Skip to main content

Role of Chemical Constituents in Regulating Decay Rates and Stable Fractions: Effects of Initial and Changing Chemical Composition on Decomposition and Organic Matter Accumulation

  • Chapter
  • First Online:
Plant Litter

Abstract

We have identified two decomposition patterns; one based on the three-stage model (Type I) with pine litter as model substrate; the other being a two-stage pattern (Type II) with spruce and oak litter as model substrates. The Type I decomposition pattern means a decomposition of non-lignified tissue in an early stage with concentrations of e.g. N and P being rate regulating together with climate. In contrast—decomposition pattern Type II is regulated by just Mn concentration. For both decomposition patterns the rate slows and a limit value may be calculated. These limit values range between c 50 and 100% accumulated mass loss. So far we have seen a positive relationship between limit values and litter Mn concentration based on 21 litter species indicating that higher levels of available Mn will reduce the amount of potential humus or long-term residue, whereas N concentration appears to suppress limit values, but only for decomposition pattern Type I. We also note that the building units of lignin, including guaiacyl, syringyl, and p-hydoxyphenol, vary in their relative abundance in the lignin molecules of different plant species or even genotypes of a single species. The variability of lignin composition may influence decay rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD, McClaugherty CA, Melillo JM (1984) Litter decomposition in Wisconsin forests—Mass loss, organic-chemical constituents and nitrogen. Univ Wisc Res Bull R3284, University of Wisconsin, Madison, WI

    Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manage 133:13–22

    Article  Google Scholar 

  • Berg B, Ekbohm G (1991) Litter mass loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–1456

    Article  Google Scholar 

  • Berg B, Johansson M-B (1998) A maximum limit for foliar litter decomposition—a synthesis of data from forest systems. Swed Univ Agric, Dept Forest Ecology Forest Soils

    Google Scholar 

  • Berg B, Matzner E (1997) The effect of N deposition on the mineralization of C from plant litter and humus. Environ Rev 5:1–25

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2014) Plant litter. Decomposition. Humus Formation. Carbon Sequestration. Springer, Berlin, 317 pp 92 ill. ISBN 978-3-642-38820-0

    Google Scholar 

  • Berg B, Staaf H (1980) Decomposition rate and chemical changes in Scots pine needle litter. II. Influence of chemical composition. Ecol Bull (Stockh) 32:373–390

    CAS  Google Scholar 

  • Berg B, Theander O (1984) The dynamics of some nitrogen fractions in decomposing Scots pine needles. Pedobiologia 27:161–167

    Google Scholar 

  • Berg B, Ekbohm G, Johansson M-B, McClaugherty C, Rutigliano F, Virzo De Santo A (1996) Some foliar litter types have a maximum limit for decomposition—a synthesis of data from forest systems. Can J Bot 74:659–672

    Article  Google Scholar 

  • Berg B, Laskowski R, Virzo De Santo A (1999) Estimated N concentration in humus as based on initial N concentration in foliar litter—a synthesis. Can J Bot 77:1712–1722

    Article  Google Scholar 

  • Berg B, Meentemeyer V, Johansson M-B (2000) Litter decomposition in a climatic transect of Norway spruce forests—climate and lignin control of mass-loss rates. Can J For Res 30:1136–1147

    Article  Google Scholar 

  • Berg B, Kjønaas J, Johansson M-B, Erhagen B, Ã…kerblom S (2015) Late stage pine litter decomposition. Relationships to litter N,Mn and acid unhydrolyzable (AUR) concentrations and climatic factors. For Ecol Manage 358:41–47

    Google Scholar 

  • Berg B, Steffen K, McClaugherty C (2007) Litter decomposition rates as dependent on litter Mn concentration. Biogeochemistry 85:29–39

    Article  Google Scholar 

  • Berg B, De Marco A, Davey M, Emmett B, Hobbie S, Liu C, McClaugherty C, Norell L, Johansson M-B, Rutigliano F, Vesterdal L, Virzo De Santo A (2010) Limit values for foliar litter decomposition—pine forests. Biogeochemistry 100:57–73

    Article  CAS  Google Scholar 

  • Berg B, Erhagen B, Johansson M-B, Vesterdal L, Faituri M, Sanborn P, Nilsson M (2013) Manganese dynamics in decomposing foliar litter—a synthesis. Can J For Res 43:1127–1136

    Article  CAS  Google Scholar 

  • Bogatyrev L, Berg B, Staaf H (1983) Leaching of plant nutrients and total phenolic substances from some foliage litters - a laboratory study. Swed Conif For Proj Tech Rep 33, 59 pp

    Google Scholar 

  • Chavez-Vergara B, Merino A, Vazquez-Marrufo G, Garcia-Oliva F (2014) Organic matter dynamics and microbial activity during decomposition of forest floor under two native neotropical oak species in a temperate deciduous forest in Mexico. Geoderma 235:133–145

    Article  Google Scholar 

  • Chen Z, Xu Y, Cusack DF, Castellano MJ, Dong W (2019) Molecular insights into the inhibitory effect of nitrogen fertilization on manure decomposition. Geoderma 353:104–115

    Article  CAS  Google Scholar 

  • Cole DW, Compton JE, Edmonds RL, Homann PS, Van Miegroet H (1995) Comparison of carbon accumulation in douglas fir and red alder forests. In: McFee WW, Kelly JM (eds) Carbon forms and functions in forest soils. Soil Sci Soc Am, Madison, WI, USA, pp 527–546

    Google Scholar 

  • Couteaux M-M, McTiernan K, Berg B, Szuberla D, Dardennes P (1998) Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–595

    Article  CAS  Google Scholar 

  • Currie WS, Harmon ME, Burke IC, Hart C, Parton JW, Silver W (2010) Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale. Glob Change Biol 16(6):1744–1761

    Article  Google Scholar 

  • Davey M, Berg B, Emmett B, Rowland P (2007) Controls of foliar litter decomposition and implications for C sequestration in oak woodlands. Can J Bot 85:16–24

    Article  Google Scholar 

  • David MB, Vance GF, Rissing JM, Stevenson FJ (1989) Organic carbon fractions in extracts of O and B horizons from a New England Spodosol: effects of acid treatment. J Environ Qual 18:212–217

    Article  CAS  Google Scholar 

  • De Marco A, Spaccini R, Vittozzi P, Esposito F, Berg B, Virzo De Santo A (2012) Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol Biochem 51:1–15

    Google Scholar 

  • Faix O, Mozuch MD, Kirk TK (1985) Degradation of Gymnosperm (Guaiacyl) vs Angiosperm (Syringyl/Guaiacyl) Lignins by Phanerochaete chrysosporium. Holzforschung 39(4):203–208

    Article  CAS  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462

    Article  Google Scholar 

  • Fogel R, Cromack K (1977) Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon. Can J Bot 55:1632–1640

    Article  Google Scholar 

  • Guggenberger G (1994) Acidification effects of dissolved organic matter mobility in spruce forest ecosystems. Environ Int 20:31–41

    Article  CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofman M, Stein A (eds) Biopolymers, vol 1. Lignin, humic substances and coal. Wiley, Weinheim, pp 129–180

    Google Scholar 

  • Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012) Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol Mono 82(3):389–405

    Google Scholar 

  • Howard PJA, Howard DM (1974) Microbial decomposition of tree and shrub leaf litter. Oikos 25:311–352

    Article  Google Scholar 

  • Johansson M-B, Berg B, Meentemeyer V (1995) Litter mass-loss rates in late stages of decomposition in a climatic transect of pine forests. Long-term decomposition in a Scots pine forest. IX. Can J Bot 73:1509–1521

    Article  Google Scholar 

  • Kaspari M, Yanoviak SP, Dudley R, Yuan M, Clay NA (2009) Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest. PNAS 106(46):19405–19409

    Article  CAS  Google Scholar 

  • Kaspari M (2012) Stoichiometry (Chap. 3). In: Sibly RM, Brown JH, Kodric-Brown A (eds) Metabolic ecology: a scaling approach. Wiley, Hoboken

    Google Scholar 

  • Klotzbücher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011) A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 95:1052–1062

    Article  Google Scholar 

  • Laskowski R, Berg B, Johansson M, McClaugherty C (1995) Release pattern for potassium from decomposing forest leaf litter. Long-term decomposition in a Scots pine forest XI. Can J Bot 73:2019–2027

    Article  CAS  Google Scholar 

  • Machinet GE, Bertrand I, Barriere Y, Chabbert B, Reccus S (2011) Impact of plant cell wall network on biodegradation in soil: Role of lignin composition and phenolic acids in roots from 16 maize genotypes. Soil Biol Biochem 43:1544–1552

    Article  CAS  Google Scholar 

  • McClaugherty CA (1983) Soluble polyphenols and carbohydrates in throughfall and leaf litter decomposition. Acta Oecol 4:375–385

    Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter dynamics in forest ecosystems. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Ono K, Hiradate S, Morita S, Ohse K, Hirai K (2011) Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan. Plant Soil 338:171–181

    Article  CAS  Google Scholar 

  • Ono K, Hiradate S, Morita S, Hirai K (2013) Fate of organic carbon during decomposition of different litter types in Japan. Biogeochemistry 112:7–21

    Article  Google Scholar 

  • Osono T, Takeda H (2005) Limit values for decomposition and convergence process of lignocellulose fraction in decomposing leaf litter of 14 tree species in a cool temperate forest. Ecol Res 20:51–58. https://doi.org/10.1007/s11284-004-0011-z

    Article  CAS  Google Scholar 

  • Perakis S, Matekis JJ, Hibbs DE (2012) Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich litter. Ecosphere 3(6):Art. 54

    Google Scholar 

  • Perez J, Jeffries TW (1992) Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl Environ Microbiol 58:2402–2409

    Article  CAS  Google Scholar 

  • Preston C, Nault JR, Trofymow JA, Smyth C, CIDET Working Group (2009a) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions. Ecosystems 12:1053–1077

    Google Scholar 

  • Preston C, Nault JR, Trofymow JA (2009b) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of ‘lignin’. Ecosystems 12:1078–1102

    Article  CAS  Google Scholar 

  • Spaccini R, Piccolo A (2012) The carbon dynamics in the experimental plots. Chemical and physical–chemical aspects. In: Piccolo A (ed) Carbon sequestration in agricultural soils—a multidisciplinary approach to innovative methods. Springer, Heidelberg

    Google Scholar 

  • Sun T, Dong L, Mao Z (2015) Simulated Atmospheric nitrogen deposition alters decomposition of ephemeral roots. Ecosystems 18:1240–1252

    Article  CAS  Google Scholar 

  • Tai D, Terasawa M, Chen C-L, Chang H-M, Kirk TK (1983) Biodegradation of Guaiacyl and Guaiacyl-Syringyl Lignins in wood by Phanerochaete chrysosporium. In: Higuchi T, Chang H, Kirk TK (eds) Recent advances in lignin biodegradation. 1983 May 321 Hune 2 Kyoto Japan. Uni Publishers Co. Ltd., Tokyo, pp 44–63

    Google Scholar 

  • Talbot JM, Yelle DJ, Nowick J, Tresedler KK (2012) Litter decay rates are determined by lignin chemistry. Biogeochemistry 108:279–295

    Article  CAS  Google Scholar 

  • Trum F, Titeux H, Ponette Q, Berg B (2015) Influence of manganese on decomposition of common beech (Fagus sylvatica L.) leaf litter during field incubation. Biogeochemistry 126(3):349–358. https://doi.org/10.1007/s10533-015-0129-9

  • Ulrich B (1981) Teoretische Betrachtung des Ionenkreislaufs in Waldökosystemen. Z Pflanzenern Bodenkd 144:289–305 (in German)

    Article  CAS  Google Scholar 

  • Worrall JJ, Wang CJK (1991) Importance and mobilization of nutrients in soft rot of wood. Can J Microbiol 37:864–868

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Berg .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berg, B., McClaugherty, C. (2020). Role of Chemical Constituents in Regulating Decay Rates and Stable Fractions: Effects of Initial and Changing Chemical Composition on Decomposition and Organic Matter Accumulation. In: Plant Litter. Springer, Cham. https://doi.org/10.1007/978-3-030-59631-6_6

Download citation

Publish with us

Policies and ethics