Skip to main content
Log in

Effects of acute and chronic antidepressant treatments on memory performance: a comparison between paroxetine and imipramine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The cognitive impairments apparent in many depressed patients appear to be alleviated by chronic treatments with antidepressants. However, evaluation of antidepressant treatments in rodents rarely includes investigation of their effects on cognitive performance.

Objectives

The aim of this study was to investigate in rat the effects of paroxetine, a selective serotonin reuptake inhibitor antidepressant, and imipramine, a tricyclic antidepressant, on learning and memory in spatial and non-spatial tasks.

Materials and methods

Adult male Sprague–Dawley rats weighing 230–250 g were used in two sets of experiments.

Results

Spatial working memory was first tested in a radial-arm maze using the delayed spatial win-shift task. During the course of a 10-day treatment, paroxetine-treated rats (10 mg/kg) did not show any deficit in memory performance. Conversely, imipramine-treated rats (10 mg/kg) made significantly more errors than controls. Secondly, we tested temporal order memory for objects. Rats received one injection or chronic injections (28 days) of imipramine (10 mg/kg), paroxetine (10 mg/kg) or saline. In contrast to controls, on the day after the acute injection, both imipramine- and paroxetine-treated rats were unable to discriminate the old from the recent objects. After chronic treatment, the imipramine-treated rats were unable to differentiate between the two objects, whereas paroxetine-treated rats, as controls, spent more time exploring the old one. When the delay before the test phase was increased to 4 h, controls could not discriminate the objects, whereas rats treated for 28 days with paroxetine were able to distinguish the old from the recent object.

Conclusions

In contrast to the persistent harmful effects of imipramine, chronic treatment with paroxetine does not alter spatial working memory performance and appears to improve temporal order memory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arminen SL, Ikonen U, Pulkkinen P, Leinonen E, Mahlanen A, Koponen H, Kourula K, Ryyppo J, Korpela V, Lehtonen ML et al (1994) A 12-week double-blind multi-centre study of paroxetine and imipramine in hospitalized depressed patients. Acta Psychiatr Scand 89:382–389

    PubMed  CAS  Google Scholar 

  • Burgos H, Mardones L, Campos M, Castillo A, Fernandez V, Hernandez A (2005) Chronic treatment with clomipramine and desipramine induces deficit in long-term visuo-spatial memory of rats. Int J Neurosci 115:47–54

    Article  PubMed  CAS  Google Scholar 

  • Burt DB, Zembar MJ, Niederehe G (1995) Depression and memory impairment: a meta-analysis of the association, its pattern, and specificity. Psychol Bull 117:285–305

    Article  PubMed  CAS  Google Scholar 

  • Calev A, Ben-Tzvi E, Shapira B, Drexler H, Carasso R, Lerer B (1989) Distinct memory impairments following electroconvulsive therapy and imipramine. Psychol Med 19:111–119

    Article  PubMed  CAS  Google Scholar 

  • Cassano GB, Puca F, Scapicchio PL, Trabucchi M (2002) Paroxetine and fluoxetine effects on mood and cognitive functions in depressed nondemented elderly patients. J Clin Psychiatry 63:396–402

    PubMed  CAS  Google Scholar 

  • Clinton SM, Sucharski IL, Finlay JM (2006) Desipramine attenuates working memory impairments induced by partial loss of catecholamines in the rat medial prefrontal cortex. Psychopharmacology (Berl) 183:404–412

    Article  CAS  Google Scholar 

  • Danion JM (1993) [Antidepressive agents and memory]. Encephale 19(Spec No 2):417–422

    PubMed  Google Scholar 

  • Drevets WC (1998) Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 49:341–361

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59

    Article  PubMed  CAS  Google Scholar 

  • Feighner JP, Cohn JB, Fabre LF Jr, Fieve RR, Mendels J, Shrivastava RK, Dunbar GC (1993) A study comparing paroxetine placebo and imipramine in depressed patients. J Affect Disord 28:71–79

    Article  PubMed  CAS  Google Scholar 

  • Felton TM, Kang TB, Hjorth S, Auerbach SB (2003) Effects of selective serotonin and serotonin/noradrenaline reuptake inhibitors on extracellular serotonin in rat diencephalon and frontal cortex. Naunyn Schmiedebergs Arch Pharmacol 367:297–305

    Article  PubMed  CAS  Google Scholar 

  • Ferguson JM, Wesnes KA, Schwartz GE (2003) Reboxetine versus paroxetine versus placebo: effects on cognitive functioning in depressed patients. Int Clin Psychopharmacol 18:9–14

    Article  PubMed  Google Scholar 

  • Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–1890

    PubMed  CAS  Google Scholar 

  • Floresco SB, Braaksma DN, Phillips AG (1999) Thalamic–cortical–striatal circuitry subserves working memory during delayed responding on a radial arm maze. J Neurosci 19:11061–11071

    PubMed  CAS  Google Scholar 

  • Frewer LJ, Lader M (1993) The effects of nefazodone, imipramine and placebo, alone and combined with alcohol, in normal subjects. Int Clin Psychopharmacol 8:13–20

    Article  PubMed  CAS  Google Scholar 

  • Fujishiro J, Imanishi T, Onozawa K, Tsushima M (2002) Comparison of the anticholinergic effects of the serotonergic antidepressants, paroxetine, fluvoxamine and clomipramine. Eur J Pharmacol 454:183–188

    Article  PubMed  CAS  Google Scholar 

  • Gorenstein C, de Carvalho SC, Artes R, Moreno RA, Marcourakis T (2006) Cognitive performance in depressed patients after chronic use of antidepressants. Psychopharmacology (Berl) 185:84–92

    Article  CAS  Google Scholar 

  • Hannesson DK, Howland JG, Phillips AG (2004a) Interaction between perirhinal and medial prefrontal cortex is required for temporal order but not recognition memory for objects in rats. J Neurosci 24:4596–4604

    Article  PubMed  CAS  Google Scholar 

  • Hannesson DK, Vacca G, Howland JG, Phillips AG (2004b) Medial prefrontal cortex is involved in spatial temporal order memory but not spatial recognition memory in tests relying on spontaneous exploration in rats. Behav Brain Res 153:273–285

    Article  PubMed  CAS  Google Scholar 

  • Hotte M, Naudon L, Jay TM (2005) Modulation of recognition and temporal order memory retrieval by dopamine D(1) receptor in rats. Neurobiol Learn Mem 84:85–92

    Article  PubMed  CAS  Google Scholar 

  • Jaffard R, Mocaer E, Poignant JC, Micheau J, Marighetto A, Meunier M, Beracochea D (1991) Effects of tianeptine on spontaneous alternation, simple and concurrent spatial discrimination learning and on alcohol-induced alternation deficits in mice. Behav Pharmacol 2:37–46

    Article  PubMed  Google Scholar 

  • Jordan S, Kramer GL, Zukas PK, Moeller M, Petty F (1994) In vivo biogenic amine efflux in medial prefrontal cortex with imipramine, fluoxetine, and fluvoxamine. Synapse 18:294–297

    Article  PubMed  CAS  Google Scholar 

  • Kesner RP, Gilbert PE, Barua LA (2002) The role of the hippocampus in memory for the temporal order of a sequence of odors. Behav Neurosci 116:286–290

    Article  PubMed  Google Scholar 

  • Koks S, Bourin M, Voikar V, Soosaar A, Vasar E (1999) Role of CCK in anti-exploratory action of paroxetine, 5-HT reuptake inhibitor. Int J Neuropsychopharmacol 2:9–16

    Article  PubMed  CAS  Google Scholar 

  • Konkle AT, Bielajew C (1999) Feeding and reward interactions from chronic paroxetine treatment. Pharmacol Biochem Behav 63:435–440

    Article  PubMed  CAS  Google Scholar 

  • Manoach DS, Greve DN, Lindgren KA, Dale AM (2003) Identifying regional activity associated with temporally separated components of working memory using event-related functional MRI. NeuroImage 20:1670–1684

    Article  PubMed  Google Scholar 

  • Mitchell JB, Laiacona J (1998) The medial frontal cortex and temporal memory: tests using spontaneous exploratory behaviour in the rat. Behav Brain Res 97:107–113

    Article  PubMed  CAS  Google Scholar 

  • Mogensen J, Pedersen TK, Holm S (1994) Effects of chronic imipramine on exploration, locomotion, and food/water intake in rats. Pharmacol Biochem Behav 47:427–435

    Article  PubMed  CAS  Google Scholar 

  • Mogensen J, Svendsen G, Lauritsen KT, Ermens P, Hasman A, Elvertorp S, Plenge P, Mellerup E, Wortwein G (2003) Associative and nonassociative learning after chronic imipramine in rats. Pharmacol Biochem Behav 76:197–212

    Article  PubMed  CAS  Google Scholar 

  • Nebes RD, Pollock BG, Houck PR, Butters MA, Mulsant BH, Zmuda MD, Reynolds CF 3rd (2003) Persistence of cognitive impairment in geriatric patients following antidepressant treatment: a randomized, double-blind clinical trial with nortriptyline and paroxetine. J Psychiatr Res 37:99–108

    Article  PubMed  Google Scholar 

  • Nemeroff CB, Owens MJ (2003) Neuropharmacology of paroxetine. Psychopharmacol Bull 37 Suppl 1:8–18

    PubMed  Google Scholar 

  • Nowakowska E, Kus K, Chodera A, Rybakowski J (2000) Behavioural effects of fluoxetine and tianeptine, two antidepressants with opposite action mechanisms, in rats. Arzneimittelforschung 50:5–10

    PubMed  CAS  Google Scholar 

  • Nowakowska E, Kus K, Chodera A (2003) Comparison of behavioural effects of venlafaxine and imipramine in rats. Arzneimittelforschung 53:237–242

    PubMed  CAS  Google Scholar 

  • Park DC, Welsh RC, Marshuetz C, Gutchess AH, Mikels J, Polk TA, Noll DC, Taylor SF (2003) Working memory for complex scenes: age differences in frontal and hippocampal activations. J Cogn Neurosci 15:1122–1134

    Article  PubMed  Google Scholar 

  • Peselow ED, Corwin J, Fieve RR, Rotrosen J, Cooper TB (1991) Disappearance of memory deficits in outpatient depressives responding to imipramine. J Affect Disord 21:173–183

    Article  PubMed  CAS  Google Scholar 

  • Rypma B, D’Esposito M (1999) The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proc Natl Acad Sci USA 96:6558–6563

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, Hyttel J (1999) Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol 19:467–489

    Article  PubMed  CAS  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG (1995) Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex. Behav Neurosci 109:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Soares JC, Mann JJ (1997) The functional neuroanatomy of mood disorders. J Psychiatr Res 31:393–432

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Carboni E, Frau R, Di Chiara G (1994) Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential? Psychopharmacology (Berl) 115:285–288

    Article  CAS  Google Scholar 

  • Taylor CL, Latimer MP, Winn P (2003) Impaired delayed spatial win-shift behaviour on the eight arm radial maze following excitotoxic lesions of the medial prefrontal cortex in the rat. Behav Brain Res 147:107–114

    Article  PubMed  Google Scholar 

  • Tejani-Butt S, Kluczynski J, Pare WP (2003) Strain-dependent modification of behavior following antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry 27:7–14

    Article  PubMed  CAS  Google Scholar 

  • Valentini V, Cacciapaglia F, Frau R, Di Chiara G (2005) Selective serotonin reuptake blockade increases extracellular dopamine in noradrenaline-rich isocortical but not prefrontal areas: dependence on serotonin-1A receptors and independence from noradrenergic innervation. J Neurochem 93:371–382

    Article  PubMed  CAS  Google Scholar 

  • van Laar MW, Volkerts ER, Verbaten MN, Trooster S, van Megen HJ, Kenemans JL (2002) Differential effects of amitriptyline, nefazodone and paroxetine on performance and brain indices of visual selective attention and working memory. Psychopharmacology (Berl) 162:351–363

    Article  CAS  Google Scholar 

  • Yau JL, Olsson T, Morris RG, Meaney MJ, Seckl JR (1995) Glucocorticoids, hippocampal corticosteroid receptor gene expression and antidepressant treatment: relationship with spatial learning in young and aged rats. Neuroscience 66:571–581

    Article  PubMed  CAS  Google Scholar 

  • Yau JL, Noble J, Hibberd C, Seckl JR (2001) Short-term administration of fluoxetine and venlafaxine decreases corticosteroid receptor mRNA expression in the rat hippocampus. Neurosci Lett 306:161–164

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the foundation “Simone et Cino del Duca”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Naudon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naudon, L., Hotte, M. & Jay, T.M. Effects of acute and chronic antidepressant treatments on memory performance: a comparison between paroxetine and imipramine. Psychopharmacology 191, 353–364 (2007). https://doi.org/10.1007/s00213-006-0660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0660-4

Keywords

Navigation