Skip to main content
Log in

Litter decomposition rate is dependent on litter Mn concentrations

  • Original Paper
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

A statistically significant linear relationship was found between annual mass loss of foliar litter in the late stages of decomposition and Mn concentration in the litter. We used existing decomposition data on needle and leaf decomposition of Scots pine (Pinus sylvestris L.), lodgepole pine (Pinus contorta var. contorta), Norway spruce (Picea abies (L.) Karst.), silver birch (Betula pendula L.), and grey alder (Alnus incana L.) from Sweden and Aleppo pine (Pinus halepensis Mill.) from Libya, to represent boreal, temperate, and Mediterranean climates. The later the decomposition stage as indicated by higher sulfuric-acid lignin concentrations, the better were the linear relationships between litter mass loss and Mn concentrations. We conclude that Mn concentrations in litter have an influence on litter mass-loss rates in very late decomposition stages (up to 5 years), provided that the litter has high enough Mn concentration. The relationship may be dependent on species as the relationship is stronger with species that take up high enough amounts of Mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldrian P, Valaskova V, Merhautova V, Gabriel J (2005) Degradation of ligno-cellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Res Microbiol 156:670–676

    Article  Google Scholar 

  • Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–1456

    Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25

    Article  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter. Decomposition. Humus Formation. Carbon Sequestration. Springer Verlag Heidelberg, Berlin, p 296

    Google Scholar 

  • Berg B, Staaf H (1980) Decomposition rate and chemical changes of Scots pine needle litter. II Influence of chemical composition. Ecol Bull (Stockholm) 32:363–372

    Google Scholar 

  • Berg B, Lundmark JE (1987) Decomposition of needle litter in lodgepole pine and Scots pine monocultures—a comparison. Scand J For Res 2:3–12

    Google Scholar 

  • Berg B, Tamm CO (1991) Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments. I. Organic matter decomposition in Norway spruce (Picea abies) needle litter. Scand J For Res 6:305–321

    Article  Google Scholar 

  • Berg B, Johansson M-B, Lundmark J-E (1997a) Site descriptions for forest sites—a compilation. Reports from the Department for Forest Ecology and Forest Soils, Swedish University of Agricultural Sciences. Report 73, 43 pp

  • Berg B, McClaugherty CA, Johansson MB (1993a) Litter mass-loss rates in late stages of decomposition at some climatically and nutritionally different pine sites. Long-term decomposition in a Scots pine forest VIII. Can J Bot 71:680–692

    Article  Google Scholar 

  • Berg B, McClaugherty C, Johansson MB (1997b) Chemical changes in decomposing plant litter can be systemized with respect to the litter’s initial chemical composition. Reports from the Departments in Forest ecology and Forest Soils, Swedish University of Agricultural Sciences. Report No 74, 85 pp

  • Berg B, McClaugherty C, Virzo De Santo A, Johnson D (2001) Humus buildup in boreal forests—effects of litter fall and its N concentration. Can J For Res 31:988–998

    Article  Google Scholar 

  • Berg B, Johansson MB, Meentemeyer V (2000) Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control. Can J For Res 30:1136–1147

    Article  Google Scholar 

  • Berg B, Berg M, Bottner P, Box E, Breymeyer A, Calvo de Anta R, Couteaux MM, Gallardo A, Escudero A, Kratz W, Madeira M, Mälkönen E, Meentemeyer V, Munoz F, Piussi P, Remacle J, Virzo De Santo A (1993b) Litter mass loss in pine forests of Europe and Eastern United States as compared to actual evapotranspiration on a European scale. Biogeochemistry 20(3):127–160

    Article  Google Scholar 

  • Berg B, Booltink HGW, Breymeyer A, Ewertsson A, Gallardo A, Holm B, Johansson MB, Koivuoja S, Meentemeyer V, Nyman P, Pettersson AS, Reurslag A, Staaf H, Staaf I, Uba L (1991a) Data on needle litter decomposition and soil climate as well as site characteristics for some coniferous forest sites, 2nd edn. Section 1. Site descriptions. Swedish University of Agricultural Sciences. Department of Ecology and Environmental Research. Report No. 42

  • Berg B, Booltink HGW, Breymeyer A, Ewertsson A, Gallardo A, Holm B, Johansson MB, Koivuoja S, Meentemeyer V, Nyman P, Pettersson AS, Reurslag A, Staaf H, Staaf I, Uba L (1991b) Data on needle litter decomposition and soil climate as well as site characteristics for some coniferous forest sites, 2nd edn. Section 2. Litter mass-loss data and chemical changes. Department of Ecology and Environmental Research. Swedish University of Agricultural Sciences. Report No. 42

  • Berg B, Hannus K, Popoff T, Theander O (1982) Changes in organic-chemical components during decomposition. Long-term decomposition in a Scots pine forest I. Can J Bot 60:1310–1319

    Google Scholar 

  • Bethge PO, Rådeström R, Theander O (1971) Kvantitativ kolhydratbestämning – en detaljstudie. Communication from Swedish Forest Product Research Lab. 63B. S-114 86 Stockholm. (In Swedish).

  • Eichlerova I, Homolka L, Nerud F, Zadrazil F, Baldrina P, Gabriel J (2000) Screening of Pleurotus ostreatus isolates for their lignolytic properties during cultivation on natural substrates. Biodegradation 11:279–287

    Article  Google Scholar 

  • Ekbohm G, Rydin B (1990) On estimating the species-area relationship. Oikos 57:145–146

    Article  Google Scholar 

  • Faituri M (2001) Soil organic matter in Mediterranean and Scandinavian forest ecosystems. Acta Universitatis Agriculturae Sueciae, Silvestra 236, 136 pp

  • Fogel R, Cromack K (1977) Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon. Can J Bot 55:1632–1640

    Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Lignin, humic substances and coal, vol 1. Wiley-VCH, Weinheim Germany, pp 129–180

    Google Scholar 

  • Hatakka A, Buswell JA, Pirhonen TI, Uusi-Rauva AK (1983) Degradation of 14C- labelled lignins by white-rot fungi. In: Higuchi T, Chang H, Kirk TK (eds) Recent advances in lignin biodegradation research. Uni Publishers Co. Ltd., Tokyo, pp 176–187

  • Hintikka V (1970) Studies on white-rot humus formed by higher fungi in forest soils. Commun Inst For Fenniae 69:2

    Google Scholar 

  • Hofrichter M (2002) Review: Lignin conversion by manganese peroxidase (MnP). Enzyme Microbiol Technol 30:454–466

    Article  Google Scholar 

  • Hofrichter M, Fritsche W (1997) Depolymerization of low-rank coal by extracellular fungal enzyme systems. III. In vitro depolymerization of coal humic acids by a crude preparation of manganese peroxidase from the white-rot fungus Nematoloma frowardii b19. Appl Microbiol Biotechnol 47:566–571

    Article  Google Scholar 

  • Hofrichter M, Lundell T, Hatakka A (2001) Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Appl Environ Microbiol 67:4588–4593

    Article  Google Scholar 

  • Hofrichter M, Scheibner K, Bublitz F, Schneegaß I, Ziegenhagen D, Martens R, Fritsche W (1999a) Depolymerization of straw lignin by manganese peroxidase from Nematoloma frowardii is accompanied by release of carbon dioxide. Holzforschung 53:161–166

    Article  Google Scholar 

  • Hofrichter M, Scheibner K, Schneegaß I, Ziegenhagen D, Fritsche W (1998) Mineralization of synthetic humic substances by manganese peroxidase from the white-rot fungus Nematoloma frowardii. Appl Microbiol Biotechnol 49:584–588

    Article  Google Scholar 

  • Hofrichter M, Vares T, Scheibner K, Galkin S, Sipilä J, Hatakka A (1999b) Mineralization and solubilization of synthetic lignin by manganese peroxidases from Nematoloma frowardii and Phlebia radiata. J Biotechnol 67:217–228

    Article  Google Scholar 

  • Johansson MB, Berg B, Meentemeyer V (1995) Litter mass-loss rates in late stages of decomposition in a climatic transect of pine forests. Long-term decomposition in a Scots pine forest IX. Can J Bot 73:1509–1521

    Google Scholar 

  • McClaugherty CA, Pastor J, Aber JD, Melillo JM (1985) Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66:266–275

    Article  Google Scholar 

  • Nihlgård B (1972) Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest in South Sweden. Oikos 23:69–81

    Article  Google Scholar 

  • Pawluk S (1967) Soil analysis by atomic absorption spectrometry. Atomic Absorp News Lett 6:53–56

    Google Scholar 

  • Steffen KT (2003) Degradation of recalcitrant biopolymers and polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi, vol. 23. Dissertationes Biocentri Viikki Universitatis Helsingiensis

  • Steffen KT, Hatakka A, Hofrichter M (2002) Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Appl Environm Microbiol 68:3442–3448

    Article  Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    Article  Google Scholar 

  • Uphadyay VP, Singh JS (1985) Nitrogen dynamics of decomposing hardwood leaf litter in a Central Himalayan forest. Soil Biol Biochem 17:827–830

    Article  Google Scholar 

  • Wariishi H, Valli K, Gold M (1991) In vitro depolymerization of lignin by manganese peroxidase of Phanerochaetet chrysosporium. Biochim Biophys Res Commun 176:269–275

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out while Björn Berg was a guest scientist at the Institute Forest, Landscape and Planning, KVL, Copenhagen, Denmark. We are most grateful to two anonymous reviewers for their very constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, B., Steffen, K.T. & McClaugherty, C. Litter decomposition rate is dependent on litter Mn concentrations. Biogeochemistry 82, 29–39 (2007). https://doi.org/10.1007/s10533-006-9050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-006-9050-6

Keywords

Navigation