ying Z, Gomez-Pinilla F. Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience. 2008;155(3):751–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science. 1995;267:1658–62.

    Article  CAS  PubMed  Google Scholar 

  161. Mu JS, Li WP, Yao ZB, Zhou XF. Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res. 1999;835(2):259–65.

    Article  CAS  PubMed  Google Scholar 

  162. Linnarsson S, Björklund A, Ernfors P. Learning deficit in BDNF mutant mice. Eur J Neurosci. 1997;9(12):2581–7.

    Article  CAS  PubMed  Google Scholar 

  163. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG. A role for docosahexaenoic acid derived neuroprotection D1 in neural cell survival and Alzheimer disease. J Clin Invest. 2005;115(10):2774–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Akbar M, Calderon F, Wen Z, Kim HY. Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci U S A. 2005;102(31):10858–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Pifferi F, Jouin M, Alessandri JM, Haedke U, Roux F, Perrière N, Denis I, Lavialle M, Guesnet P. n-3 Fatty acids modulate brain glucose transport in endothelial cells of the blood–brain barrier. Prostaglandins Leukot Essent Fatty Acids. 2007;77(5–6):279–86.

    Article  CAS  PubMed  Google Scholar 

  166. Elgersma Y, Sweatt JD, Giese KP. Mouse genetic approaches to investigating calcium/calmodulin-dependent protein kinase II function in plasticity and cognition. J Neurosci. 2004;24(39):8410–5.

    Article  CAS  PubMed  Google Scholar 

  167. Vaynman S, Ying Z, Gomez-Pinilla F. The select action of hippocampal calcium calmodulin protein kinase II in mediating exerciseenhanced cognitive function. Neuroscience. 2007;144(3):825–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  168. Zoladz PR, Park CR, Halonen JD, Salim S, Alzoubi KH, Srivareerat M, Fleshner M, Alkadhi KA, Diamond DM. Differential expression of molecular markers of synaptic plasticity in the hippocampus, prefrontal cortex, and amygdala in response to spatial learning, predator exposure, and stress-induced amnesia. Hippocampus. 2012;22(3):577–89.

    Article  CAS  PubMed  Google Scholar 

  169. Dyall SC, Michael GJ, Whelpton R, Scott AG, Michael-Titus AT. Dietary enrichment with omega-3 polyunsaturated fatty acids reverses age-related decreases in the GluR2 and NR2B glutamate receptor subunits in rat forebrain. Neurobiol Aging. 2007;28(3):424–39.

    Article  CAS  PubMed  Google Scholar 

  170. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21(21):8370–7.

    CAS  PubMed  Google Scholar 

  171. Wu A, Ying Z, Gomez-Pinilla F. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol. 2006;197(2):309–17.

    Article  CAS  PubMed  Google Scholar 

  172. Motterlini R, Foresti R, Bassi R, Green CJ. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med. 2000;28(8):1303–12.

    Article  CAS  PubMed  Google Scholar 

  173. Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ. The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol. 2005;518(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  174. Xu Y, Lin D, Li S, Li G, Shyamala SG, Barish PA, Vernon MM, Pan J, Ogle WO. Curcumin reverses impaired cognition and neuronal plasticity induced by chronic stress. Neuropharmacology. 2009;57(4):463–71.

    Article  CAS  PubMed  Google Scholar 

  175. Ahmed T, Gilani AH. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol Biochem Behav. 2009;91(4):554–9.

    Article  CAS  PubMed  Google Scholar 

  176. Agrawal R, Mishra B, Tyagi E, Nath C, Shukla R. Effect of curcumin on brain insulin receptors and memory functions in STZ (ICV) induced dementia model of rat. Pharmacol Res. 2010;61(3):247–52.

    Article  CAS  PubMed  Google Scholar 

  177. Reeta KH, Mehla J, Gupta YK. Curcumin ameliorates cognitive dysfunction and oxidative damage in phenobarbitone and carbamazepine administered rats. Eur J Pharmacol. 2010;644(1–3):106–12.

    Article  CAS  PubMed  Google Scholar 

  178. Moyano S, Del Rio J, Frechilla D. Acute and chronic effects of MDMA on molecular mechanisms implicated in memory formation in rat hippocampus: surface expression of CaMKII and NMDA receptor subunits. Pharmacol Biochem Behav. 2005;82(1):190–9.

    Article  CAS  PubMed  Google Scholar 

  179. Srivastava R, Ahmed H, Dixit RK, Dharamveer, Saraf SA. Crocus sativus L.: A comprehensive review. Pharmacogn Rev 2010;4(8):200–8.

    Google Scholar 

  180. Sugiura M, Shoyama Y, Saito H, Abe K. The effects of ethanol and crocin on the induction of long-term potentiation in the CA1 region of rat hippocampal slices. Jpn J Pharmacol. 1995;67(4):395–7.

    Article  CAS  PubMed  Google Scholar 

  181. Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother Res. 2000;14(3):149–52.

    Article  CAS  PubMed  Google Scholar 

  182. Pitsikas N, Sakellaridis N. Crocus sativus L. extracts antagonize memory impairments in different behavioural tasks in the rat. Behav Brain Res. 2006;173(1):112–5.

    Article  PubMed  Google Scholar 

  183. Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty VS, Mohajeri SA. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Res. 2012;26(3):381–6.

    CAS  PubMed  Google Scholar 

  184. Pitsikas N, Boultadakis A, Georgiadou G, Tarantilis PA, Sakellaridis N. Effects of the active constituents of Crocus sativus L., crocins, in an animal model of anxiety. Phytomedicine. 2008;15(12):1135–9.

    Article  CAS  PubMed  Google Scholar 

  185. Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Hajisoltani R, Bandegi AR, Motamedi F, Haghighi S, Sameni HR, Pahlvan S. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol. 2011;667(1–3):222–9.

    Article  CAS  PubMed  Google Scholar 

  186. Nemati H, Boskabady MH, Ahmadzadef VH. Stimulatory effect of Crocus sativus (saffron) on beta2-adrenoceptors of guinea pig tracheal chains. Phytomedicine. 2008;15(12):1038–45.

    Article  CAS  PubMed  Google Scholar 

  187. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgänsberger W, Di Marzo V, Lutz B. The endogenous cannabinoid system controls extinction of aversive memories. Nature. 2002;418(6897):530–4.

    Article  CAS  PubMed  Google Scholar 

  188. Patel S, Cravatt BF, Hillard CJ. Synergistic interactions between cannabinoids and environmental stress in the activation of the central amygdala. Neuropsychopharmacology. 2005;30(3):497–507.

    Article  CAS  PubMed  Google Scholar 

  189. Ganon-Elazar E, Akirav I. Cannabinoid receptor activation in the basolateral amygdala blocks the effects of stress on the conditioning and extinction of inhibitory avoidance. J Neurosci. 2009;29(36):11078–88.

    Article  CAS  PubMed  Google Scholar 

  190. Ramot A, Akirav I. Cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala prevent the stress-induced enhancement of a negative learning experience. Neurobiol Learn Mem. 2012;97(4):393–401.

    Article  CAS  PubMed  Google Scholar 

  191. Hill MN, Ho WS, Meier SE, Gorzalka BB, Hillard CJ. Chronic corticosterone treatment increases the endocannabinoid 2-arachidonylglycerol in the rat amygdala. Eur J Pharmacol. 2005;528(1–3):99–102.

    Article  CAS  PubMed  Google Scholar 

  192. Hill MN, Tasker JG. Endocannabinoid signaling, glucocorticoid- mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience. 2012;204:5–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  193. Rademacher DJ, Meier SE, Shi L, Ho WS, Jarrahian A, Hillard CJ. Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice. Neuropharmacology. 2008;54(1):108–16.

    Article  CAS  PubMed  Google Scholar 

  194. Zoppi S, Perez Nievas BG, Madrigal JL, Manzanares J, Leza JC, Garcıa-Bueno B. Regulatory role of cannabinoid receptor 1 in stress-induced excitotoxicity and neuroinflammation. Neuropsychopharmacology. 2011;36(4):805–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  195. Ganon-Elazar E, Akirav I. Cannabinoids prevent the development of behavioral and endocrine alterations in a rat model of intense stress. Neuropsychopharmacology. 2012;37(2):456–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Abush H, Akirav I. Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats. PLoS One. 2012;7(2):e31731.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Sullivan JM. Cellular and molecular mechanisms underlying learning and memory impairments produced by cannabinoids. Learn Mem. 2000;7(3):132–9.

    Article  CAS  PubMed  Google Scholar 

  198. Segev A, Akirav I. Differential effects of cannabinoid receptor agonist on social discrimination and contextual fear in amygdala and hippocampus. Learn Mem. 2011;18(4):254–9.

    Article  CAS  PubMed  Google Scholar 

  199. Trofimiuk E, Braszko JJ. Single dose of H3 receptor antagonist - ciproxifan - abolishes negative effects of chronic stress on cognitive processes in rats. Psychopharmacology (Berl). 2014;231(1):209–19.

    Article  CAS  Google Scholar 

  200. Schlicker E, Fink K, Hinterthaner M, Gothert M. Inhibition of noradrenaline release in the rat brain cortex via presynaptic H3 receptors. Naunyn Schmiedebergs Arch Pharmacol. 1989;340(6):633–8.

    Article  CAS  PubMed  Google Scholar 

  201. Martinez-Mir MI, Pollard H, Moreau J, Arrang JM, Ruat M, Traiffort E, Schwartz JC, Palacios JM. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res. 1990;526(2):322–7.

    Article  CAS  PubMed  Google Scholar 

  202. Clapham J, Kilpatrick GJ. Histamine H3 receptors modulate the release of [3H]-acetylcholine from slices of rat entorhinal cortex: evidence for the possible existence of H3 receptor subtypes. Br J Pharmacol. 1992;107(4):919–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  203. Brown RE, Reymann KG. Histamine H3 receptor-mediated depression of synaptic transmission in the dentate gyrus of the rat in vitro. J Physiol. 1996;496(Pt 1):175–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  204. Krout KE, Mettenleiter TC, Loewy AD. Single CNS neurons link both central motor and cardiosympathetic systems: a double-virus tracing study. Neuroscience. 2003;118(3):853–66.

    Article  CAS  PubMed  Google Scholar 

  205. Taylor KM, Snyder SH. Brain histamine: rapid apparent turnover altered by restraint and cold stress. Science. 1971;172(3987):1037–9.

    Article  CAS  PubMed  Google Scholar 

  206. Verdiere M, Rose C, Schwartz JC. Turnover of cerebral histamine in a stressful situation. Brain Res. 1977;129(1):107–19.

    Article  CAS  PubMed  Google Scholar 

  207. Miklos IH, Kovacs KJ. Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur J Neurosci. 2003;18(11):3069–79.

    Article  CAS  PubMed  Google Scholar 

  208. Gotoh K, Fukagawa K, Fukagawa T, Noguchi H, Kakuma T, Sakata T, Yoshimatsu H. Glucagon-like peptide-1, corticotropin-releasing hormone, hypothalamic neuronal histamine interact in the leptin-signaling pathway to regulate feeding behavior. FASEB J. 2005;19(9):1131–3.

    CAS  PubMed  Google Scholar 

  209. Kjaer A, Knigge U, Bach FW, Warberg J. Histamine- and stress-induced secretion of ACTH and beta-endorphin: involvement of corticotropin-releasing hormone and vasopressin. Neuroendocrinology. 1992;56(3):419–28.

    Article  CAS  PubMed  Google Scholar 

  210. Doreulee N, Yanovsky Y, Flagmeyer I, Stevens DR, Haas HL, Brown RE. Histamine H(3) receptors depress synaptic transmission in the corticostriatal pathway. Neuropharmacology. 2001;40(1):106–13.

    Article  CAS  PubMed  Google Scholar 

  211. Fox GB, Esbenshade TA, Pan JB, Radek RJ, Krueger KM, Yao BB, Browman KE, Buckley M, Ballard ME, Komater VA, Miner H, Zhang M, Faghih R, Rueter LE, Bitner RS, Drescher KU, Wetter J, Marsh K, Lemaire M, Porsolt RD, Bennani YL, Sullivan JP, Cowart MD, Decker MW, Hancock AA. Pharmacological properties of ABT-239 [4-2-{2-[2R-2-Methylpyrrolidinyl]ethyl}-benzofuran-5-ylbenzonitrile]: II. Neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist. J Pharmacol Exp Ther. 2005;313(1):176–90.

    Article  CAS  PubMed  Google Scholar 

  212. Galici R, Boggs JD, Aluisio L, Fraser IC, Bonaventure P, Lord B, Lovenberg TW. JNJ-10181457, a selective non-imidazole histamine H3 receptor antagonist, normalizes acetylcholine neurotransmission and has efficacy in translational rat models of cognition. Neuropharmacology. 2009;56(8):1131–7.

    Article  CAS  PubMed  Google Scholar 

  213. Medhurst AD, Atkins AR, Beresford IJ, Brackenborough K, Briggs MA, Calver AR, et al. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther. 2007;321(3):1032–45.

    Article  CAS  PubMed  Google Scholar 

  214. Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Tabira T. Effect of chronic stress on cholinergic transmission in rat hippocampus. Brain Res. 2001;915(1):108–11.

    Article  CAS  PubMed  Google Scholar 

  215. Bekkers JM. Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus. Science. 1993;261(5117):104–6.

    Article  CAS  PubMed  Google Scholar 

  216. Vorobjev VS, Sharonova IN, Walsh IB, Haas HL. Histamine potentiates N-methyl-D-aspartate responses in acutely isolated hippocampal neurons. Neuron. 1993;11(5):837–44.

    Article  CAS  PubMed  Google Scholar 

  217. Brown RE, Haas HL. On the mechanism of histaminergic inhibition of glutamate release in the rat dentate gyrus. J Physiol. 1999;515(Pt 3):777–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  218. Esposito P, Chandler N, Kandere K, Basu S, Jacobson S, Connolly R, Tutor D, Theoharides TC. Corticotropin-releasing hormone and brain mast cells regulate blood–brain-barrier permeability induced by acute stress. J Pharmacol Exp Ther. 2002;303(3):1061–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosures/Conflicts

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan J. Braszko M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trofimiuk, E., Braszko, J.J. (2015). Prevention of Stress-Induced Cognitive Impairment: Today and Tomorrow. In: Gargiulo, P., Arroyo, H. (eds) Psychiatry and Neuroscience Update. Springer, Cham. https://doi.org/10.1007/978-3-319-17103-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17103-6_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17102-9

  • Online ISBN: 978-3-319-17103-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics