Skip to main content

Alzheimer’s Disease

  • Chapter
  • First Online:
Imaging Dementia

Abstract

Main imaging findings:

  • Structural neuroimaging:

    • Computed tomography (CT):

      • Exclusion of alternative pathologies that could explain cognitive impairment and/or behavioral changes.

      • Evaluation of the presence and extent of cerebrovascular disease.

    • Magnetic resonance imaging (MRI):

      • Characteristic reduction of global and regional (temporoparietal) volumes, even in prodromal stages (i.e., mild cognitive impairment and subjective cognitive decline).

      • Evaluation of the presence and extent of cerebrovascular disease with higher accuracy than CT.

      • Characteristic atrophy patterns in late- and early-onset AD presentations.

  • Molecular imaging:

    • SPECT and FDG-PET:

      • Reduction in regional (temporoparietal) blood flow/glucose metabolism, even in prodromal stages (i.e., mild cognitive impairment and subjective cognitive decline).

      • Characteristic hypometabolism patterns in late- and early-onset AD presentations.

      • Abnormal findings are associated with increased risk of progressive cognitive deterioration in mild cognitive impairment.

    • Amyloid PET:

      • High negative predictive value, lower positive predictive value.

      • Low correlation between amyloid burden and neuroanatomy and degree of cognitive performances.

    • Tau PET:

      • High affinity for paired helical filaments of pTau.

      • High spatial correlation of tau burden with FDG-PET hypometabolism distribution and with neuroanatomy of cognitive disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11:111–28.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Crous-Bou M, Minguillon C, Gramunt N, Molinuevo JL. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther. 2017;9:71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. International AsD. World Alzheimer report 2019: attitudes to dementia. London: Alzheimer’s Disease International; 2019.

    Google Scholar 

  4. Takizawa C, Thompson PL, van Walsem A, Faure C, Maier WC. Epidemiological and economic burden of Alzheimer’s disease: a systematic literature review of data across Europe and the United States of America. J Alzheimers Dis. 2015;43:1271–84.

    Article  PubMed  Google Scholar 

  5. Daviglus ML, Bell CC, Berrettini W, et al. National Institutes of Health state-of-the-science conference statement: preventing Alzheimer disease and cognitive decline. Ann Intern Med. 2010;153:176–81.

    Article  PubMed  Google Scholar 

  6. de Bruijn RF, Bos MJ, Portegies ML, et al. The potential for prevention of dementia across two decades: the prospective, population-based Rotterdam study. BMC Med. 2015;13:132.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011;10:241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271–8; discussion 278–84.

    Article  CAS  PubMed  Google Scholar 

  10. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    Article  CAS  PubMed  Google Scholar 

  11. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.

    Article  CAS  PubMed  Google Scholar 

  12. Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol. 2009;66:200–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Revesz T, McLaughlin JL, Rossor MN, Lantos PL. Pathology of familial Alzheimer’s disease with Lewy bodies. J Neural Transm Suppl. 1997;51:121–35.

    Article  CAS  PubMed  Google Scholar 

  14. Nelson PT, Dickson DW, Trojanowski JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142:1503–27.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256:240–6.

    Article  CAS  PubMed  Google Scholar 

  16. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  17. Petersen RC, Lopez O, Armstrong MJ, et al. Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of neurology. Neurology. 2018;90:126–35.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Larrieu S, Letenneur L, Orgogozo JM, et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology. 2002;59:1594–9.

    Article  CAS  PubMed  Google Scholar 

  19. van Harten AC, Mielke MM, Swenson-Dravis DM, et al. Subjective cognitive decline and risk of MCI: the Mayo Clinic study of aging. Neurology. 2018;91:e300–12.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Crutch SJ, Lehmann M, Schott JM, et al. Posterior cortical atrophy. Lancet Neurol. 2012;11:170–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Crutch SJ, Schott JM, Rabinovici GD, et al. Consensus classification of posterior cortical atrophy. Alzheimers Dement. 2017;13:870–84.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Warren JD, Fletcher PD, Golden HL. The paradox of syndromic diversity in Alzheimer disease. Nat Rev Neurol. 2012;8:451–64.

    Article  CAS  PubMed  Google Scholar 

  24. Ossenkoppele R, Pijnenburg YA, Perry DC, et al. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain. 2015;138:2732–49.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–46.

    Article  PubMed  Google Scholar 

  28. Dubois B, Feldman HH, Jacova C, et al. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol. 2010;9:1118–27.

    Article  PubMed  Google Scholar 

  29. Knopman DS, DeKosky ST, Cummings JL, et al. Practice parameter: diagnosis of dementia (an evidence-based review)—report of the quality standards subcommittee of the American Academy of Neurology. Neurology. 2001;56:1143–53.

    Article  CAS  PubMed  Google Scholar 

  30. Jack CR Jr, Bennett DA, Blennow K, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chételat GA, Arbizu J, Barthel H, Garibotto V, Law I, Morbelli S, van de Giessen E, Agosta F. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol. 2020;19:951.

    Article  PubMed  Google Scholar 

  33. Thompson PM, Hayashi KM, de Zubicaray G, et al. Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci. 2003;23:994–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fox NC, Crum WR, Scahill RI, et al. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet. 2001;358:201–5.

    Article  CAS  PubMed  Google Scholar 

  35. Thompson PM, Mega MS, Woods RP, et al. Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb Cortex. 2001;11:1–16.

    Article  CAS  PubMed  Google Scholar 

  36. Teipel SJ, Bayer W, Alexander GE, et al. Progression of corpus callosum atrophy in Alzheimer disease. Arch Neurol. 2002;59:243–8.

    Article  PubMed  Google Scholar 

  37. Pasi M, Poggesi A, Pantoni L. The use of CT in dementia. Int Psychogeriatr. 2011;23(Suppl 2):S6–12.

    Article  PubMed  Google Scholar 

  38. Wattjes MP, Henneman WJ, van der Flier WM, et al. Diagnostic imaging of patients in a memory clinic: comparison of MR imaging and 64-detector row CT. Radiology. 2009;253:174–83.

    Article  PubMed  Google Scholar 

  39. Adduru V, Baum SA, Zhang C, et al. A method to estimate brain volume from head CT images and application to detect brain atrophy in Alzheimer disease. AJNR Am J Neuroradiol. 2020;41:224–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Braskie MN, Thompson PM. A focus on structural brain imaging in the Alzheimer’s disease neuroimaging initiative. Biol Psychiatry. 2014;75:527–33.

    Article  PubMed  Google Scholar 

  41. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4:215–22.

    Article  CAS  PubMed  Google Scholar 

  42. Dosenbach NU, Fair DA, Miezin FM, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 2007;104:11073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Love S, Miners JS. Cerebrovascular disease in ageing and Alzheimer’s disease. Acta Neuropathol. 2016;131:645–58.

    Article  CAS  PubMed  Google Scholar 

  44. Wardlaw JM, Brindle W, Casado AM, et al. A systematic review of the utility of 1.5 versus 3 Tesla magnetic resonance brain imaging in clinical practice and research. Eur Radiol. 2012;22:2295–303.

    Article  PubMed  Google Scholar 

  45. Gosche KM, Mortimer JA, Smith CD, Markesbery WR, Snowdon DA. Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology. 2002;58:1476–82.

    Article  CAS  PubMed  Google Scholar 

  46. Csernansky JG, Hamstra J, Wang L, et al. Correlations between antemortem hippocampal volume and postmortem neuropathology in AD subjects. Alzheimer Dis Assoc Disord. 2004;18:190–5.

    PubMed  Google Scholar 

  47. Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6:67–77.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55:967–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Erkinjuntti T, Lee DH, Gao F, et al. Temporal lobe atrophy on magnetic resonance imaging in the diagnosis of early Alzheimer’s disease. Arch Neurol. 1993;50:305–10.

    Article  CAS  PubMed  Google Scholar 

  50. Bresciani L, Rossi R, Testa C, et al. Visual assessment of medial temporal atrophy on MR films in Alzheimer’s disease: comparison with volumetry. Aging Clin Exp Res. 2005;17:8–13.

    Article  PubMed  Google Scholar 

  51. Duara R, Loewenstein DA, Potter E, et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology. 2008;71:1986–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Diciotti S, Ginestroni A, Bessi V, et al. Identification of mild Alzheimer’s disease through automated classification of structural MRI features. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:428–31.

    PubMed  Google Scholar 

  53. Frisoni GB, Jack CR. Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use. Alzheimers Dement. 2011;7:171–4.

    Article  PubMed  Google Scholar 

  54. Frisoni GB, Jack CR Jr, Bocchetta M, et al. The EADC-ADNI harmonized protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity. Alzheimers Dement. 2015;11:111–25.

    Article  PubMed  Google Scholar 

  55. Rowe CC, Ellis KA, Rimajova M, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging. 2010;31:1275–83.

    Article  PubMed  Google Scholar 

  56. Apostolova LG, Morra JH, Green AE, et al. Automated 3D mapping of baseline and 12-month associations between three verbal memory measures and hippocampal atrophy in 490 ADNI subjects. NeuroImage. 2010;51:488–99.

    Article  PubMed  Google Scholar 

  57. Leow AD, Yanovsky I, Parikshak N, et al. Alzheimer’s disease neuroimaging initiative: a one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition. NeuroImage. 2009;45:645–55.

    Article  PubMed  Google Scholar 

  58. Carmichael O, Xie J, Fletcher E, et al. Localized hippocampus measures are associated with Alzheimer pathology and cognition independent of total hippocampal volume. Neurobiol Aging. 2012;33:1124, e1131–41.

    Article  PubMed  Google Scholar 

  59. Tosun D, Schuff N, Shaw LM, et al. Relationship between CSF biomarkers of Alzheimer’s disease and rates of regional cortical thinning in ADNI data. J Alzheimers Dis. 2011;26(Suppl 3):77–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Stricker NH, Dodge HH, Dowling NM, et al. CSF biomarker associations with change in hippocampal volume and precuneus thickness: implications for the Alzheimer’s pathological cascade. Brain Imaging Behav. 2012;6:599–609.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Scheltens P, Fox N, Barkhof F, De Carli C. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol. 2002;1:13–21.

    Article  PubMed  Google Scholar 

  62. van der Flier WM, van Straaten EC, Barkhof F, et al. Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study. J Neurol Neurosurg Psychiatry. 2005;76:1497–500.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shi F, Liu B, Zhou Y, Yu C, Jiang T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: meta-analyses of MRI studies. Hippocampus. 2009;19:1055–64.

    Article  PubMed  Google Scholar 

  64. Jack CR Jr, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology. 1999;52:1397–403.

    Article  PubMed  Google Scholar 

  65. Apostolova LG, Dutton RA, Dinov ID, et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch Neurol. 2006;63:693–9.

    Article  PubMed  Google Scholar 

  66. Desikan RS, Cabral HJ, Fischl B, et al. Temporoparietal MR imaging measures of atrophy in subjects with mild cognitive impairment that predict subsequent diagnosis of Alzheimer disease. AJNR Am J Neuroradiol. 2009;30:532–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yuan Y, Gu ZX, Wei WS. Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. AJNR Am J Neuroradiol. 2009;30:404–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stonnington CM, Chu C, Kloppel S, et al. Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage. 2010;51:1405–13.

    Article  PubMed  Google Scholar 

  69. Dickerson BC, Wolk DA. Alzheimer’s disease neuroimaging I. Dysexecutive versus amnesic phenotypes of very mild Alzheimer’s disease are associated with distinct clinical, genetic and cortical thinning characteristics. J Neurol Neurosurg Psychiatry. 2011;82:45–51.

    Article  PubMed  Google Scholar 

  70. Evans MC, Barnes J, Nielsen C, et al. Volume changes in Alzheimer’s disease and mild cognitive impairment: cognitive associations. Eur Radiol. 2010;20:674–82.

    Article  PubMed  Google Scholar 

  71. Bilgel M, An Y, Helphrey J, et al. Effects of amyloid pathology and neurodegeneration on cognitive change in cognitively normal adults. Brain. 2018;141:2475–85.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chetelat G, Landeau B, Eustache F, et al. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. NeuroImage. 2005;27:934–46.

    Article  CAS  PubMed  Google Scholar 

  73. Bozzali M, Filippi M, Magnani G, et al. The contribution of voxel-based morphometry in staging patients with mild cognitive impairment. Neurology. 2006;67:453–60.

    Article  CAS  PubMed  Google Scholar 

  74. Whitwell JL, Josephs KA, Murray ME, et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology. 2008;71:743–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV. Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiol Aging. 2011;32:1733–41.

    Article  PubMed  Google Scholar 

  76. Mitchell AJ, Beaumont H, Ferguson D, Yadegarfar M, Stubbs B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatr Scand. 2014;130:439–51.

    Article  CAS  PubMed  Google Scholar 

  77. Hafkemeijer A, Altmann-Schneider I, Oleksik AM, et al. Increased functional connectivity and brain atrophy in elderly with subjective memory complaints. Brain Connect. 2013;3:353–62.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cherbuin N, Sargent-Cox K, Easteal S, Sachdev P, Anstey KJ. Hippocampal atrophy is associated with subjective memory decline: the PATH through life study. Am J Geriatr Psychiatry. 2015;23:446–55.

    Article  PubMed  Google Scholar 

  79. Striepens N, Scheef L, Wind A, et al. Volume loss of the medial temporal lobe structures in subjective memory impairment. Dement Geriatr Cogn Disord. 2010;29:75–81.

    Article  PubMed  Google Scholar 

  80. Frisoni GB, Pievani M, Testa C, et al. The topography of grey matter involvement in early and late onset Alzheimer’s disease. Brain. 2007;130:720–30.

    Article  PubMed  Google Scholar 

  81. Canu E, Frisoni GB, Agosta F, et al. Early and late onset Alzheimer’s disease patients have distinct patterns of white matter damage. Neurobiol Aging. 2012;33:1023–33.

    Article  PubMed  Google Scholar 

  82. van de Pol LA, Hensel A, Barkhof F, et al. Hippocampal atrophy in Alzheimer disease: age matters. Neurology. 2006;66:236–8.

    Article  PubMed  Google Scholar 

  83. Migliaccio R, Agosta F, Rascovsky K, et al. Clinical syndromes associated with posterior atrophy: early age at onset AD spectrum. Neurology. 2009;73:1571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Whitwell JL, Jack CR Jr, Przybelski SA, et al. Temporoparietal atrophy: a marker of AD pathology independent of clinical diagnosis. Neurobiol Aging. 2011;32:1531–41.

    Article  PubMed  Google Scholar 

  85. Lehmann M, Rohrer JD, Clarkson MJ, et al. Reduced cortical thickness in the posterior cingulate gyrus is characteristic of both typical and atypical Alzheimer’s disease. J Alzheimers Dis. 2010;20:587–98.

    Article  PubMed  Google Scholar 

  86. Whitwell JL, Przybelski SA, Weigand SD, et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain. 2007;130:1777–86.

    Article  PubMed  Google Scholar 

  87. Bohnen NI, Djang DS, Herholz K, Anzai Y, Minoshima S. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med. 2012;53:59–71.

    Article  CAS  PubMed  Google Scholar 

  88. Herholz K, Schopphoff H, Schmidt M, et al. Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease. J Nucl Med. 2002;43:21–6.

    PubMed  Google Scholar 

  89. Perani D, Schillaci O, Padovani A, et al. A survey of FDG- and amyloid-PET imaging in dementia and GRADE analysis. Biomed Res Int. 2014;2014:785039.

    Article  PubMed  Google Scholar 

  90. Rice L, Bisdas S. The diagnostic value of FDG and amyloid PET in Alzheimer’s disease—a systematic review. Eur J Radiol. 2017;94:16–24.

    Article  PubMed  Google Scholar 

  91. Bloudek LM, Spackman DE, Blankenburg M, Sullivan SD. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis. 2011;26:627–45.

    Article  CAS  PubMed  Google Scholar 

  92. Spehl TS, Hellwig S, Amtage F, et al. Syndrome-specific patterns of regional cerebral glucose metabolism in posterior cortical atrophy in comparison to dementia with Lewy bodies and Alzheimer’s disease—a [F-18]-FDG pet study. J Neuroimaging. 2015;25:281–8.

    Article  PubMed  Google Scholar 

  93. Nestor PJ, Altomare D, Festari C, et al. Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. Eur J Nucl Med Mol Imaging. 2018;45:1509–25.

    Article  PubMed  Google Scholar 

  94. Nobili F, Arbizu J, Bouwman F, et al. European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain (18) F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur J Neurol. 2018;25:1201–17.

    Article  CAS  PubMed  Google Scholar 

  95. Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008;49:390–8.

    Article  PubMed  Google Scholar 

  96. Jagust W, Reed B, Mungas D, Ellis W, Decarli C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology. 2007;69:871–7.

    Article  CAS  PubMed  Google Scholar 

  97. Mosconi L, Andrews RD, Matthews DC. Comparing brain amyloid deposition, glucose metabolism, and atrophy in mild cognitive impairment with and without a family history of dementia. J Alzheimers Dis. 2013;35:509–24.

    Article  CAS  PubMed  Google Scholar 

  98. Murayama N, Iseki E, Fujishiro H, et al. Detection of early amnestic mild cognitive impairment without significantly objective memory impairment: a case-controlled study. Psychogeriatrics. 2010;10:62–8.

    Article  PubMed  Google Scholar 

  99. Arbizu J, Festari C, Altomare D, et al. Clinical utility of FDG-PET for the clinical diagnosis in MCI. Eur J Nucl Med Mol Imaging. 2018;45:1497–508.

    Article  CAS  PubMed  Google Scholar 

  100. Anchisi D, Borroni B, Franceschi M, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 2005;62:1728–33.

    Article  PubMed  Google Scholar 

  101. Santangelo R, Masserini F, Agosta F, et al. CSF p-tau/Abeta42 ratio and brain FDG-PET may reliably detect MCI “imminent” converters to AD. Eur J Nucl Med Mol Imaging. 2020;47:3152.

    Article  PubMed  CAS  Google Scholar 

  102. Drzezga A, Lautenschlager N, Siebner H, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30:1104–13.

    Article  PubMed  Google Scholar 

  103. Mosconi L, Perani D, Sorbi S, et al. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology. 2004;63:2332–40.

    Article  CAS  PubMed  Google Scholar 

  104. Knopman DS, Jack CR Jr, Wiste HJ, et al. Selective worsening of brain injury biomarker abnormalities in cognitively normal elderly persons with beta-amyloidosis. JAMA Neurol. 2013;70:1030–8.

    Article  PubMed  Google Scholar 

  105. Knopman DS, Jack CR Jr, Lundt ES, et al. Role of beta-amyloidosis and neurodegeneration in subsequent imaging changes in mild cognitive impairment. JAMA Neurol. 2015;72:1475–83.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kemp PM, Holmes C, Hoffmann SM, et al. Alzheimer’s disease: differences in technetium-99m HMPAO SPECT scan findings between early onset and late onset dementia. J Neurol Neurosurg Psychiatry. 2003;74:715–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rabinovici GD, Furst AJ, Alkalay A, et al. Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden. Brain. 2010;133:512–28.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Laforce R Jr, Tosun D, Ghosh P, et al. Parallel ICA of FDG-PET and PiB-PET in three conditions with underlying Alzheimer’s pathology. Neuroimage Clin. 2014;4:508–16.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Madhavan A, Whitwell JL, Weigand SD, et al. FDG PET and MRI in logopenic primary progressive aphasia versus dementia of the Alzheimer’s type. PLoS One. 2013;8:e62471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nestor PJ, Caine D, Fryer TD, Clarke J, Hodges JR. The topography of metabolic deficits in posterior cortical atrophy (the visual variant of Alzheimer’s disease) with FDG-PET. J Neurol Neurosurg Psychiatry. 2003;74:1521–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kas A, de Souza LC, Samri D, et al. Neural correlates of cognitive impairment in posterior cortical atrophy. Brain. 2011;134:1464–78.

    Article  PubMed  Google Scholar 

  112. Woodward MC, Rowe CC, Jones G, Villemagne VL, Varos TA. Differentiating the frontal presentation of Alzheimer’s disease with FDG-PET. J Alzheimers Dis. 2015;44:233–42.

    Article  PubMed  Google Scholar 

  113. Laforce R Jr, Buteau JP, Paquet N, et al. The value of PET in mild cognitive impairment, typical and atypical/unclear dementias: a retrospective memory clinic study. Am J Alzheimers Dis Other Dement. 2010;25:324–32.

    Article  Google Scholar 

  114. Herholz K, Ebmeier K. Clinical amyloid imaging in Alzheimer’s disease. Lancet Neurol. 2011;10:667–70.

    Article  CAS  PubMed  Google Scholar 

  115. Wong DF, Rosenberg PB, Zhou Y, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med. 2010;51:913–20.

    Article  CAS  PubMed  Google Scholar 

  116. Rinne JO, Wong DF, Wolk DA, et al. [(18)F]Flutemetamol PET imaging and cortical biopsy histopathology for fibrillar amyloid beta detection in living subjects with normal pressure hydrocephalus: pooled analysis of four studies. Acta Neuropathol. 2012;124:833–45.

    Article  CAS  PubMed  Google Scholar 

  117. Rowe CC, Ackerman U, Browne W, et al. Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008;7:129–35.

    Article  CAS  PubMed  Google Scholar 

  118. Johnson KA, Minoshima S, Bohnen NI, et al. Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. J Nucl Med. 2013;54:1011–3.

    Article  PubMed  Google Scholar 

  119. Clark CM, Schneider JA, Bedell BJ, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305:275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–78.

    Article  CAS  PubMed  Google Scholar 

  121. Braskie MN, Klunder AD, Hayashi KM, et al. Plaque and tangle imaging and cognition in normal aging and Alzheimer’s disease. Neurobiol Aging. 2010;31:1669–78.

    Article  PubMed  Google Scholar 

  122. Ossenkoppele R, Zwan MD, Tolboom N, et al. Amyloid burden and metabolic function in early-onset Alzheimer’s disease: parietal lobe involvement. Brain. 2012;135:2115–25.

    Article  PubMed  Google Scholar 

  123. Cho H, Seo SW, Kim JH, et al. Amyloid deposition in early onset versus late onset Alzheimer’s disease. J Alzheimers Dis. 2013;35:813–21.

    Article  PubMed  CAS  Google Scholar 

  124. Lee JH, Kim SH, Kim GH, et al. Identification of pure subcortical vascular dementia using 11C-Pittsburgh compound B. Neurology. 2011;77:18–25.

    Article  CAS  PubMed  Google Scholar 

  125. Leyton CE, Villemagne VL, Savage S, et al. Subtypes of progressive aphasia: application of the International Consensus Criteria and validation using beta-amyloid imaging. Brain. 2011;134:3030–43.

    Article  PubMed  Google Scholar 

  126. Rabinovici GD, Rosen HJ, Alkalay A, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77:2034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rabinovici GD, Furst AJ, O’Neil JP, et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology. 2007;68:1205–12.

    Article  CAS  PubMed  Google Scholar 

  128. Forsberg A, Engler H, Almkvist O, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging. 2008;29:1456–65.

    Article  CAS  PubMed  Google Scholar 

  129. Lim YY, Maruff P, Pietrzak RH, et al. Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer’s disease. Brain. 2014;137:221–31.

    Article  PubMed  Google Scholar 

  130. Okello A, Koivunen J, Edison P, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009;73:754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Grundman M, Pontecorvo MJ, Salloway SP, et al. Potential impact of amyloid imaging on diagnosis and intended management in patients with progressive cognitive decline. Alzheimer Dis Assoc Disord. 2013;27:4–15.

    Article  CAS  PubMed  Google Scholar 

  132. Marcus C, Mena E, Subramaniam RM. Brain PET in the diagnosis of Alzheimer’s disease. Clin Nucl Med. 2014;39:e413–22; quiz e423–6

    Article  PubMed  PubMed Central  Google Scholar 

  133. Iaccarino L, Sala A, Perani D. Alzheimer’s disease neuroimaging I. Predicting long-term clinical stability in amyloid-positive subjects by FDG-PET. Ann Clin Transl Neurol. 2019;6:1113–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ostrowitzki S, Deptula D, Thurfjell L, et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol. 2012;69:198–207.

    Article  PubMed  Google Scholar 

  135. Morris JC, Price JL. Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J Mol Neurosci. 2001;17:101–18.

    Article  CAS  PubMed  Google Scholar 

  136. Ng S, Villemagne VL, Berlangieri S, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer’s disease. J Nucl Med. 2007;48:547–52.

    Article  CAS  PubMed  Google Scholar 

  137. Formaglio M, Costes N, Seguin J, et al. In vivo demonstration of amyloid burden in posterior cortical atrophy: a case series with PET and CSF findings. J Neurol. 2011;258:1841–51.

    Article  PubMed  Google Scholar 

  138. Kambe T, Motoi Y, Ishii K, Hattori N. Posterior cortical atrophy with [11C] Pittsburgh compound B accumulation in the primary visual cortex. J Neurol. 2010;257:469–71.

    Article  PubMed  Google Scholar 

  139. Tenovuo O, Kemppainen N, Aalto S, Nagren K, Rinne JO. Posterior cortical atrophy: a rare form of dementia with in vivo evidence of amyloid-beta accumulation. J Alzheimers Dis. 2008;15:351–5.

    Article  CAS  PubMed  Google Scholar 

  140. Rosenbloom MH, Alkalay A, Agarwal N, et al. Distinct clinical and metabolic deficits in PCA and AD are not related to amyloid distribution. Neurology. 2011;76:1789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rabinovici GD, Jagust WJ, Furst AJ, et al. Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol. 2008;64:388–401.

    Article  PubMed  PubMed Central  Google Scholar 

  142. de Souza LC, Corlier F, Habert MO, et al. Similar amyloid-beta burden in posterior cortical atrophy and Alzheimer’s disease. Brain. 2011;134:2036–43.

    Article  PubMed  Google Scholar 

  143. Xia CF, Arteaga J, Chen G, et al. [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement. 2013;9:666–76.

    Article  PubMed  Google Scholar 

  144. Chien DT, Bahri S, Szardenings AK, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34:457–68.

    Article  CAS  PubMed  Google Scholar 

  145. Chien DT, Szardenings AK, Bahri S, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J Alzheimers Dis. 2014;38:171–84.

    Article  PubMed  Google Scholar 

  146. Marquie M, Siao Tick Chong M, Anton-Fernandez A, et al. [F-18]-AV-1451 binding correlates with postmortem neurofibrillary tangle Braak staging. Acta Neuropathol. 2017;134:619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Vogel JW, Mattsson N, Iturria-Medina Y, et al. Data-driven approaches for tau-PET imaging biomarkers in Alzheimer’s disease. Hum Brain Mapp. 2019;40:638–51.

    Article  PubMed  Google Scholar 

  148. Schwarz AJ, Yu P, Miller BB, et al. Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain. 2016;139:1539–50.

    Article  PubMed  Google Scholar 

  149. Mattsson N, Insel PS, Donohue M, et al. Predicting diagnosis and cognition with (18)F-AV-1451 tau PET and structural MRI in Alzheimer’s disease. Alzheimers Dement. 2019;15:570–80.

    Article  PubMed  Google Scholar 

  150. Ossenkoppele R, Schonhaut DR, Scholl M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016;139:1551–67.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Okamura N, Harada R, Ishiki A, et al. The development and validation of tau PET tracers: current status and future directions. Clin Transl Imaging. 2018;6:305–16.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron. 2014;84:608–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pontecorvo MJ, Devous MD Sr, Navitsky M, et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain. 2017;140:748–63.

    PubMed  PubMed Central  Google Scholar 

  154. Kavcic V, Ni H, Zhu T, Zhong J, Duffy CJ. White matter integrity linked to functional impairments in aging and early Alzheimer’s disease. Alzheimers Dement. 2008;4:381–9.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Sexton CE, Kalu UG, Filippini N, Mackay CE, Ebmeier KP. A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2011;32:2322.e5–18.

    Article  Google Scholar 

  156. Pievani M, Agosta F, Pagani E, et al. Assessment of white matter tract damage in mild cognitive impairment and Alzheimer’s disease. Hum Brain Mapp. 2010;31:1862–75.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zhang X, Sun Y, Li W, et al. Characterization of white matter changes along fibers by automated fiber quantification in the early stages of Alzheimer’s disease. Neuroimage Clin. 2019;22:101723.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Teipel SJ, Kuper-Smith JO, Bartels C, et al. Multicenter tract-based analysis of microstructural lesions within the Alzheimer’s disease spectrum: association with amyloid pathology and diagnostic usefulness. J Alzheimers Dis. 2019;72:455–65.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Verstraete E, van den Heuvel MP, Veldink JH, et al. Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. PLoS One. 2010;5:e13664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Agosta F, Pievani M, Geroldi C, et al. Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging. 2012;33:1564–78.

    Article  PubMed  Google Scholar 

  161. Petrella JR, Sheldon FC, Prince SE, Calhoun VD, Doraiswamy PM. Default mode network connectivity in stable vs progressive mild cognitive impairment. Neurology. 2011;76:511–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Supekar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol. 2008;4:e1000100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Chen H, Sheng X, Luo C, et al. The compensatory phenomenon of the functional connectome related to pathological biomarkers in individuals with subjective cognitive decline. Transl Neurodegener. 2020;9:21.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippi, M., Agosta, F. (2021). Alzheimer’s Disease. In: Imaging Dementia. Springer, Cham. https://doi.org/10.1007/978-3-030-66773-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66773-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66772-6

  • Online ISBN: 978-3-030-66773-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics