Skip to main content

α-Amylases from Archaea: Sequences, Structures and Evolution

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB,volume 1))

Abstract

α-Amylase (EC 3.2.1.1) catalyzes the hydrolysis of α-1,4-glucosidic linkages in starch and related α-glucans. Within the sequence-based classification of carbohydrate-active enzymes, the CAZy database, the specificity of α-amylase has been classified in glycoside hydrolase (GH) families GH13, GH57 and GH119. The polyspecific family GH13 with about 24,000 members is considered as the main α-amylase family forming the clan GH-H with families GH70 and GH77 (both without the α-amylase specificity). The family GH57, which is also a polyspecific one with, however, only about 1100 members, is known as the second α-amylase family related to the monospecific family GH119 (currently only 10 members). The α-amylases from the family GH13 employ a retaining reaction mechanism, share 7 conserved sequence regions (CSRs) and adopt a TIM-barrel domain with the GH13 catalytic machinery. Although the α-amylases from the family GH57 also use the retaining reaction mechanism, they exhibit their own 5 CSRs and have the catalytic machinery different from that present in the family GH13 within an incomplete TIM-barrel fold. In Archaea, α-amylases from families GH13 and GH57 have been found. The archaeal GH13 α-amylases form their subfamily GH13_7 that is remarkably closely related to the subfamily GH13_6 containing plant counterparts. There may also be another halophilic group of archaeal α-amylases in the family GH13 but currently without subfamily assignment. The archaeal GH57 α-amylases are most closely related to their α-amylase-like homologues, which are putative proteins with incomplete catalytic machinery originating mostly from Bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajari N, Roth M, Haser R (2002) Crystallographic evidence of a transglycosylation reaction: ternary complexes of a psychrophilic α-amylase. Biochemistry 41(13):4273–4280

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N, Rashid N, Haider MS, Akram M, Akhtar M (2014) Novel maltotriose-hydrolyzing thermoacidophilic type III pullulan hydrolase from Thermococcus kodakarensis. Appl Environ Microbiol 80(3):1108–1115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1(4):263–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bautista V, Esclapez J, Perez-Pomares F, Martinez-Espinosa RM, Camacho M, Bonete MJ (2012) Cyclodextrin glycosyltransferase: a key enzyme in the assimilation of starch by the halophilic archaeon Haloferax mediterranei. Extremophiles 16(1):147–159

    Article  CAS  PubMed  Google Scholar 

  • Bertoldo C, Antranikian G (2002) Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr Opin Chem Biol 6(2):151–160

    Article  CAS  PubMed  Google Scholar 

  • Bissaro B, Monsan P, Fauré R, O’Donohue MJ (2015) Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J 467(1):17–35

    Article  CAS  PubMed  Google Scholar 

  • Blesak K, Janecek S (2012) Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57. Extremophiles 16(3):497–506

    Article  CAS  PubMed  Google Scholar 

  • Blesak K, Janecek S (2013) Two potentially novel amylolytic enzyme specificities in the prokaryotic glycoside hydrolase α-amylase family GH57. Microbiology 159(12):2584–2593

    Article  CAS  PubMed  Google Scholar 

  • Brown I, Dafforn TR, Fryer PJ, Cox PW (2013) Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus. Biochim Biophys Acta 1834(12):2600–2605

    Article  CAS  PubMed  Google Scholar 

  • Brzozowski AM, Davies GJ (1997) Structure of the Aspergillus oryzae α-amylase complexed with the inhibitor acarbose at 2.0 Å resolution. Biochemistry 36(36):10837–10845

    Article  CAS  PubMed  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273(5278):1058–1073

    Article  CAS  PubMed  Google Scholar 

  • Chen YS, Lee GC, Shaw JF (2006) Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J Agric Food Chem 54(19):7098–7104

    Article  CAS  PubMed  Google Scholar 

  • Coutiho PM, Henrissat B (1999) Life with no sugars? J Mol Microbiol Biotechnol 1(2):307–308

    Google Scholar 

  • Coutinho PM, Reilly PJ (1997) Glucoamylase structural, functional, and evolutionary relationships. Proteins 29(3):334–347

    Article  CAS  PubMed  Google Scholar 

  • Da Lage JL, Feller G, Janecek S (2004) Horizontal gene transfer from Eukarya to bacteria and domain shuffling: the α-amylase model. Cell Mol Life Sci 61(1):97–109

    Article  PubMed  CAS  Google Scholar 

  • Da Lage JL, Binder M, Hua-Van A, Janecek S, Casane D (2013) Gene make-up: rapid and massive intron gains after horizontal transfer of a bacterial α-amylase gene to Basidiomycetes. BMC Evol Biol 13:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalmaso GZ, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13(4):1925–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859

    Article  CAS  PubMed  Google Scholar 

  • Deshpande N, Addess KJ, Bluhm WF, Merino-Ott JC, Townsend-Merino W, Zhang Q, Knezevich C, Xie L, Chen L, Feng Z, Green RK, Flippen-Anderson JL, Westbrook J, Berman HM, Bourne PE (2005) The RCSB protein data bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res 3(1):D233–D237

    Google Scholar 

  • Dong G, Vieille C, Savchenko A, Zeikus JG (1997) Cloning, sequencing, and expression of the gene encoding extracellular α-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 63(9):3569–3576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes – biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119

    Article  CAS  PubMed  Google Scholar 

  • Feese MD, Kato Y, Tamada T, Kato M, Komeda T, Miura Y, Hirose M, Hondo K, Kobayashi K, Kuroki R (2000) Crystal structure of glycosyltrehalose trehalohydrolase from the hyperthermophilic archaeum Sulfolobus solfataricus. J Mol Biol 301(2):451–464

    Article  CAS  PubMed  Google Scholar 

  • Fort J, de la Ballina LR, Burghardt HE, Ferrer-Costa C, Turnay J, Ferrer-Orta C, Uson I, Zorzano A, Fernandez-Recio J, Orozco M, Lizarbe MA, Fita I, Palacin M (2007) The structure of human 4F2hc ectodomain provides a model for homodimerization and electrostatic interaction with plasma membrane. J Biol Chem 282(43):31444–31452

    Article  CAS  PubMed  Google Scholar 

  • Frillingos S, Linden A, Niehaus F, Vargas C, Nieto JJ, Ventosa A, Antranikian G, Drainas C (2000) Cloning and expression of α-amylase from the hyperthermophilic archaeon Pyrococcus woesei in the moderately halophilic bacterium Halomonas elongata. J Appl Microbiol 88(3):495–503

    Article  CAS  PubMed  Google Scholar 

  • Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R (2005) Organic solvent tolerance of halophilic alpha-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9(1):85–89

    Article  CAS  PubMed  Google Scholar 

  • Fukusumi S, Kamizono A, Horinouchi S, Beppu T (1988) Cloning and nucleotide sequence of a heat-stable amylase gene from an anaerobic thermophile, Dictyoglomus thermophilum. Eur J Biochem 174(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Gabrisko M, Janecek S (2009) Looking for the ancestry of the heavy-chain subunits of heteromeric amino acid transporters rBAT and 4F2hc within the GH13 α-amylase family. FEBS J 276(24):7265–7278

    Article  CAS  PubMed  Google Scholar 

  • Godany A, Vidova B, Janecek S (2008) The unique glycoside hydrolase family 77 amylomaltase from Borrelia burgdorferi with only catalytic triad conserved. FEMS Microbiol Lett 284(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Godany A, Majzlova K, Horvathova V, Vidova B, Janecek S (2010) Tyrosine 39 of GH13 α-amylase from Thermococcus hydrothermalis contributes to its thermostability. Biologia 65(3):408–415

    Article  CAS  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Kumar Goswami V, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38(11):1599–1616

    Article  CAS  Google Scholar 

  • Hashimoto Y, Yamamoto T, Fujiwara S, Takagi M, Imanaka T (2001) Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001. J Bacteriol 183(17):5050–5057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 208(2):309–316

    Article  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316(2):695–696

    Article  PubMed  PubMed Central  Google Scholar 

  • Hii SL, Tan JS, Ling TC, Ariff AB (2012) Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res 2012:921362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hondoh H, Kuriki T, Matsuura Y (2003) Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. J Mol Biol 326(1):177–188

    Article  CAS  PubMed  Google Scholar 

  • Hondoh H, Saburi W, Mori H, Okuyama M, Nakada T, Matsuura Y, Kimura A (2008) Substrate recognition mechanism of α-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. J Mol Biol 378(4):913–922

    Article  PubMed  CAS  Google Scholar 

  • Horvathova V, Godany A, Sturdik E, Janecek S (2006) α-Amylase from Thermococcus hydrothermalis: re-cloning aimed at the improved expression and hydrolysis of corn starch. Enzyme Microb Technol 39(6):1300–1305

    Article  CAS  Google Scholar 

  • Hostinova E, Janecek S, Gasperik J (2010) Gene sequence, bioinformatics and enzymatic characterization of α-amylase from Saccharomycopsis fibuligera KZ. Protein J 29(5):355–364

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterisation of a highly stable α-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9(6):487–495

    Article  CAS  PubMed  Google Scholar 

  • Imamura H, Fushinobu S, Yamamoto M, Kumasaka T, Jeon BS, Wakagi T, Matsuzawa H (2003) Crystal structures of 4-α-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor. J Biol Chem 278(21):19378–19386

    Article  CAS  PubMed  Google Scholar 

  • Janecek S (1994a) Parallel β/α-barrels of α-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of β-amylase: evolutionary distance is a reflection of unrelated sequences. FEBS Lett 353(2):119–123

    Article  CAS  PubMed  Google Scholar 

  • Janecek S (1994b) Sequence similarities and evolutionary relationships of microbial, plant and animal α-amylases. Eur J Biochem 224(2):519–524

    Article  CAS  PubMed  Google Scholar 

  • Janecek S (1997) α-Amylase family: molecular biology and evolution. Prog Biophys Mol Biol 67(1):67–97

    Article  CAS  PubMed  Google Scholar 

  • Janecek S (1998) Sequence of archaeal Methanococcus jannaschii α-amylase contains features of families 13 and 57 of glycosyl hydrolases: a trace of their common ancestor? Folia Microbiol 43(2):123–128

    Article  CAS  Google Scholar 

  • Janecek S (2002) How many conserved sequence regions are there in the α-amylase family? Biologia 57(11):29–41

    CAS  Google Scholar 

  • Janecek S (2005) Amylolytic families of glycoside hydrolases: focus on the family GH-57. Biologia 60(16):177–184

    CAS  Google Scholar 

  • Janecek S, Blesak K (2011) Sequence-structural features and evolutionary relationships of family GH57 α-amylases and their putative α-amylase-like homologues. Protein J 30(6):429–435

    Article  CAS  PubMed  Google Scholar 

  • Janecek S, Kuchtova A (2012) In silico identification of catalytic residues and domain fold of the family GH119 sharing the catalytic machinery with the α-amylase family GH57. FEBS Lett 586(19):3360–3366

    Article  CAS  PubMed  Google Scholar 

  • Janecek S, Svensson B, MacGregor EA (1995) Characteristic differences in the primary structure allow discrimination of cyclodextrin glucanotransferases from α-amylases. Biochem J 305(2):685–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janecek S, Svensson B, Henrissat B (1997) Domain evolution in the α-amylase family. J Mol Evol 45(3):322–331

    Article  CAS  PubMed  Google Scholar 

  • Janecek S, Leveque E, Belarbi A, Haye B (1999) Close evolutionary relatedness of α-amylases from Archaea and plants. J Mol Evol 48(4):421–426

    Article  CAS  PubMed  Google Scholar 

  • Janecek S, Svensson B, MacGregor EA (2014) α-Amylase – an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 71(7):1149–1170

    Article  CAS  PubMed  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23(10):403–405

    Article  CAS  PubMed  Google Scholar 

  • Jeon EJ, Jung JH, Seo DH, Jung DH, Holden JF, Park CS (2014) Bioinformatic and biochemical analysis of a novel maltose-forming α-amylase of the GH57 family in the hyperthermophilic archaeon Thermococcus sp. CL1. Enzyme Microb Technol 60:9–15

    Article  CAS  PubMed  Google Scholar 

  • Jespersen HM, MacGregor EA, Sierks MR, Svensson B (1991) Comparison of the domain-level organization of starch hydrolases and related enzymes. Biochem J 280(1):51–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao YL, Wang SJ, Lv MS, Fang YW, Liu S (2013) An evolutionary analysis of the GH57 amylopullulanases based on the DOMON_glucodextranase_like domains. J Basic Microbiol 53(3):231–239

    Article  CAS  PubMed  Google Scholar 

  • Jones RA, Jermiin LS, Easteal S, Patel BK, Beacham IR (1999) Amylase and 16S rRNA genes from a hyperthermophilic archaebacterium. J Appl Microbiol 86(1):93–107

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen S, Vorgias CE, Antranikian G (1997) Cloning, sequencing, characterization, and expression of an extracellular α-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J Biol Chem 272(26):16335–16342

    Article  CAS  PubMed  Google Scholar 

  • Jung TY, Li D, Park JT, Yoon SM, Tran PL, Oh BH, Janecek S, Park SG, Woo EJ, Park KH (2012) Association of novel domain in active site of archaic hyperthermophilic maltogenic amylase from Staphylothermus marinus. J Biol Chem 287(11):7979–7989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Seo DH, Holden JF, Park CS (2014) Maltose-forming α-amylase from the hyperthermophilic archaeon Pyrococcus sp. ST04. Appl Microbiol Biotechnol 98(5):2121–2131

    Article  CAS  PubMed  Google Scholar 

  • Kadziola A, Søgaard M, Svensson B, Haser R (1998) Molecular structure of a barley α-amylase-inhibitor complex: implications for starch binding and catalysis. J Mol Biol 278(1):205–217

    Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4(3):363–371

    Google Scholar 

  • Kim HO, Park JN, Sohn HJ, Shin DJ, Choi C, Im SY, Lee HB, Chun SB, Bai S (2000) Cloning and expression in Saccharomyces cerevisiae of a β-amylase gene from the oomycete Saprolegnia ferax. Biotechnol Lett 22(18):1493–1498

    Article  CAS  Google Scholar 

  • Kim HO, Park JN, Shin DJ, Lee HB, Chun SB, Bai S (2001a) A gene encoding Achlya bisexualis β-amylase and its expression in Saccharomyces cerevisiae. Biotechnol Lett 23(14):1101–1107

    Article  CAS  Google Scholar 

  • Kim JW, Flowers LO, Whiteley M, Peeples TL (2001b) Biochemical confirmation and characterization of the family-57-like α-amylase of Methanococcus jannaschii. Folia Microbiol 46(6):467–473

    Article  CAS  Google Scholar 

  • Kobayashi T, Kanai H, Hayashi T, Akiba T, Akaboshi R, Horikoshi K (1992) Haloalkaliphilic maltotriose-forming α-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J Bacteriol 174(11):3439–3444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Kanai H, Aono R, Horikoshi K, Kudo T (1994) Cloning, expression, and nucleotide sequence of the α-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J Bacteriol 176(16):5131–5134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Kato M, Miura Y, Kettoku M, Komeda T, Iwamatsu A (1996) Gene cloning and expression of new trehalose-producing enzymes from the hyperthermophilic archaeum Sulfolobus solfataricus KM1. Biosci Biotechnol Biochem 60(11):1882–1885

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Kubota M, Matsuura Y (2003) Refined structure and functional implications of trehalose synthase from Sulfolobus acidocaldarius. J Appl Glycosci 50(1):1–8

    Article  CAS  Google Scholar 

  • Kobayashi M, Saburi W, Nakatsuka D, Hondoh H, Kato K, Okuyama M, Mori H, Kimura A, Yao M (2015) Structural insights into the catalytic reaction that is involved in the reorientation of Trp238 at the substrate-binding site in GH13 dextran glucosidase. FEBS Lett 589(4):484–489

    Article  CAS  PubMed  Google Scholar 

  • Koch R, Zablowski P, Spreinat A, Antranikian G (1990) Extremely thermostable amylolytic enzyme from the archaebacterium Pyrococcus furiosus. FEMS Microbiol Lett 71(1–2):21–26

    Article  CAS  Google Scholar 

  • Koch R, Spreinat A, Lemke K, Antranikian G (1991) Purification and properties of a hyperthermoactive α-amylase from the archaeobacterium Pyrococcus woesei. Arch Microbiol 155(6):572–578

    Article  CAS  Google Scholar 

  • Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29(3):225–255

    Article  CAS  PubMed  Google Scholar 

  • Laderman KA, Asada K, Uemori T, Mukai H, Taguchi Y, Kato I, Anfinsen CB (1993a) α-Amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Cloning and sequencing of the gene and expression in Escherichia coli. J Biol Chem 268(32):24402–24407

    CAS  PubMed  Google Scholar 

  • Laderman KA, Davis BR, Krutzsch HC, Lewis MS, Griko YV, Privalov PL, Anfinsen CB (1993b) The purification and characterization of an extremely thermostable α-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 268(32):24394–24401

    CAS  PubMed  Google Scholar 

  • Lee HS, Shockley KR, Schut GJ, Conners SB, Montero CI, Johnson MR, Chou CJ, Bridger SL, Wigner N, Brehm SD, Jenney FE Jr, Comfort DA, Kelly RM, Adams MW (2006) Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 188(6):2115–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leemhuis H, Rozeboom HJ, Dijkstra BW, Dijkhuizen L (2003a) The fully conserved Asp residue in conserved sequence region I of the α-amylase family is crucial for the catalytic site architecture and activity. FEBS Lett 541(1–3):47–51

    Article  CAS  PubMed  Google Scholar 

  • Leemhuis H, Rozeboom HJ, Wilbrink M, Euverink GJ, Dijkstra BW, Dijkhuizen L (2003b) Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: the role of alanine 230 in acceptor subsite +1. Biochemistry 42(24):7518–7526

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Peng H, Wang Y, Liu Y, Han F, Xiao Y, Gao Y (2012) Preferential and rapid degradation of raw rice starch by an α-amylase of glycoside hydrolase subfamily GH13_37. Appl Microbiol Biotechnol 94(6):1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Leveque E, Haye B, Belarbi A (2000a) Cloning and expression of an α-amylase encoding gene from the hyperthermophilic archaebacterium Thermococcus hydrothermalis and biochemical characterisation of the recombinant enzyme. FEMS Microbiol Lett 186(1):67–71

    Article  CAS  PubMed  Google Scholar 

  • Leveque E, Janecek S, Belarbi A, Haye B (2000b) Thermophilic archaeal amylolytic enzymes. Enzyme Microb Technol 26(1):2–13

    Article  Google Scholar 

  • Li C, Begum A, Numao S, Park KH, Withers SG, Brayer GD (2005) Acarbose rearrangement mechanism implied by the kinetic and structural analysis of human pancreatic α-amylase in complex with analogues and their elongated counterparts. Biochemistry 44(9):3347–3357

    Article  CAS  PubMed  Google Scholar 

  • Li D, Park JT, Li X, Kim S, Lee S, Shim JH, Park SH, Cha J, Lee BH, Kim JW, Park KH (2010) Overexpression and characterization of an extremely thermostable maltogenic amylase, with an optimal temperature of 100 degrees C, from the hyperthermophilic archaeon Staphylothermus marinus. N Biotechnol 27(4):300–307

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li D, Park KH (2013) An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan- and cyclodextrin-degrading activities. Appl Microbiol Biotechnol 97(12):5359–5369

    Article  CAS  PubMed  Google Scholar 

  • Li C, Du M, Cheng B, Wang L, Liu X, Ma C, Yang C, Xu P (2014) Close relationship of a novel Flavobacteriaceae α-amylase with archaeal α-amylases and good potentials for industrial applications. Biotechnol Biofuels 7(1):18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liebl W, Stemplinger I, Ruile P (1997) Properties and gene structure of the Thermotoga maritima α-amylase AmyA, a putative lipoprotein of a hyperthermophilic bacterium. J Bacteriol 179(3):941–948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JK, Lee HS, Kim YJ, Bae SS, Jeon JH, Kang SG, Lee JH (2007) Critical factors to high thermostability of an α-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. J Microbiol Biotechnol 17(8):1242–1248

    CAS  PubMed  Google Scholar 

  • Linden A, Wilmanns M (2004) Adaptation of class-13 α-amylases to diverse living conditions. Chembiochem 5(2):231–239. doi:10.1002/cbic.200300734

    Article  CAS  PubMed  Google Scholar 

  • Linden A, Mayans O, Meyer-Klaucke W, Antranikian G, Wilmanns M (2003) Differential regulation of a hyperthermophilic α-amylase with a novel (Ca, Zn) two-metal center by zinc. J Biol Chem 278(11):9875–9884

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(Database Issue):D490–D495

    Article  CAS  PubMed  Google Scholar 

  • MacGregor EA, Svensson B (1989) A super-secondary structure predicted to be common to several α-1,4-D-glucan-cleaving enzymes. Biochem J 259(1):145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacGregor EA, Jespersen HM, Svensson B (1996) A circularly permuted α-amylase-type α/β-barrel structure in glucan-synthesizing glucosyltransferases. FEBS Lett 378(3):263–266

    Article  CAS  PubMed  Google Scholar 

  • MacGregor EA, Janecek S, Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Machius M, Declerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis α-amylase through a disorder→order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6(3):281–292

    Article  CAS  PubMed  Google Scholar 

  • Majzlova K, Pukajova Z, Janecek S (2013) Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydr Res 367:48–57

    Article  CAS  PubMed  Google Scholar 

  • Marin-Navarro J, Polaina J (2011) Glucoamylases: structural and biotechnological aspects. Appl Microbiol Biotechnol 89(5):1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291(3):177–181

    Article  CAS  PubMed  Google Scholar 

  • Matsuura Y, Kusunoki M, Harada W, Kakudo M (1984) Structure and possible catalytic residues of Taka-amylase A. J Biochem 95(3):697–702

    CAS  PubMed  Google Scholar 

  • McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4(6):885–892

    Article  CAS  PubMed  Google Scholar 

  • Moshfegh M, Shahverdi AR, Zarrini G, Faramarzi MA (2013) Biochemical characterization of an extracellular polyextremophilic α-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 17(4):677–687

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Imamura H, Shoun H, Horinouchi S, Wakagi T (2004) Transglycosylation activity of Dictyoglomus thermophilum amylase A. Biosci Biotechnol Biochem 68(11):2369–2373

    Article  CAS  PubMed  Google Scholar 

  • Niehaus F, Peters A, Groudieva T, Antranikian G (2000) Cloning, expression and biochemical characterisation of a unique thermostable pullulan-hydrolysing enzyme from the hyperthermophilic archaeon Thermococcus aggregans. FEMS Microbiol Lett 190(2):223–229

    Article  CAS  PubMed  Google Scholar 

  • Nisha M, Satyanarayana T (2013) Recombinant bacterial amylopullulanases: developments and perspectives. Bioengineered 4(6):388–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onodera M, Yatsunami R, Tsukimura W, Fukui T, Nakasone K, Takashina T, Nakamura S (2013) Gene analysis, expression, and characterization of an intracellular α-amylase from the extremely halophilic archaeon Haloarcula japonica. Biosci Biotechnol Biochem 77(2):281–288

    Article  CAS  PubMed  Google Scholar 

  • Oslancova A, Janecek S (2002) Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region. Cell Mol Life Sci 59(11):1945–1959

    Article  CAS  PubMed  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12(4):357–358

    CAS  PubMed  Google Scholar 

  • Palomo M, Pijning T, Booiman T, Dobruchowska JM, van der Vlist J, Kralj S, Planas A, Loos K, Kamerling JP, Dijkstra BW, van der Maarel MJ, Dijkhuizen L, Leemhuis H (2011) Thermus thermophilus glycoside hydrolase family 57 branching enzyme: crystal structure, mechanism of action, and products formed. J Biol Chem 286(5):3520–3530

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31(2):135–152

    Article  CAS  PubMed  Google Scholar 

  • Park JT, Song HN, Jung TY, Lee MH, Park SG, Woo EJ, Park KH (2013) A novel domain arrangement in a monomeric cyclodextrin-hydrolyzing enzyme from the hyperthermophile Pyrococcus furiosus. Biochim Biophys Acta 1834(1):380–386

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Jung JH, Park SG, Lee ME, Holden JF, Park CS, Woo EJ (2014) Structural features underlying the selective cleavage of a novel exo-type maltose-forming amylase from Pyrococcus sp. ST04. Acta Crystallogr D Biol Crystallogr 70(6):1659–1668. doi:10.1107/S1399004714006567

    Article  CAS  PubMed  Google Scholar 

  • Perez-Pomares F, Bautista V, Ferrer J, Pire C, Marhuenda-Egea FC, Bonete MJ (2003) α-Amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7(4):299–306

    Article  CAS  PubMed  Google Scholar 

  • Przylas I, Tomoo K, Terada Y, Takaha T, Fujii K, Saenger W, Straeter N (2000) Crystal structure of amylomaltase from Thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans. J Mol Biol 296(3):873–886

    Article  CAS  PubMed  Google Scholar 

  • Pujadas G, Ramirez FM, Valero R, Palau J (1996) Evolution of β-amylase: patterns of variation and conservation in subfamily sequences in relation to parsimony mechanisms. Proteins 25(4):456–472

    Article  CAS  PubMed  Google Scholar 

  • Puspasari F, Radjasa O, Noer A, Nurachman Z, Syah Y, van der Maarel M, Dijkhuizen L, Janecek S, Natalia D (2013) Raw starch degrading α-amylase from Bacillus aquimaris MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. J Appl Microbiol 114(1):108–120

    Article  CAS  PubMed  Google Scholar 

  • Ramasubbu N, Ragunath C, Mishra PJ (2003) Probing the role of a mobile loop in substrate binding and enzyme activity of human salivary amylase. J Mol Biol 325(5):1061–1076

    Article  CAS  PubMed  Google Scholar 

  • Rashid N, Cornista J, Ezaki S, Fukui T, Atomi H, Imanaka T (2002) Characterization of an archaeal cyclodextrin glucanotransferase with a novel C-terminal domain. J Bacteriol 184(3):777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray RR, Nanda G (1996) Microbial β-amylases: biosynthesis, characteristics, and industrial applications. Crit Rev Microbiol 22(3):181–199

    Article  CAS  PubMed  Google Scholar 

  • Robert X, Haser R, Gottschalk TE, Ratajczak F, Driguez H, Svensson B, Aghajari N (2003) The structure of barley α-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. Structure 11(8):973–984

    Article  CAS  PubMed  Google Scholar 

  • Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstorff P, Svensson B (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543(2):275–293

    Article  CAS  PubMed  Google Scholar 

  • Savchenko A, Vieille C, Kang S, Zeikus JG (2002) Pyrococcus furiosus α-amylase is stabilized by calcium and zinc. Biochemistry 41(19):6193–6201

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Satyanarayana T (2013) Microbial acid-stable α-amylases: characteristics, genetic engineering and applications. Process Biochem 48(2):201–211

    Article  CAS  Google Scholar 

  • Sivakumar N, Li N, Tang JW, Patel BK, Swaminathan K (2006) Crystal structure of AmyA lacks acidic surface and provide insights into protein stability at poly-extreme condition. FEBS Lett 580(11):2646–2652

    Article  CAS  PubMed  Google Scholar 

  • Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19(12):555–562

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Lv X, Li Z, Wang J, Jia B, Liu J (2015) Recombinant cyclodextrinase from Thermococcus kodakarensis KOD1: expression, purification, and enzymatic characterization. Archaea 2015:397924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svensson B (1988) Regional distant sequence homology between amylases, α-glucosidases and transglucanosylases. FEBS Lett 230(1–2):72–76

    Article  CAS  PubMed  Google Scholar 

  • Tachibana Y, Mendez Leclere M, Fujiwara S, Takagi M, Imanaka T (1996) Cloning and expression of the α-amylase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme. J Ferment Bioeng 82(3): 224–232

    Google Scholar 

  • Takata H, Kuriki T, Okada S, Takesada Y, Iizuka M, Minamiura N, Imanaka T (1992) Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at α-(1,4)- and α-(1,6)-glucosidic linkages. J Biol Chem 267(26):18447–18452

    Google Scholar 

  • Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, Dijkstra BW (1999) X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Nat Struct Biol 6(5):432–436

    Article  CAS  PubMed  Google Scholar 

  • UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database Issue):D204–D212

    Article  Google Scholar 

  • van der Kaaij RM, Janecek S, van der Maarel MJEC, Dijkhuizen L (2007) Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal α-amylase enzymes. Microbiology 153(12):4003–4015

    Article  PubMed  CAS  Google Scholar 

  • van der Maarel MJEC, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94(2):137–155

    Article  PubMed  Google Scholar 

  • Vihinen M, Mantsala P (1989) Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol 24(4):329–418

    Article  CAS  PubMed  Google Scholar 

  • Vujicic-Zagar A, Pijning T, Kralj S, Lopez CA, Eeuwema W, Dijkhuizen L, Dijkstra BW (2010) Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proc Natl Acad Sci U S A 107(50):21406–21411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Lu Z, Lu M, Qin S, Liu H, Deng X, Lin Q, Chen J (2008) Identification of archaeon-producing hyperthermophilic α-amylase and characterization of the α-amylase. Appl Microbiol Biotechnol 80(4):605–614

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Gong Y, Xie W, Xiao W, Wang J, Zheng Y, Hu J, Liu Z (2011) Identification and characterization of a novel thermostable gh-57 gene from metagenomic fosmid library of the Juan de Fuca Ridge hydrothemal vent. Appl Biochem Biotechnol 164(8):1323–1338

    Article  CAS  PubMed  Google Scholar 

  • Zona R, Chang-Pi-Hin F, O’Donohue MJ, Janecek S (2004) Bioinformatics of the family 57 glycoside hydrolases and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur J Biochem 271(14):2863–2872

    Article  CAS  PubMed  Google Scholar 

  • Zorgani MA, Patron K, Desvaux M (2014) New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface. J Comput Aided Mol Des 28(7):721–734

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Financial support from the Slovak Grant Agency VEGA (grant No. 2/0150/14) and the Slovak Research and Development Agency APVV (contract No. LPP-0417-09) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Štefan Janeček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Janeček, Š. (2016). α-Amylases from Archaea: Sequences, Structures and Evolution. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_17

Download citation

Publish with us

Policies and ethics