Skip to main content

Enzymatic Reactions in Supercritical Fluids

  • Chapter
  • First Online:
High Pressure Fluid Technology for Green Food Processing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Supercritical fluids and dense gases are a unique class of non-aqueous media with many features that make their use as solvents for biocatalysis and separation particularly desirable. The advantages of supercritical fluids as solvents fall into four general categories: environmental, process, chemical and health/safety. Other attractive features of supercritical fluids as solvents for biocatalytic processes include their high diffusivities, low toxicity and environmental impact, easy downstream processing and recyclability. Application of dense gases as “green solvents” for biochemical reactions is not yet realized on industrial scale. The reason might be instability and deactivation of enzymes under pressure and temperature.

The Chapter outlines the main factors influencing enzyme activity and stability and the process parameters impact on reaction rates and productivity, on application of various types of reactors, and on limitations of enzymes applications as biocatalyst in supercritical fluids. Future trends of development are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaltonen O (1999) Enzymatic catalysis. In: Jessop PG, Leiner W (eds) Chemical synthesis using supercritical fluids. Wiley-VCH, Weinheim, pp 414–445

    Google Scholar 

  • Aaltonen A, Rantakyla M (1991) Biocatalysis in supercritical CO2. Chemtech 21(4):240–248

    CAS  Google Scholar 

  • Affleck R, Xu ZF, Suzawa V et al (1992) Enzymatic catalysis and dynamics in low-water environments. Proc Natl Acad Sci U S A 89(3):1100–1104

    Article  CAS  Google Scholar 

  • Ahern TJ, Klibanov AM (1985) The mechanism of irreversible enzyme inactivation at 100-degrees-C. Science 228(4705):1280–1284

    Article  CAS  Google Scholar 

  • Almeida MC, Ruivo R, Maia C et al (1998) Novozym 435 activity in compressed gases. Water activity and temperature effects. Enzyme Microb Technol 22:494–499

    Article  CAS  Google Scholar 

  • Antonini E, Carrea G, Cremonesi P (1981) Enzyme catalyzed reactions in water-organic solvent two-phase systems. Enzyme Microb Technol 3(4):291–296

    Article  CAS  Google Scholar 

  • Asano Y (2002) Overview of screening for new microbial catalysts and their uses in organic synthesis—selection and optimization of biocatalysts. J Biotechnol 94(1):65–72

    Article  CAS  Google Scholar 

  • Bártlová M, Bernášek P, Sýkora J et al (2006) HPLC in reversed phase mode: tool for investigation of kinetics of blackcurrant seed oil lipolysis in supercritical carbon dioxide. J Chromatogr B 839:80–84

    Article  CAS  Google Scholar 

  • Basheer S, Mogi K, Nakajima M (1995) Surfactant-modified lipase for the catalysis of the interesterification of triglycerides and fatty acids. Biotechnol Bioeng 45(3):187–195

    Article  CAS  Google Scholar 

  • Bauza R, Rios A, Valcarcel M (2002) Coupling immobilized enzymes flow reactors with supercritical fluid extraction for analytical purposes. Analyst 127(2):241–247

    Article  CAS  Google Scholar 

  • Bell G, Janssen AEM, Halling PJ (1997) Water activity fails to predict critical hydration level for enzyme activity in polar organic solvents: interconversion of water concentrations and activities. Enzyme Microb Technol 20:471–477

    Article  CAS  Google Scholar 

  • Blanchard LA, Hancu D, Beckman EJ et al (1999) Green processing using ionic liquids and CO2. Nature 399(6731):28–29

    Article  Google Scholar 

  • Bornscheuer UT (2000) Enzymes in lipid modification. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Bourquelot E, Bridel MJ (1913) Synthtse des glucosides d’alcools. B. l’aide de l’tmulsine et reversibilitt des actions fermentaires. Annales de chimie et de physique 29:145–218

    Google Scholar 

  • Capewell A, Wendel V, Bornscheuer UT et al (1996) Lipase-catalyzed kinetic resolution of 3-hydroxy esters in organic solvents and supercritical carbon dioxide. Enzyme Microb Technol 19(3):181–186

    Article  CAS  Google Scholar 

  • Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angewandte Chemie-International Edition 39(13):2226–2254

    Article  CAS  Google Scholar 

  • Castillo E, Marty A, Combes D et al (1994) Polar substrates for enzymatic-reactions in supercritical CO2—how to overcome the solubility limitation. Biotechnol Lett 16(2):169–174

    CAS  Google Scholar 

  • Catoni E, Cernia E, Palocci C (1996) Different aspects of ‘solvent engineering’ in lipase biocatalysed esterifications. J Mol Catal A: Chem 105(1–2):79–86

    Article  CAS  Google Scholar 

  • Celia EC, Cernia E, D’Acquarica I et al (1999) High yield and optical purity in biocatalysed acylation of trans-2- phenyl-1-cyclohexanol with Candida rugosa lipase in non-conventional media. J Mol Catal B: Enzymatic 6(5):495–503

    Article  CAS  Google Scholar 

  • Cernia E, Palocci C, Gasparrini F et al (1994) Enantioselectivity and reactivity of immobilized lipase in supercritical carbon dioxide. J Mol Catal 89(1–2):L11–L18

    Article  CAS  Google Scholar 

  • Cheftel JC (1991) Applications des hautes pressions en technologie alimentaire. IAA 108:141–153

    Google Scholar 

  • Chrastil J (1982) Solubility of solids and liquids in supercritical gases. J Phys Chem 86:3016–3021

    Article  CAS  Google Scholar 

  • Chulalaksananukul W, Condoret JS, Combes D (1993) Geranyl acetate synthesis by lipase-catalyzed transesterification in supercritical carbon-dioxide. Enzyme Microb Technol 15(8):691–698

    Article  CAS  Google Scholar 

  • Coleman MH, Macrae AR (1977) German Patent DE 27 05 608 [Unilever]

    Google Scholar 

  • Collins AN, Sheldrake GN, Crosby J (1992) Chirality in industry. Wiley, Chichester

    Google Scholar 

  • Dastoli FR, Price S (1967) Further studies on xanthine oxidase in nonpolar media. Arch Biochem Biophys 122(2):289–291

    Article  CAS  Google Scholar 

  • De Carvalho IB, De Sampaio TC, Barreiros S (1994) Subtilisin hydration and activity in supercritical and near-critical fluids. Presented at Proceedings of 3rd symposium on supercritical fluids, Strasbourg, October 17–19, p 155

    Google Scholar 

  • Debs-Louka E, Louka N, Abraham G et al (1999) Effect of compressed carbon dioxide on microbial cell viability. Appl Environ Microbiol 65:626–631

    CAS  Google Scholar 

  • Demirjan DC, Shah PC, Moris-Varas F (1999) Screening for novel enzymes. Top Curr Chem 200:1–29

    Article  Google Scholar 

  • Dijkstra ZJ, Merchant R, Keurentjes JTF (2007) Stability and activity of enzyme aggregates of Calb in supercritical CO2. J Supercrit Fluids 41(1):102–108

    Article  CAS  Google Scholar 

  • Dordick JS (1989) Enzymatic catalysis in monophasic organic-solvents. Enzyme Microb Technol 11(4):194–211

    Article  CAS  Google Scholar 

  • Dufour E, Hervé G, Halrtle T (1995) Hydrolysis of β-lactoglobulin by thermolysin and pepsin under high hydrostatic pressure. Biopolymers 35:475–483

    Article  CAS  Google Scholar 

  • Erickson JC, Schyns P, Cooney CL (1990) Effect of pressure on an enzymatic reaction in a supercritical fluid. AIChE J 36:299–301

    Article  CAS  Google Scholar 

  • Erkmen O (2003) Mathematical modeling of Saccharomyces cerevisiae inactivation under high-pressure carbon dioxide. Nahrung/Food 47:176–180

    Article  Google Scholar 

  • Faber K (2000) Biotransformations in organic chemistry, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Findrik Z, Vasić-Rački D, Primožič M et al (2005) Enzymatic activity of L-amino acid oxidase from snake venom Crotalus adamanteus in supercritical CO2. Biocatal Biotransfor 23(5):315–321

    Article  CAS  Google Scholar 

  • Fontes N, Nogueiro E, Elvas AM et al (1998) Effect of pressure on the catalytic activity of subtilisin Carlsberg suspended in compressed gases. Biochim Biophys Acta, Protein Struct Mol Enzymol 1383(1):165–174

    Article  CAS  Google Scholar 

  • Fontes N, Partridge J, Hailing PJ et al (2002) Zeolite molecular sieves have dramatic acid-base effects on enzymes in nonaqueous media. Biotechnol Bioeng 77(3):296–305

    Article  CAS  Google Scholar 

  • Gang Y, Yong X, Wei X et al (2007) Stability and activity of lipase in subcritical 1,1,1,2-tetrafluoroethane (R134a). J Ind Microbiol Biotechnol 34:793–798

    Article  CAS  Google Scholar 

  • Glowacz G, Bariszlovich M, Linke M et al (1996) Stereoselectivity of lipases in supercritical carbon dioxide. I. Dependence of the region- and enentioselectivity of porcine pancreas lipase on the water content during the hydrolysis of triolein and its partial glyderides. Chem Phys Lipids 79:101–106

    Article  CAS  Google Scholar 

  • Gross M, Auerbach G, Jeanicke R (1993) The catalytic activities of monomeric enzymes show complex pressure-dependence. FEBS Lett 321:256–260

    Article  CAS  Google Scholar 

  • Gumi T, Paolucci-Jeanjean D, Belleville M-P et al (2007) Enzymatic membrane reactor involving a hybrid membrane in supercritical carbon dioxide. J Membr Sci 297(1–2):98–103

    Article  CAS  Google Scholar 

  • Gunnlaugsdottir H, Sivik B (1995) Lipase-catalyzed alcoholysis of cod liver oil in supercritical carbon dioxide. JAOCS 72:399–405

    Google Scholar 

  • Guthalugu NK, Balaraman M, Kadimi US (2006) Optimization of enzymatic hydrolysis of triglycerides in soy deodorized distillate with supercritical carbon dioxide. Biochem Eng J 29:220–226

    Article  CAS  Google Scholar 

  • Habulin M, Knez Ž (2001a) Pressure stability of lipases and their use in different systems. Acta Chim Slov 48:521–532

    CAS  Google Scholar 

  • Habulin M, Knez Ž (2001b) Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane. J Chem Technol Biotechnol 76(12):1260–1266

    Article  CAS  Google Scholar 

  • Habulin M, Knez Ž (2002) High-pressure enzymatic hydrolysis of oil. Eur J Lipid Sci Technol 104:381–386

    Article  CAS  Google Scholar 

  • Habulin M, Krmelj V, Knez Ž (1996a) Synthesis of oleic acid esters catalyzed by immobilized lipase. J Agric Food Chem 44(1):338–342

    Article  CAS  Google Scholar 

  • Habulin M, Krmelj V, Knez Ž (1996b) Supercritical carbon dioxide as a medium for enzymatically catalyzed reaction. In: Trepp C, von Rohr R (eds) Proceedings of high pressure chemical engineering. Elsevier, Amsterdam, pp 85–90

    Google Scholar 

  • Habulin M, Primožič M, Knez Ž (2005a) Enzymatic reactions in high-pressure membrane reactors. Ind Eng Chem Res 44(25):9619–9625

    Article  CAS  Google Scholar 

  • Habulin M, Primožič M, Knez Ž (2005b) Stability of proteinase form Carica papaya latex in dense gases. J Supercrit Fluids 33(1):27–34

    Article  CAS  Google Scholar 

  • Habulin M, Primožič M, Knez Ž (2007) Supercritical fluids as solvents for enzymatic reactions. Acta Chim Slov 54(4):667–677

    CAS  Google Scholar 

  • Hakoda M, Shiragami N, Enomoto A et al (2003) Measurements of hydrodynamic diameter of AOT reverse micelles containing lipase in supercritical ethane and its enzymatic reaction. Bioprocess Biosyst Eng 25:243–247

    Article  CAS  Google Scholar 

  • Halling PJ (1994) Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enzyme Microb Technol 16(3):178–206

    Article  CAS  Google Scholar 

  • Halling PJ (2000) Biocatalysis in low-water media: understanding effects of reaction conditions. Curr Opin Chem Biol 4(1):74–80

    Article  CAS  Google Scholar 

  • Hammond DA, Karel M, Klibanov AM et al (1985) Enzymatic-reactions in supercritical gases. Appl Biochem Biotechnol 11(5):393–400

    Article  CAS  Google Scholar 

  • Hampson JW, Foglia TA (1999) Effect of moisture content on immobilized lipase-catalyzed triacylglycerol hydrolysis under supercritical carbon dioxide flow in a tubular fixed-bed reactor. JAOCS 76:777–781

    CAS  Google Scholar 

  • Harper N, Barreiros S (2002) Enhancement of enzyme activity in supercritical carbon dioxide via changes in acid-base conditions. Biotechnol Progr 18:1451–1454

    Article  CAS  Google Scholar 

  • Harper N, Dolman M, Moore BD et al (2001) Effect of water activity on the rate profile of subtilisin Carlsberg in toluene in the presence of an organo-soluble acid-base buffer. Enzyme Microb Technol 29:413–416

    Article  CAS  Google Scholar 

  • Hartmann T, Meyer HH, Scheper T (2001) The enantioselective hydrolysis of 3-hydroxy-5-phenyl-4-pentenoicacidethylester in supercritical carbon dioxide using lipases. Enzyme Microb Technol 28(7–8):653–660

    Article  CAS  Google Scholar 

  • Hernandez FJ, de los Rios AP, Gomez D et al (2006) A new recirculating enzymatic reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Appl Catal B 67(1–2):121–126

    Article  CAS  Google Scholar 

  • Hill AC (1898) Reversible zymohydrolysis. J Chem Soc 73:634–657

    Article  CAS  Google Scholar 

  • Hitzler MG, Smail FR, Ross SK et al (1998) Selective catalytic hydrogenation of organic compounds in supercritical fluids as a continuous process. Org Process Res Dev 2(3):137–146

    Article  CAS  Google Scholar 

  • Hobbs HR, Thomas NR (2007) Biocatalysis in supercritical fluids, in fuorous solvents, and under solvent free conditions. Chem Rev 107(6):2786–2820

    Article  CAS  Google Scholar 

  • Holmes JD, Steytler DC, Rees GD et al (1998) Bioconversion in a water-in-CO2 microemulsion. Langmuir 14(22):6371–6376

    Article  CAS  Google Scholar 

  • Hong S, Pyun Y (2001) Membrane damage and enzyme inactivation of Lactobacillus plantarum by high pressure CO2 treatment. Int J Food Microb 63:19–28

    Article  CAS  Google Scholar 

  • Ikariya T, Kayaki Y (2000) Supercritical fluids as reaction media for molecular. Catalysis Surveys from Japan 4(1):39–50

    Article  CAS  Google Scholar 

  • Ikushima Y (1997) Supercritical fluids: an interesting medium for chemical and biochemical processes. Adv Colloid Interface Sci 71–72:259–280

    Article  Google Scholar 

  • Ikushima Y, Saito N, Arai M et al (1995) Activation of a lipase triggered by interactions with supercritical carbon-dioxide in the near-critical region. J Phys Chem 99(22):8941–8944

    Article  CAS  Google Scholar 

  • Ikushima Y, Saito N, Hatakeda K et al (1996) Promotion of a lipase-catalyzed esterification in supercritical carbon dioxide in near-critical region. Chem Eng Sci 51:2817–2822

    Article  CAS  Google Scholar 

  • Jarzebski AB, Malinowski JJ (1995) Potentials and prospects for application of supercritical fluid technology in bioprocessing. Process Biochem 30(4):343–352

    Article  CAS  Google Scholar 

  • Jensen BH, Galluzzo DR, Jensen RG (1987) Partial-purification and characterization of free and immobilized lipases from mucor-miehei. Lipids 22(8):559–565

    Article  Google Scholar 

  • Kajimoto O (1999) Solvation in supercritical fluids: its effects on energy transfer and chemical reactions. Chem Rev 99:355–389

    Article  CAS  Google Scholar 

  • Kamat S, Barrera J, Beckman EJ et al (1992) Biocatalytic synthesis of acrylates in organic-solvents and supercritical fluids. 1. Optimization of enzyme environment. Biotechnol Bioeng 40(1):158–166

    Article  CAS  Google Scholar 

  • Kamat SV, Iwaskewycz B, Beckman EJ et al (1993) Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids: tuning enzyme activity by changing pressure. Proc Natl Acad Sci U S A 90:2940–2944

    Article  CAS  Google Scholar 

  • Kamat S, Beckman EJ, Russell AJ (1995a) Enzyme activity in supercritical fluids. Crit Rev Biotechnol 15:41–71

    Article  CAS  Google Scholar 

  • Kamat S, Critchley G, Beckman EJ et al (1995b) Biocatalytic synthesis of acrylates in organic-solvents and supercritical fluids. 3. Does carbon-dioxide covalently modify enzymes. Biotechnol Bioeng 46(6):610–620

    Article  CAS  Google Scholar 

  • Kasche V, Schlothauer R, Brunner G (1988) Enzyme denaturation in supercritical CO2—stabilizing effect of s-s bonds during the depressurization step. Biotechnol Lett 10(8):569–574

    Article  CAS  Google Scholar 

  • Kastle JH, Loevenhart AS (1900) Concerning lipase, the fat-splitting enzyme, and the reversibility of its action. J Am Chem Soc 24:491–525

    Google Scholar 

  • Kieslich K, Van der Beek CP, De Bont JAM et al (eds) (1998) New frontiers in screening for microbial biocatalysts. Elsevier, Amsterdam

    Google Scholar 

  • King JW, Snyder JM, Frykman H et al (2001) Sterol ester production using lipase-catalyzed reactions in supercritical carbon dioxide. Eur Food Res Technol 212(5):566–569

    Article  CAS  Google Scholar 

  • Klibanov AM (1990) Asymmetric transformations catalyzed by enzymes in organic-solvents. Acc Chem Res 23(4):114–120

    Article  CAS  Google Scholar 

  • Klibanov AM (1995) Enzyme memory: what is remembered and why? Nature 374:596

    Article  CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  Google Scholar 

  • Knez Ž, Habulin M (1994) Lipase-catalysed esterification at high pressure. Biocatalysis 9(1–4):115–121

    Article  CAS  Google Scholar 

  • Knez Ž, Habulin M (2002) Compressed gases as alternative enzymatic-reaction solvents: a short review. J Supercrit Fluids 23(1):29–42

    Article  CAS  Google Scholar 

  • Knez Ž, Rižner V, Habulin M et al (1995) Enzymatic synthesis of oleyl oleate in dense fluids. JAOCS 72(11):1345–1349

    CAS  Google Scholar 

  • Knez Ž, Habulin M, Krmelj V (1998) Enzyme catalyzed reactions in dense gases. J Supercrit Fluids 14(1):17–29

    Article  CAS  Google Scholar 

  • Knez Ž, Gamse T, Marr R (2001) High pressure process technology: fundamentals and applications. In: Bertucco A, Vetter G (eds) Enzymatic reactions (Industrial chemistry library, Vol. 9). Elsevier, Amsterdam, p 486

    Google Scholar 

  • Knez Ž, Habulin M, Primožič M (2003) Hydrolyses in supercritical CO2 and their use in a high-pressure membrane reactor. Bioprocess Biosyst Eng 25(5):279–284

    Article  CAS  Google Scholar 

  • Knez Ž, Habulin M, Primožič M (2005) Enzymatic reactions in dense gases. Biochem Eng J 27(2):120–126

    Article  CAS  Google Scholar 

  • Kobayashi S (1999) Enzymatic polymerization: a new method of polymer synthesis. J Polym Sci Part A 37(16):3041–3056

    Article  CAS  Google Scholar 

  • Koeller KM, Wong CH (2001) Enzymes for chemical synthesis. Nature 409(6817):232–240

    Article  CAS  Google Scholar 

  • Krieger N, Bhatnagar T, Baratti JC et al (2004) Non-aqueous biocatalysis in heterogeneous solvent systems. Food Technol Biotech 42(4):279–286

    CAS  Google Scholar 

  • Krishna HS (2002) Developments and trends in enzyme catalysis in nonconventional media. Biotechnol Adv 20(3–4):239–266

    Article  Google Scholar 

  • Krishna HS, Karanth NG (2001) Lipase-catalyzed synthesis of isoamyl butyrate. A kinetic study. Biochim Biophys Acta 1547(2):262–267

    Article  Google Scholar 

  • Krishna HS, Karanth NG (2002) Response surface modelling of lipase-catalyzed isoamyl propionate synthesis. J Food Sci 67(1):32–36

    Article  CAS  Google Scholar 

  • Krishna SH, Manohar B, Divakar S et al (1999) Lipase-catalyzed synthesis of isoamyl butyrate: optimization by response surface methodology. JAOCS 76(12):1483–1488

    CAS  Google Scholar 

  • Krishna SH, Manohar B, Divakar S et al (2000a) Optimization of isoamyl acetate production by using immobilized lipase from Mucor miehei by response surface methodology. Enzyme Microb Technol 26(2–4):131–136

    Article  Google Scholar 

  • Krishna HS, Prapulla SG, Karanth NG (2000b) Enzymatic synthesis of isoamyl butyrate using immobilized Rhizomucor miehei lipase in non-aqueous media. J Ind Microbiol Biotech 25(3):147–154

    Article  CAS  Google Scholar 

  • Krishna SH, Divakar S, Prapulla SG et al (2001a) Enzymatic synthesis of isoamyl acetate using immobilized lipase from Rhizomucor miehei. J Biotech 87(3):193–201

    Article  Google Scholar 

  • Krishna HS, Sattur AP, Karanth NG (2001b) Lipase-catalyzed synthesis of isoamyl isobutyrate—optimization using a central composite rotatable design. Process Biochem 37(1):9–16

    Article  Google Scholar 

  • Krmelj V, Habulin M, Knez Ž et al (1999) Lipase-catalyzed synthesis of oleyl oleate in pressurized and supercritical solvents. Fett/Lipid 101(1):34–38

    Article  CAS  Google Scholar 

  • Kumar R, Madras G, Modak J (2004) Enzymatic synthesis of ethyl palmitate in supercritical carbon dioxide. Ind Eng Chem Res 43:1568–1573

    Article  CAS  Google Scholar 

  • Laudani CG, Habulin M, Della Porta G et al (2005) Long-chain fatty acid ester synthesis by lipase in supercritical carbon dioxide. In: Pierucci S (ed) 7th Italian conference on chemical and process engineering, Vol. 2, ICheaP-7 AIDIC—Associazione Italiana di Ingegneria Chimica, Milano, pp 843–848

    Google Scholar 

  • Leitgeb M, Knez Ž (1990) The influence of water on the synthesis of n-butyl oleate by immobilized Mucor miehei lipase. JAOCS 67(11):775–778

    CAS  Google Scholar 

  • Leitgeb M, Čolnik M, Primožič M et al (2013) Activity of cellulase and α-amylase from Hortaea werneckii after cell treatment with supercritical carbon dioxide. J Supercrit Fluids 78:143–148

    Article  CAS  Google Scholar 

  • Liese A, Seelbach K, Wandrey C (2000) Industrial biotransformations. Wiley-VCH, Weinheim, pp 3–10

    Book  Google Scholar 

  • Lilly MD, Eighth PV (1994) Advances in biotransformation processes. Chem Eng Sci 49(2):151–159

    Article  CAS  Google Scholar 

  • Lin T-J, Chen S-W, Chang A-C (2006) Enrichment of n-3 PUFA contents on triglycerides of fish oil by lipase-catalysed trans-esterification under supercritical conditions. Biochem Eng J 29(1–2):27–34

    Article  CAS  Google Scholar 

  • Lozano P, Avellaneda A, Pascual R et al (1996) Stability of immobilized alpha-chymotrypsin in supercritical carbon dioxide. Biotechnol Lett 18(11):1345–1350

    Article  CAS  Google Scholar 

  • Lozano P, De Diego T, Carrie D et al (2002) Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chem Commun 7:692–693

    Article  CAS  Google Scholar 

  • Lozano P, Víllora G, Gómez D et al (2004) Membrane reactor with immobilized Candida antarctica lipase B for ester synthesis in supercritical carbon dioxide. J Supercrit Fluids 29(1–2):121–128

    Article  CAS  Google Scholar 

  • Madras G, Kolluru C, Kumar R (2004a) Synthesis of biodiesel in supercritical fluids. Fuel 83:2029–2033

    Article  CAS  Google Scholar 

  • Madras G, Kumar R, Modak J (2004b) Synthesis of octyl palmitate in various supercritical fluids. Ind Eng Chem Res 43(24):7697–7701

    Article  CAS  Google Scholar 

  • Martinek K, Semenov AN, Berezin IV (1981) Enzymatic synthesis in biphasic aqueous-organic systems. I. Chemical equilibrium shift. Biochim Biophys Acta 658(1):76–89

    Article  CAS  Google Scholar 

  • Martinez JL, Rezaei K, Temelli F (2002) Effect of water on canola oil hydrolysis in an online extraction-reaction system using supercritical CO2. Ind Eng Chem Res 41(25):6475–6481

    Article  CAS  Google Scholar 

  • Marty A, Chulalaksananukul W, Condoret JS et al (1990) Comparison of lipase-catalyzed esterification in supercritical carbon-dioxide and in normal-hexane. Biotechnol Lett 12(1):11–16

    Article  CAS  Google Scholar 

  • Marty A, Chulalaksananukul W, Willemot RM et al (1992) Kinetics of lipase-catalyzed esterification in supercritical CO2. Biotechnol Bioeng 39(3):273–280

    Article  CAS  Google Scholar 

  • Marty A, Combes D, Condoret J-S (1994) Continuous reaction-separation process for enzymatic esterification in supercritical carbon dioxide. Biotechnol Bioeng 43:497–504

    Article  CAS  Google Scholar 

  • Matsuda T, Harada T, Nakajima N et al (2000) Two classes of enzymes of opposite stereochemistry in an organism: one for fluorinated and another for nonfluorinated substrates. J Org Chem 65(1):157–163

    Article  CAS  Google Scholar 

  • Matsuda T, Kanamaru R, Watanabe K et al (2001a) Control on enantioselectivity with pressure for lipase-catalyzed esterification in supercritical carbon dioxide. Tetrahedron Lett 42:8319–8321

    Article  CAS  Google Scholar 

  • Matsuda T, Ohashi Y, Harada T et al (2001b) Conversion of pyrrole to pyrrole-2-carboxylate by cells of B. megaterium in supercritical CO2. Chem Commun 21:2194–2195

    Article  CAS  Google Scholar 

  • Matsuda T, Watanabe K, Harada T et al (2004) Enzymatic reactions in supercritical CO2: carboxylation, asymmetric reduction and esterification. Catal Today 96(3):103–111

    Article  CAS  Google Scholar 

  • Matsuo T, Sawamura N, Hashimoto Y et al (1981). European patent EP 00 35 883, [Fuji Oil]

    Google Scholar 

  • Mattiasson B, Aldercreutz P (1991) Tailoring the microenvironment of enzymes in water-poor systems. Trends Biotechnol 9(11):394–398

    Article  CAS  Google Scholar 

  • McCoy M (1999) Biocatalysis grows for drug synthesis. Chem Eng News 77(1):10–14

    Article  Google Scholar 

  • Mesiano AJ, Beckman EJ, Russell AJ (1999) Supercritical biocatalysis. Chem Rev 99(2):623–632

    Article  CAS  Google Scholar 

  • Miller DA, Blanch HW, Prausnitz JM (1991) Enzyme-catalyzed interesterification of triglycerides in supercritical carbon dioxide. Ind Eng Chem Res 30(5):939–946

    Article  CAS  Google Scholar 

  • Mori T, Funasaki M, Kobayashi A et al (2001) Reversible activity control of enzymatic reactions in supercritical fluid-enantioselective esterification catalyzed by a lipid-coated lipase in supercritical fluoroform. Kobunshi Ronbunshu 58(10):564–568

    Article  CAS  Google Scholar 

  • Muralidhar RV, Chirumamilla RR, Marchant R et al (2002) Understanding lipase stereoselectivity. World J Microbiol Biotechnol 18:81–97

    Article  CAS  Google Scholar 

  • Muratov G, Seo K-W, Kim C (2005) Application of supercritical carbon dioxide to the bioconversion of cotton fibers. Ind Eng Chem Res 11(1):42–46

    CAS  Google Scholar 

  • Nagesha GK, Manohar B, Udaya Sankar K (2004) Enzymatic esterification of free fatty acids of hydrolyzed soy deodorizer distillate in supercritical carbon dioxide. J Supercrit Fluids 33:137–145

    Article  CAS  Google Scholar 

  • Nakamura K (1990) Biochemical reactions in supercritical fluids. Trends Biotechnol 8(10):288–292

    Article  CAS  Google Scholar 

  • Nakamura K (1994) Biological applications of SCF. In: Perrut M, Brunner G (eds) Proceedings of third international symposium on supercritical fluids, vol. 3. Strasbourg, pp 121–130

    Google Scholar 

  • Nakamura K, Matsuda T (1998) Asymmetric reduction of ketones by the acetone powder of Geotrichum candidum. J Org Chem 63(24):8957–8964

    Article  CAS  Google Scholar 

  • Nakamura K, Chi MY, Yamada Y et al (1986) Lipase activity and stability in SC-CO2. Chem Eng Commun 45(1–6):207–212

    Article  CAS  Google Scholar 

  • Nakamura K, Inoue Y, Matsuda T et al (1999) Stereoselective oxidation reduction by immobilized Geotrichum candidum in an organic solvent. J Chem Soc-Perkin Trans 1(16):2397–2402

    Article  Google Scholar 

  • Nakamura K, Yamanaka R, Matsuda T et al (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron 14(18):2659–2681

    Article  CAS  Google Scholar 

  • Nakaya H, Nakamura K, Miyawaki O (2002) Lipase-catalyzed esterification of stearic acid with ethanol, and hydrolysis of ethyl stearate, near the critical point in supercritical carbon dioxide. JAOCS 79(1):23–27

    CAS  Google Scholar 

  • Novak Z, Habulin M, Krmelj V et al (2003) Silica aerogels as supports for lipase catalyzed esterifications at sub- and supercritical conditions. J Supercrit Fluids 27:169–178

    Article  CAS  Google Scholar 

  • Okamoto M, Hayashi R, Enomoto A et al (1991) High-pressure proteolytic digestion of food proteins—selective elimination of beta-lactoglobulin in bovine-milk whey concentrate. Agr Bio Chem 55:1253–1257

    Article  CAS  Google Scholar 

  • Oliveira D, Feihrmann AC, Rubira AF et al (2006) Assessment of two immobilized lipases activity treated in compressed fluids. J Supercrit Fluids 38:373–382

    Article  CAS  Google Scholar 

  • Ornstein RL (2002) Improving enzyme catalysis: screening, evolution and rational design. Marcel Dekker, New York

    Google Scholar 

  • Ottosson J, Fransson L, King JW et al (2002) Size as a parameter for solvent effects on Candida antarctica lipase B enantioselectivity. (BBA)/Protein. Struct Mol Enzymol 1594(2):325–334

    Article  CAS  Google Scholar 

  • Overmeyer A, Schrader-Lippelt S, Kasche V et al (1999) Lipase-catalyzed kinetic resolution of racemates at temperatures from 40 °C to 160 °C in supercritical CO2. Biotechnol Lett 21:65–69

    Article  CAS  Google Scholar 

  • Paljevac M, Primožič M, Habulin M et al (2007) Hydrolysis of carboxymethyl cellulose catalyzed by cellulase immobilized on silica gels at low and high pressures. J Supercrit Fluids 43(1):74–80

    Article  CAS  Google Scholar 

  • Palocci C, Falconi M, Chronopoulou L et al (2008) Lipase-catalyzed regioselective acylation of tritylglycosides in supercritical carbon dioxide. J Supercrit Fluids 45(1):88–93

    Article  CAS  Google Scholar 

  • Park CY, Ryu YW, Kim C (2001) Kinetics and rate of enzymatic hydrolysis of cellulose in supercritical carbon dioxide. Korean J Chem Eng 18(4):475–478

    Article  CAS  Google Scholar 

  • Pasta P, Mazzola G, Carrea G et al (1989) Subtilisin-catalyzed trans-esterification in supercritical carbon-dioxide. Biotechnol Lett 11(9):643–648

    Article  CAS  Google Scholar 

  • Patel RN (2000) Stereoselective biocatalysis. Marcel Dekker, New York

    Book  Google Scholar 

  • Patel RN (2001) Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances. Curr Opin Biotechnol 12(6):587–604

    Article  CAS  Google Scholar 

  • Peres C, Da Silva MDRG, Barreiros S (2003) Water activity effects on geranyl acetate synthesis catalyzed by novozym in supercritical ethane and in supercritical carbon dioxide. J Agr Food Chem 51:1884–1888

    Article  CAS  Google Scholar 

  • Peres C, Harper N, Da Silva MDRG et al (2005) Effect of zeolites on lipase catalyzed esterification in nonaqueous media. Enzyme Microb Technol 37(1):145–149

    Article  CAS  Google Scholar 

  • Perrut M (2000) Supercritical fluid applications: industrial developments and economic issues. Ind Eng Chem Re 39(12):4531–4535

    Article  CAS  Google Scholar 

  • Perve O, Vallikivi I, Lahe L et al (1997) Lipase-catalyzed enantioselective hydrolysis of bicyclo[3.2.0]heptanol esters in supercritical carbon dioxide. Bioorg Med Chem Lett 7(7):811–816

    Article  Google Scholar 

  • Primožič M, Habulin M, Knez Ž (2003) Parameter optimization for the enzymatic hydrolysis of sunflower oil in high-pressure reactor. JAOCS 80(7):643–646

    Google Scholar 

  • Primožič M, Habulin M, Knez Ž (2006) Proteinase-catalyzed hydrolysis of casein at atmospheric pressure and in supercritical media. Chem Biochem Eng Q 20(3):255–261

    Google Scholar 

  • Primožič M, Paljevac M, Habulin M et al (2009) Hydrolase-catalyzed reactions in membrane reactors at atmospheric and high pressure. Desalination 241(1–3):14–21

    Article  CAS  Google Scholar 

  • Randolph TW, Blanch HW, Prausnitz JM et al (1985) Enzymatic catalysis in supercritical fluid. Biotechnol Lett 7(5):325–328

    Article  CAS  Google Scholar 

  • Randolph TW, Blanch HW, Prausnitz JM (1988a) Enzyme-catalyzed oxidation of cholesterol in supercritical carbon dioxide. AIChE J 34(8):1354–1360

    Article  CAS  Google Scholar 

  • Randolph TW, Clark DS, Blanch HW et al (1988b) Enzymatic oxidation of cholesterol aggregates in supercritical carbon dioxide. Science 239(4838):387–390

    Article  CAS  Google Scholar 

  • Rantakyla M, Aaltonen O (1994) Enantioselective esterification of ibuprofen in supercritical carbon-dioxide by immobilized lipase. Biotechnol Lett 16(8):825–830

    Article  Google Scholar 

  • Rantakylä M, Alkio M, Aaltonen O (1996) Stereospecific hydrolysis of 3-(4-methoxyphenyl)glycidic ester in supercritical carbon dioxide by immobilized lipase. Biotechnol Lett 18(9):1089–1094

    Article  Google Scholar 

  • Rasor JP, Voss E (2001) Enzyme-catalyzed processes in pharmaceutical industry. Appl Catal A-General 221(1–2):145–158

    Article  CAS  Google Scholar 

  • Rezaei K, Temelli F (2000) Lipase-catalyzed hydrolysis of canola oil in supercritical carbon dioxide. JAOCS 77(8):903–909

    CAS  Google Scholar 

  • Rezaei K, Temelli F (2001) On-line extraction-reaction of canola oil using immobilized lipase in SC-CO2. J Supercrit Fluids 19(3):263–274

    Article  CAS  Google Scholar 

  • Rezaei K, Temelli F, Jenab E (2007) Effects of water on enzyme performance with an emphasis on the reactions in supercritical fluids. Crit Rev Biotechnol 27(4):183–195

    Article  CAS  Google Scholar 

  • Romero MD, Calvo L, Alba C et al (2005) Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in supercritical carbon dioxide. J Supercrit Fluids 33(1):77–84

    Article  CAS  Google Scholar 

  • Russell AJ, Beckman EJ (1991) Should the high diffusivity of a supercritical fluid increase the rate of an enzyme-catalyzed reaction. Enzyme Microb Technol 13(12):1007

    Article  CAS  Google Scholar 

  • Šabeder S, Habulin M, Knez Ž (2005) Comparison of the esterification of fructose and palmitic acid in organic solvent and in supercritical carbon dioxide. Ind Eng Chem Res 44:9631–9635

    Article  CAS  Google Scholar 

  • Salgin U, Salgin S, Takaç S (2007) The enantioselective hydrolysis of racemic naproxen methyl ester in supercritical CO2 using Candida rugosa lipase. J Supercrit Fluids 43(2):310–316

    Article  CAS  Google Scholar 

  • Saul S, Corr S, Micklefield J (2004) Biotransformations in low-boiling hydrofluorocarbon solvents. Angew Chem Int Ed 43(41):5519–5523

    Article  CAS  Google Scholar 

  • Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed 37(12):1609–1633

    Article  CAS  Google Scholar 

  • Schmitt-Rozieres M, Deyris V, Comeau LC (2000) Enrichment of polyunsaturated fatty acids from sardine cannery effluents by enzymatic selective esterification. JAOCS 77(3):329–332

    CAS  Google Scholar 

  • Schulze B, Broxterman R, Shoemaker H et al (1998) Review of biocatalysis in the production of chiral fine chemicals. Speciality Chemicals Magazine 18:244–246

    CAS  Google Scholar 

  • Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7(5):267–278

    Article  CAS  Google Scholar 

  • Smallridge AJ, Trewhella MA, Wang Z (2002) The enzyme-catalysed stereoselective transesterification of phenylalanine derivatives in supercritical carbon dioxide. Aust J Chem 55(4):259–262

    Article  CAS  Google Scholar 

  • Sovová H, Zarevućka M (2003) Lipase-catalyzed hydrolysis of blackcurrant oil in supercritical carbon dioxide. Chem Eng Sci 58(11):2339–2350

    Article  CAS  Google Scholar 

  • Sovová H, Zarevúcka M, Bernášek P et al (2008) Kinetics and specificity of Lipozyme-catalysed oil hydrolysis in supercritical CO2. Chem Eng Res Des 86(7):673–681

    Article  CAS  Google Scholar 

  • Srivastava S, Madras G, Modak J (2003) Esterification of myristic acid in supercritical carbon dioxide. J Supercrit Fluids 27:55–64

    Article  CAS  Google Scholar 

  • Stinson SC (2000) Chiral drugs. Robust market starts to mature. Chem Eng News 78(43):55–78

    Article  Google Scholar 

  • Turner C, Persson M, Mathiasson L et al (2001a) Lipase-catalyzed reactions in organic and supercritical solvents: application to fat-soluble vitamin determination in milk powder and infant formula. Enzyme Microb Technol 29(2–3):111–121

    Article  CAS  Google Scholar 

  • Turner C, King JW, Mathiasson L (2001b) On-line supercritical fluid extraction/enzymatic hydrolysis of vitamin A esters: a new simplified approach for the determination of vitamins A and E in food. J Agric Food Chem 49:553–558

    Article  CAS  Google Scholar 

  • Varma MN, Madras G (2007) Synthesis of isoamyl laurate and isoamyl stearate in supercritical carbon dioxide. Appl Biochem Biotechnol 136:139–147

    Article  Google Scholar 

  • Vasić-Rački Đ, Kragl U, Conrad D et al (1998) Modelling of yeast alcohol dehydrogenase catalysed production of chiral alcohols. Chem Biochem Eng Q 12(2):87–95

    Google Scholar 

  • Vermue MH, Tramper J, De Jong JPJ et al (1992) Enzymatic transesterification in near-critical carbon dioxide: effect of pressure, Hildebrand solubility parameter and water content. Enzyme Microb Technol 14(8):649–655

    Article  CAS  Google Scholar 

  • Vezzù K, Betto V, Elvassore N (2008) High-pressure gas-assisted absorption of protein within biopolymeric micro-patterned membrane. Biochem Eng J 40:241–248

    Article  CAS  Google Scholar 

  • Vulfson EN (1998) Novel surfactants: preparation, applications and biodegradability, Surfactant science series. Marcel Dekker, New York, p 279

    Google Scholar 

  • Wahler D, Reymond JL (2001) Novel methods for biocatalyst screening. Curr Opin Chem Biol 5(2):152–158

    Article  CAS  Google Scholar 

  • Weber A, Catchpole O, Eltringham W (2008) Supercritical fluid assisted, integrated process for the synthesis and separation of different lipid derivatives. J Sep Sci 31(8):1346–1351

    Article  CAS  Google Scholar 

  • Weder JK (1984) Studies on proteins and amino-acids exposed to supercritical carbon-dioxide extraction conditions. Food Chem 15(3):175–190

    Article  CAS  Google Scholar 

  • Wong JM, Johnston KP (1986) Solubilization of biomolecules in carbon dioxide-based supercritical fluids. Biotechnol Progr 2(1):29–39

    Article  CAS  Google Scholar 

  • Yoshimura T, Furutera M, Shimoda M et al (2002) Inactivation efficiency of enzymes in buffered system by continuous method with microbubbles of supercritical carbon dioxide. J Food Sci 67:3227–3231

    Article  CAS  Google Scholar 

  • Yu ZR, Rizvi S, Zollweg JA (1992) Enzymic esterification of fatty acid mixtures from milk fat and anhydrous milk fat with canola oil in supercritical carbon dioxide. Biotechnol Progr 8(6):508–513

    Article  CAS  Google Scholar 

  • Zagrobelny J, Bright FV (1992) In-situ studies of protein conformation in supercritical fluids-trypsin in carbon-dioxide. Biotechnol Progr 8(5):421–423

    Article  CAS  Google Scholar 

  • Zaks A (2001) Industrial biocatalysis. Curr Opin Chem Biol 5(2):130–136

    Article  CAS  Google Scholar 

  • Zaks A, Dodds DR (1997) Application of biocatalysis and biotransformations to the synthesis of pharmaceuticals. Drug Discov Today 2(12):513–531

    Article  CAS  Google Scholar 

  • Zaks A, Klibanov AM (1984) Enzymic catalysis in organic media at 100 °C. Science 224(4654):1249–1251

    Article  CAS  Google Scholar 

  • Zaks A, Klibanov AM (1985) Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci U S A 82(10):3192–3196

    Article  CAS  Google Scholar 

  • Zaks A, Klibanov AM (1986) Substrate-specificity of enzymes in organic-solvents vs water is reversed. J Am Chem Soc 108(10):2767–2768

    Article  CAS  Google Scholar 

  • Zaks A, Klibanov AM (1988a) Enzymatic catalysis in nonaqueous solvents. J Biol Chem 263(7):3194–3201

    CAS  Google Scholar 

  • Zaks A, Klibanov AM (1988b) The effect of water on enzyme action in organic media. J Biol Chem 263(17):8017–8021

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Knez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Knez, Ž., Leitgeb, M., Primožič, M. (2015). Enzymatic Reactions in Supercritical Fluids. In: Fornari, T., Stateva, R. (eds) High Pressure Fluid Technology for Green Food Processing. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-10611-3_6

Download citation

Publish with us

Policies and ethics