Skip to main content
Log in

Litter decay rates are determined by lignin chemistry

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Litter decay rates are often correlated with the initial lignin:N or lignin:cellulose content of litter, suggesting that interactions between lignin and more labile compounds are important controls over litter decomposition. The chemical composition of lignin may influence these interactions, if lignin physically or chemically protects labile components from microbial attack. We tested the effect of lignin chemical composition on litter decay in the field during a year-long litterbag study using the model system Arabidopsis thaliana. Three Arabidopsis plant types were used, including one with high amounts of guaiacyl-type lignin, one with high aldehyde- and p-hydroxyphenyl-type lignin, and a wild type control with high syringyl-type lignin. The high aldehyde litter lost significantly more mass than the other plant types, due to greater losses of cellulose, hemicellulose, and N. Aldehyde-rich lignins and p-hydroxyphenyl-type lignins have low levels of cross-linking between lignins and polysaccharides, supporting the hypothesis that chemical protection of labile polysaccharides and N is a mechanism by which lignin controls total litter decay rates. 2D NMR of litters showed that lignin losses were associated with the ratio of guaiacyl-to-p-hydroxyphenyl units in lignin, because these units polymerize to form different amounts of labile- and recalcitrant-linkages within the lignin polymer. Different controls over lignin decay and polysaccharide and N decay may explain why lignin:N and lignin:cellulose ratios can be better predictors of decay rates than lignin content alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–2208

    Article  Google Scholar 

  • Adler E (1977) Lignin chemistry—past, present and future. Wood Sci Technol 11:169–218

    Article  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Alexander M (1977) Soil microbiology. John Wiley and Sons, New York

    Google Scholar 

  • Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Change Biol 14:2898–2909

    Article  Google Scholar 

  • Bahri H, Dignac M, Rumpel C, Rasse D, Chenu C, Mariotti A (2006) Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biol Biochem 38:1977–1988

    Article  Google Scholar 

  • Baucher M, Bernard-vailhé MA, Chabbert B, Besle J-M, Opsomer C, Van Montagu M, Botterman J (1999) Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol 39:437–447

    Article  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin

    Google Scholar 

  • Berg B, McClaugherty C, Johansson MB (1993) Litter mass-loss rates in late stages of decomposition at some climatically and nutritionally different pine sites. Long-term decomposition in a Scots pine forest. VIII. Can J Bot 71:680–692

    Article  Google Scholar 

  • Bernard Vailhé MA, Besle JM, Maillot MP, Cornu A, Halpin C, Knight M (1998) Effect of down-regulation of cinnamyl alcohol dehydrogenase on cell wall composition and on degradability of tobacco stems. J Sci Food Agric 76:505–514

    Article  Google Scholar 

  • Bertrand I, Chabbert B, Kurek B, Recous S (2006) Can the biochemical features and histology of wheat residues explain their decomposition in soil? Plant Soil 281:291–307

    Article  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  Google Scholar 

  • Buysse J, Merckx R (1993) An improved colorimetric method to quantify sugar content of plant tissue. J Exp Bot 44:1627–1629

    Article  Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition—mechanism of control and implications for the genetic improvement of plants. Plant Physiol 110:3–13

    Google Scholar 

  • Chefetz B, Chen Y, Clapp CE, Hatcher PG (2000) Characterization of organic matter in soils by thermochemolysis using tetramethylammonium hydroxide (TMAH). Soil Sci Soc Am J 64:583–589

    Article  Google Scholar 

  • Cherney J, Anliker K, Albrecht K, Wood K (1989) Soluble phenolic monomers in forage crops. J Sci Food Agric 37:345–350

    Article  Google Scholar 

  • Christman RF, Oglesby RT (1971) Microbial degradation and the formation of humus. In: Sarkanen SV, Ludwig CH (eds) Lignins. Wiley, New York, pp 769–795

    Google Scholar 

  • Cortez J, Demard J, Bottner P, Jocteur Monrozier L (1996) Decomposition of Mediterranean leaf litters: a microcosm experiment investigating relationships between decomposition rates and litter quality. Soil Biol Biochem 28:443–452

    Article  Google Scholar 

  • Croci C, Arguello J, Orioli G (1994) Biochemical changes in garlic (Allium sativum L.) during storage following gamma-irradiation. Int J Radiat Biol 65:263–266

    Article  Google Scholar 

  • Dignac M, Rumpel C (2006) Relative distributions of phenol dimers and hydroxy acids in a cultivated soil and above ground maize tissue. Org Geochem 37:1634–1638

    Article  Google Scholar 

  • Dümig A, Knicker H, Schad P, Rumpel C, Dignac M, Kögel Knabner I (2009) Changes in soil organic matter composition are associated with forest encroachment into grassland with long term fire history. Eur J Soil Sci 60:578–589

    Article  Google Scholar 

  • Goni M, Hedges J (1992) Lignin dimers: structures, distribution, and potential geochemical applications. Geochim Cosmochim Ac 56:4025–4043

    Article  Google Scholar 

  • Goni M, Nelson B, Blanchette R, Hedges J (1993) Fungal degradation of wood lignins: geochemical perspectives from CuO-derived phenolic dimers and monomers. Geochim Cosmochim Ac 57:3985–4002

    Article  Google Scholar 

  • Goulden ML, Wofsy SC, Harden JW, Trumbore SE, Crill PM, Gower ST, Fries T, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–217

    Article  Google Scholar 

  • Grabber J (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820

    Article  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD, Quideau S (1997) p-hydroxyphenyl, guaiacyl, and syringyl lignins have similar inhibitory effects on wall degradability. J Agr Food Chem 45:2530–2532

    Article  Google Scholar 

  • Grabber J, Ralph J, Hatfield R (1998a) Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J Agric Food Chem 46:2609–2614

    Article  Google Scholar 

  • Grabber JH, Hatfield RD, Ralph J (1998b) Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. J Sci Food Agric 77:193–200

    Article  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD (1998c) Severe inhibition of maize wall degradation by synthetic lignins formed with coniferaldehyde. J Sci Food Agric 78:81–87

    Article  Google Scholar 

  • Grabber JH, Mertens DR, Kim H, Funk C, Lu FC, Ralph J (2009) Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J Sci Food Agric 89:122–129

    Article  Google Scholar 

  • Haider K, Lim S, Flaig W (1964) Experimente und Theorien über den Ligninabbau bei der Weißfäule des Holzes und bei der Verrottung pflanzlicher Substanz im Boden. Holzforschung 18:81–88

    Article  Google Scholar 

  • Halpin C, Knight ME, Foxon GA, Campbell MM, Boudet AM, Boon JJ, Chabbert B, Tollier MT, Schuch W (1994) Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J 6:339–350

    Article  Google Scholar 

  • Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, pp 33–46

    Google Scholar 

  • Hansen J, Møller I (1975) Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal Biochem 68:87–94

    Article  Google Scholar 

  • Hatfield RD, Grabber J, Ralph J, Brei K (1999) Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J Sci Food Agric 47:628–632

    Article  Google Scholar 

  • Hedges J, Mann D (1979) The characterization of plant tissues by their lignin oxidation products. Geochim Cosmochim Ac 43:1803–1807

    Article  Google Scholar 

  • Hedges JI, Cowie GL, Ertel JR, James Barbour R, Hatcher PG (1985) Degradation of carbohydrates and lignins in buried woods. Geochim Cosmochim Ac 49:701–711

    Article  Google Scholar 

  • Hedges J, Blanchette R, Weliky K, Devol A (1988) Effects of fungal degradation on the CuO oxidation products of lignin: a controlled laboratory study. Geochim Cosmochim Ac 52:2717–2726

    Article  Google Scholar 

  • Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194

    Article  Google Scholar 

  • Hénault C, English L, Halpin C, Andreux F, Hopkins D (2006) Microbial community structure in soils with decomposing residues from plants with genetic modifications to lignin biosynthesis. FEMS Microbiol Let 263:68–75

    Article  Google Scholar 

  • Hobbie SE (2005) Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems 8:644–656

    Article  Google Scholar 

  • Howard P, Frankland J (1974) Effects of certain full and partial sterilization treatments on leaf litter. Soil Biol Biochem 6:117–123

    Article  Google Scholar 

  • Huang Y, Stankiewicz B, Eglinton G, Snape C, Evans B, Latter P, Ineson P (1998) Monitoring biomacromolecular degradation of Calluna vulgaris in a 23 year field experiment using solid state 13C-NMR and pyrolysis-GC/MS. Soil Biol Biochem 30:1517–1528

    Article  Google Scholar 

  • Iiyama K, Wallis AFA (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 51:145–161

    Article  Google Scholar 

  • Jung HJG, Buxton DR (1994) Forage quality variation among maize inbreds—relationships of cell-wall composition and in vitro degradability for stem internodes. J Sci Food Agric 66:313–322

    Article  Google Scholar 

  • Jung HG, Casler MD (1991) Relationship of lignin and esterified phenolics to fermentation of smooth bromegrass fiber. Anim Feed Sci Tech 32:63–68

    Article  Google Scholar 

  • Jung HJG, Vogel KP (1992) Lignification of switchgrass (Panicum virgatum) and big bluestem (Andropogon Gerardii) plant-parts during maturation and its effect on fiber degradability. J Sci Food Agric 59:169–176

    Article  Google Scholar 

  • Jung HG, Smith RR, Endres CS (1994) Cell-wall composition and degradability of stem tissue from lucerne divergently selected for lignin and in vitro dry-matter disappearance. Grass Forage Sci 49:295–304

    Article  Google Scholar 

  • Jung HJG, Ni WT, Chapple CCS, Meyer K (1999) Impact of lignin composition on cell-wall degradability in an Arabidopsis mutant. J Sci Food Agric 79:922–928

    Article  Google Scholar 

  • Kato Y, Nevins D (1985) Isolation and identification of O-(5-O-feruloyl-[alpha]-l-arabinofuranosyl)-1(-→3)-O-[beta]-d-xylopyranosyl-(1→)-d-xylopyranose as a component of Zea shoot cell-walls. Carbohyd Res 137:139–150

    Article  Google Scholar 

  • Kim H, Ralph J, Akiyama T (2008) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6). BioEnergy Res 1:56–66

    Article  Google Scholar 

  • King S, Harden J, Manies KL, Munster J, White LD (2002) Fate of carbon in Alaskan landscape project—database for soils from eddy covariance tower sites. U. S. Geological Survey, Delta Junction, Menlo Park

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion—the microbial-degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  Google Scholar 

  • Kirk TK, Chang H-m, Lorenz LF (1975) Topochemistry of the fungal degradation of lignin in birch wood as related to the distribution of guaiacyl and syringyl lignins. Wood Sci Technol 9:81–86

    Article  Google Scholar 

  • Kögel I (1986) Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biol Biochem 18:589–594

    Article  Google Scholar 

  • Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C (2010) Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnology for Biofuels 3:27–33

    Article  Google Scholar 

  • Machinet GE, Bertrand I, Chabbert B, Recous S (2009) Decomposition in soil and chemical changes of maize roots with genetic variations affecting cell wall quality. Eur J Soil Sci 60:176–185

    Article  Google Scholar 

  • Mack MC, Treseder KK, Manies KL, Harden JW, Schuur EAG, Vogel JG, Randerson JT, Chapin FS (2008) Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska. Ecosystems 11:209–225

    Article  Google Scholar 

  • Marita JM, Ralph J, Hatfield RD, Chapple C (1999) NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. P Natl Acad Sci USA 96:12328–12332

    Article  Google Scholar 

  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes P, Hamer U, Heim A, Jandl G, Ji R (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110

    Article  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JM (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  Google Scholar 

  • Moore T, Trofymow J, Taylor B, Prescott C, Camire C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I (1999) Litter decomposition rates in Canadian forests. Glob Change Biol 5:75–82

    Article  Google Scholar 

  • Nierop KGJ, Filley TR (2007) Assessment of lignin and (poly-)phenol transformations in oak (Quercus robur) dominated soils by 13C-TMAH thermochemolysis. Org Geochem 38:551–565

    Article  Google Scholar 

  • Nierop KGJ, Van Lagen B, Buurman P (2001) Composition of plant tissues and soil organic matter in the first stages of a vegetation succession. Geoderma 100:1–24

    Article  Google Scholar 

  • Nilsson T, Daniel G (1989) Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung 43:11–18

    Article  Google Scholar 

  • Opsahl S, Benner R (1995) Early diagenesis of vascular plant tissues: lignin and cutin decomposition and biogeochemical implications. Geochim Cosmochim Ac 59:4889–4904

    Article  Google Scholar 

  • Otto A, Simpson M (2006) Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil. Biogeochem 80:121–142

    Article  Google Scholar 

  • Provan GJ, Scobbie L, Chesson A (1997) Characterisation of lignin from CAD and OMT deficient BM mutants of maize. J Sci Food Agric 73:133–142

    Article  Google Scholar 

  • Ralph J, Hatfield RD, Piquemal J, Yahiaoui N, Pean M, Lapierre C, Boudet AM (1998) NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamyl-alcohol dehydrogenase and cinnamoyl-CoA reductase. P Natl Acad Sci USA 95:12803–12808

    Article  Google Scholar 

  • Ralph J, Marita JM, Ralph S, Hatfield RD, Lu F, Ede RM, Peng J, Landucci LL (1999) Solution state NMR of lignins. In: Argyropoulos DS (ed) Advances in lignocellulosics characterization. TAPPI Press, Atlanta, pp 55–108

    Google Scholar 

  • Ralph J, Lapierre C, Marita J, Kim H, Lu F, Hatfield R, Ralph S, Chapple C, Franke R, Hemm M (2001) Elucidation of new structures in lignins of CAD-and COMT-deficient plants by NMR. Phytochem 57:993–1003

    Article  Google Scholar 

  • Ralph S, Landucci L, Ralph J (2005) NMR database of lignin and cell wall model compounds. http://ars.usda.gov/Services/docs.htm?docid=10429

  • Ralph J, Akiyama T, Kim H, Lu F, Ralph S, Chapple C, Nair R, Wagner A, Chen F, Reddy M (2006a) Lignification in transgenics deficient in 4-coumarate 3-hydroxylase (C3H) or the associated hydroxycinnamoyl transferase (HCT). In: Polyphenols communications 2006, XXIII international conference on polyphenols, Winnipeg, Manitoba, Canada

  • Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Reddy MSS, Chen F, Dixon RA (2006b) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 281:8843–8853

    Article  Google Scholar 

  • Ramiah MV (1970) Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. J Appl Polym Sci 14:1323–1337

    Article  Google Scholar 

  • Rencoret J, Marques G, Gutierrez A, Nieto L, Jimenez-Barbero J, Martinez AT, del Rio JC (2009) Isolation and structural characterization of the milled-wood lignin from Paulownia fortunei wood. Ind Crop Prod 30:137–143

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San Diego

    Google Scholar 

  • Sibout R, Eudes A, Pollet B, Goujon T, Mila I, Granier F, Seguin A, Lapierre C, Jouanin L (2003) Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant Physiol 132:848–860

    Article  Google Scholar 

  • Soja AJ, Tchebakova NM, French NHF, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Parfenova EI, Chapin Iii FS, Stackhouse JPW (2007) Climate-induced boreal forest change: predictions versus current observations. Global Planet Change 56:274–296

    Article  Google Scholar 

  • Tai D, Terasawa M, Chen C, Chang H, Kirk T (1983) Biodegradation of guaiacyl and guaiacyl-syringyl lignins in wood by Phanerochaete chrysosporium. In: Recent advances in lignin biodegradation research: fundamentals and biotechnology. Uni Publishers, Tokyo, pp 44–63

  • Takacs L, McHenry JS (2006) Temperature of the milling balls in shaker and planetary mills. J Mater Sci 41:5246–5249

    Article  Google Scholar 

  • Theander O, Aman P, Westerlund E, Andersson R, Petersson D (1995) Total dietary fiber determined as neutral sugar residues, uronic acid residues, and klason lignin (The Uppsala method): collaborative study. Journal of Aoac International 78:1030–1044

    Google Scholar 

  • Thevenot M, Dignac M, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211

    Article  Google Scholar 

  • Thorstensson EMG, Buxton DR, Cherney JH (1992) Apparent inhibition to digestion by lignin in normal and brown midrib stems. J Sci Food Agric 59:183–188

    Article  Google Scholar 

  • Treseder KK, Turner KM, Mack MC (2007) Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. Glob Change Biol 13:78–88

    Article  Google Scholar 

  • Trevors JT (1996) Sterilization and inhibition of microbial activity in soil. J Microbiol Meth 26:53–59

    Article  Google Scholar 

  • Trofymow J, Moore T, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, Camiré C (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res 32:789–804

    Article  Google Scholar 

  • Updegraf D (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–425

    Article  Google Scholar 

  • Vailhe MAB, Migne C, Cornu A, Maillot MP, Grenet E, Besle JM, Atanassova R, Martz F, Legrand M (1996) Effect of modification of the O-methyltransferase activity on cell wall composition, ultrastructure and degradability of transgenic tobacco. J Sci Food Agric 72:385–391

    Article  Google Scholar 

  • Vailhé MAB, Besle JM, Maillot MP, Cornu A, Halpin C, Knight M (1998) Effect of down-regulation of cinnamyl alcohol dehydrogenase on cell wall composition and on degradability of tobacco stems. J Sci Food Agric 76:505–514

    Article  Google Scholar 

  • Webster EA, Halpin C, Chudek JA, Tilston EL, Hopkins DW (2005) Decomposition in soil of soluble, insoluble and lignin-rich fractions of plant material from tobacco with genetic modifications to lignin biosynthesis. Soil Biol Biochem 37:751–760

    Article  Google Scholar 

  • Wolf DC, Dao TH, Scott HD, Lavy TL (1989) Influence of sterlilization methods on selected soil microbiological, physical, and chemical-properties. Journal Environ Qual 18:39–44

    Article  Google Scholar 

  • Wu D, Ye Q, Wang Z, Xia Y (2004) Effect of gamma irradiation on nutritional components and Cry1Ab protein in the transgenic rice with a synthetic cry1Ab gene from Bacillus thuringiensis. Radiat Phys chem 69:79–83

    Article  Google Scholar 

  • Yarie J, Van Cleve K (1996) Effects of carbon, fertilizer, and drought on foliar chemistry of tree species in interior Alaska. Ecol Appl 6:815–827

    Article  Google Scholar 

  • Yelle DJ, Ralph J, Frihart CR (2008a) Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magn Reson Chem 46:508

    Article  Google Scholar 

  • Yelle DJ, Ralph J, Lu F, Hammel KE (2008b) Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol 10:1844–1849

    Article  Google Scholar 

  • Zech W, Senesi N, Guggenberger G, Kaiser K, Lehmann J, Miano T, Miltner A, Schroth G (1997) Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79:117–161

    Article  Google Scholar 

  • Zhang L, Gellerstedt G (2007) Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magn Reson Chem 45:37–45

    Article  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85

    Article  Google Scholar 

Download references

Acknowledgements

We thank Steven Allison, Donovan German, Stephanie Kivlin, Matthew Whiteside, Sandra Dooley, Heather McGray, Marko Spasojevic, and Rebecca Aicher for their critical review and support of this work. We also thank Dr. Philip Dennison and the UCI NMR Facility for instrument and software support for this research. Dr. Lise Jouanin and Dr. Clint Chapple generously supplied seeds of Arabidopsis plants used in this experiment. NSF-EAR-044548, a UCI Environment Institute Research Grant, and a Graduate Research Fellowship from NSF supported this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer M. Talbot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbot, J.M., Yelle, D.J., Nowick, J. et al. Litter decay rates are determined by lignin chemistry. Biogeochemistry 108, 279–295 (2012). https://doi.org/10.1007/s10533-011-9599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9599-6

Keywords

Navigation