Skip to main content

Targeting CSC in a Most Aggressive Subtype of Breast Cancer TNBC

  • Chapter
  • First Online:
Breast Cancer Metastasis and Drug Resistance

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1152))

Abstract

Triple negative breast cancer (TNBC) is a more aggressive subtype of breast cancer and is characteristic of the absence of the expressions of estrogen receptor, progesterone receptor, and human epithelial growth factor receptor 2 in breast tumor tissues. This subtype of breast cancer has the poorest prognosis, compared to other subtypes of breast cancer. TNBC is heterogeneous by showing several different histo-pathological and molecular subtypes with different prognosis and is more commonly found in younger age of women, especially African-American and Hispanic women. Recent epidemiological data indicate that TNBC is highly associated with overweight/obesity. Due to the absence of the common tumor biomarkers of breast cancer, the current molecular target therapy is not effective. TNBC patients have a shorter survival rate and an increased tumor recurrence. The concept of cancer stem cells (CSC), also called tumor initiating cells (TIC) has been more and more accepted and considered to contribute to aggressive phenotypes of many tumors including breast cancer. Moreover, CSC/TIC has been identified in the tumor tissues of breast cancer including TNBC. These rare subpopulations of CSC/TIC cells might be one of the key contributors to the aggressive phenotypes of TNBC such as drug treatment resistance, metastasis, and tumor recurrence. Therefore, targeting these CSC/TIC cells will provide a new therapeutic strategy for the treatment of TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  3. Dal ML, Zucchetto A, Talamini R, Serraino D, Stocco CF, Vercelli M et al (2008) Effect of obesity and other lifestyle factors on mortality in women with breast cancer. Int J Cancer 123:2188–2194

    Article  CAS  Google Scholar 

  4. Afghahi A, Telli ML, Kurian AW (2016) Genetics of triple-negative breast cancer: implications for patient care. Curr Probl Cancer 40:130–140

    Article  PubMed  Google Scholar 

  5. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  6. DeSantis CE, Ma J, Goding SA, Newman LA, Jemal A (2017) Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin 67:439–448

    Article  PubMed  Google Scholar 

  7. Cadoo KA, Fornier MN, Morris PG (2013) Biological subtypes of breast cancer: current concepts and implications for recurrence patterns. Q J Nucl Med Mol Imaging 57:312–321

    CAS  PubMed  Google Scholar 

  8. Cadoo KA, Traina TA, King TA (2013) Advances in molecular and clinical subtyping of breast cancer and their implications for therapy. Surg Oncol Clin N Am 22:823–840

    Article  PubMed  Google Scholar 

  9. Kohler BA, Sherman RL, Howlader N, Jemal A, Ryerson AB, Henry KA et al (2015) Annual report to the nation on the status of cancer, 1975–2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state. J Natl Cancer Inst 107:djv048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Brewster AM, Chavez-MacGregor M, Brown P (2014) Epidemiology, biology, and treatment of triple-negative breast cancer in women of African ancestry. Lancet Oncol 15:e625–e634

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13:674–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cabodi S, Taverna D (2010) Interfering with inflammation: a new strategy to block breast cancer self-renewal and progression? Breast Cancer Res 12:305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. DeSantis CE, Fedewa SA, Goding SA, Kramer JL, Smith RA, Jemal A (2016) Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin 66:31–42

    Article  PubMed  Google Scholar 

  14. Copson E, Maishman T, Gerty S, Eccles B, Stanton L, Cutress RI et al (2014) Ethnicity and outcome of young breast cancer patients in the United Kingdom: the POSH study. Br J Cancer 110:230–241

    Article  CAS  PubMed  Google Scholar 

  15. Newman LA, Griffith KA, Jatoi I, Simon MS, Crowe JP, Colditz GA (2006.;%20) Meta-analysis of survival in African American and white American patients with breast cancer: ethnicity compared with socioeconomic status. J Clin Oncol 24:1342–1349

    Article  PubMed  Google Scholar 

  16. Ma JG, Wang NJ, Yu WJ (2011) Comparison of biological behavior between triple-negative breast cancer and non-triple- negative breast cancer. Nan Fang Yi Ke Da Xue Xue Bao 31:1729–1732

    PubMed  Google Scholar 

  17. Huober J, Gelber S, Goldhirsch A, Coates AS, Viale G, Ohlschlegel C et al (2012) Prognosis of medullary breast cancer: analysis of 13 International Breast Cancer Study Group (IBCSG) trials. Ann Oncol 23:2843–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wetterskog D, Lopez-Garcia MA, Lambros MB, A’Hern R, Geyer FC, Milanezi F et al (2012) Adenoid cystic carcinomas constitute a genomically distinct subgroup of triple-negative and basal-like breast cancers. J Pathol 226:84–96

    Article  CAS  PubMed  Google Scholar 

  19. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F et al (2013) Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 19:5533–5540

    Article  CAS  PubMed  Google Scholar 

  21. Shinde SS, Forman MR, Kuerer HM, Yan K, Peintinger F, Hunt KK et al (2010) Higher parity and shorter breastfeeding duration: association with triple-negative phenotype of breast cancer. Cancer 116:4933–4943

    Article  PubMed  Google Scholar 

  22. Phipps AI, Chlebowski RT, Prentice R, McTiernan A, Wactawski-Wende J, Kuller LH et al (2011) Reproductive history and oral contraceptive use in relation to risk of triple-negative breast cancer. J Natl Cancer Inst 103:470–477

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ma H, Wang Y, Sullivan-Halley J, Weiss L, Marchbanks PA, Spirtas R et al (2010) Use of four biomarkers to evaluate the risk of breast cancer subtypes in the women’s contraceptive and reproductive experiences study. Cancer Res 70:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stead LA, Lash TL, Sobieraj JE, Chi DD, Westrup JL, Charlot M et al (2009) Triple-negative breast cancers are increased in black women regardless of age or body mass index. Breast Cancer Res 11:R18

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pierobon M, Frankenfeld CL (2013) Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat 137:307–314

    Article  PubMed  Google Scholar 

  26. Kumar P, Aggarwal R (2016) An overview of triple-negative breast cancer. Arch Gynecol Obstet 293:247–269

    Article  CAS  PubMed  Google Scholar 

  27. Stevens KN, Vachon CM, Couch FJ (2013) Genetic susceptibility to triple-negative breast cancer. Cancer Res 73:2025–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. von MG, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA et al (2012.;%20) Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 30:1796–1804

    Article  Google Scholar 

  29. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384:164–172

    Article  PubMed  Google Scholar 

  30. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26:1275–1281

    Article  PubMed  Google Scholar 

  31. Schuster DP (2010) Obesity and the development of type 2 diabetes: the effects of fatty tissue inflamation, vol 3. Dovepress, New Zealand, pp 253–262

    Google Scholar 

  32. WHO (2006) World Health Organization fact sheet for world wide prevalence of obesity. https://www.who.int/topics/obesity/en/

  33. Chang S, Masse LC, Moser RP, Dodd KW, Arganaraz F, Fuemmler BF et al (2008) State ranks of incident cancer burden due to overweight and obesity in the United States, 2003. Obesity (Silver Spring) 16:1636–1650

    Article  Google Scholar 

  34. Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL (1998) Overweight and obesity in the United States: prevalence and trends, 1960–1994. Int J Obes Relat Metab Disord 22:39–47

    Article  CAS  PubMed  Google Scholar 

  35. Perks CM, Holly JM (2011) Hormonal mechanisms underlying the relationship between obesity and breast cancer. Endocrinol Metab Clin N Am 40:485–507, vii

    Article  CAS  Google Scholar 

  36. FAO/WHO/UN (1985) Energy and protein requirements: report of a joint expert consultation. WHO TR 724. WHO, Geneva

    Google Scholar 

  37. Flegal KM, Carroll MD, Ogden CL, Curtin LR (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303:235–241

    Article  CAS  PubMed  Google Scholar 

  38. Anderson AS, Caswell S (2009) Obesity management – an opportunity for cancer prevention. Surgeon 7:282–285

    Article  CAS  PubMed  Google Scholar 

  39. Bianchini F, Kaaks R, Vainio H (2002) Overweight, obesity, and cancer risk. Lancet Oncol 3:565–574

    Article  PubMed  Google Scholar 

  40. Bu-Abid S, Szold A, Klausner J (2002) Obesity and cancer. J Med 33:73–86

    Google Scholar 

  41. Calle EE, Thun MJ (2004) Obesity and cancer. Oncogene 23:6365–6378

    Article  CAS  PubMed  Google Scholar 

  42. Gumbs AA (2008) Obesity, pancreatitis, and pancreatic cancer. Obes Surg 18:1183–1187

    Article  PubMed  Google Scholar 

  43. Hsing AW, Sakoda LC, Chua S Jr (2007) Obesity, metabolic syndrome, and prostate cancer. Am J Clin Nutr 86:s843–s857

    Article  PubMed  Google Scholar 

  44. Kuriyama S, Tsubono Y, Hozawa A, Shimazu T, Suzuki Y, Koizumi Y et al (2005) Obesity and risk of cancer in Japan. Int J Cancer 113:148–157

    Article  CAS  PubMed  Google Scholar 

  45. Percik R, Stumvoll M (2009) Obesity and cancer. Exp Clin Endocrinol Diabetes 117:563–566

    Article  CAS  PubMed  Google Scholar 

  46. Pischon T, Nothlings U, Boeing H (2008) Obesity and cancer. Proc Nutr Soc 67:128–145

    Article  PubMed  Google Scholar 

  47. Teucher B, Rohrmann S, Kaaks R (2010) Obesity: focus on all-cause mortality and cancer. Maturitas 65:112–116

    Article  PubMed  Google Scholar 

  48. Brown KA, Simpson ER (2010) Obesity and breast cancer: progress to understanding the relationship. Cancer Res 70:4–7

    Article  CAS  PubMed  Google Scholar 

  49. Carroll KK (1998) Obesity as a risk factor for certain types of cancer. Lipids 33:1055–1059

    Article  CAS  PubMed  Google Scholar 

  50. Barnett GC, Shah M, Redman K, Easton DF, Ponder BA, Pharoah PD (2008) Risk factors for the incidence of breast cancer: do they affect survival from the disease? J Clin Oncol 26:3310–3316

    Article  PubMed  Google Scholar 

  51. Boyle P, Ferlay J (2005) Cancer incidence and mortality in Europe, 2004. Ann Oncol 16:481–488

    Article  CAS  PubMed  Google Scholar 

  52. Carmichael AR (2006) Obesity and prognosis of breast cancer. Obes Rev 7:333–340

    Article  CAS  PubMed  Google Scholar 

  53. Carter JC, Church FC (2009) Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-gamma and plasminogen activator inhibitor-1. PPAR Res 2009:345320

    PubMed  PubMed Central  Google Scholar 

  54. Rapp K, Schroeder J, Klenk J, Stoehr S, Ulmer H, Concin H et al (2005) Obesity and incidence of cancer: a large cohort study of over 145,000 adults in Austria. Br J Cancer 93:1062–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638

    Article  PubMed  Google Scholar 

  56. Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D (2007) Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ 335:1134

    Article  PubMed  PubMed Central  Google Scholar 

  57. van den Brandt PA, Spiegelman D, Yaun SS, Adami HO, Beeson L, Folsom AR et al (2000) Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol 152:514–527

    Article  PubMed  Google Scholar 

  58. Hao S, Liu Y, Yu KD, Chen S, Yang WT, Shao ZM (2015) Overweight as a prognostic factor for triple-negative breast cancers in Chinese women. PLoS One 10:e0129741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Chen HL, Ding A, Wang ML (2016) Impact of central obesity on prognostic outcome of triple negative breast cancer in Chinese women. Springerplus 5:594. https://doi.org/10.1186/s40064-016-2200-y. eCollection;%2016.:594-2200

    Article  PubMed  PubMed Central  Google Scholar 

  60. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bao B, Ahmad A, Li Y, Azmi AS, Ali S, Banerjee S et al (2012) Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells. Expert Opin Ther Targets 16:1041–1054

    Article  CAS  PubMed  Google Scholar 

  62. Hermann PC, Bhaskar S, Cioffi M, Heeschen C (2010) Cancer stem cells in solid tumors. Semin Cancer Biol 20:77–84

    Article  CAS  PubMed  Google Scholar 

  63. Ischenko I, Seeliger H, Kleespies A, Angele MK, Eichhorn ME, Jauch KW et al (2010) Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbeck’s Arch Surg 395:1–10

    Article  Google Scholar 

  64. Lee CJ, Dosch J, Simeone DM (2008) Pancreatic cancer stem cells. J Clin Oncol 26:2806–2812

    Article  PubMed  Google Scholar 

  65. Xu Q, Wang L, Li H, Han Q, Li J, Qu X et al (2012) Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-beta. Int J Oncol 41:959–968

    Article  CAS  PubMed  Google Scholar 

  66. Xu Y, Hu YD (2009) Lung cancer stem cells research. Clues from ontogeny. Saudi Med J 30:1381–1389

    PubMed  Google Scholar 

  67. Creighton CJ, Chang JC, Rosen JM (2010) Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 15:253–260

    Article  PubMed  Google Scholar 

  68. Lee HE, Kim JH, Kim YJ, Choi SY, Kim SW, Kang E et al (2011) An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br J Cancer 104:1730–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu C, Luo Y, Liu X, Lu P, Zhao Z (2012) Clinical implications of CD44+/. Cancer Biother Radiopharm 27:324–328

    Article  PubMed  CAS  Google Scholar 

  70. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Charafe-Jauffret E, Ginestier C, Birnbaum D (2009) Breast cancer stem cells: tools and models to rely on. BMC Cancer 9:202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B et al (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16:45–55

    Article  CAS  PubMed  Google Scholar 

  73. Bao B, Azmi A, Aboukameel A, Ahmad A, Bolling-Fischer A, Sethi S et al (2014) Pancreatic cancer stem-like cells display aggressive behavior mediated via activation of FoxQ1. J Biol Chem 289:14520–14533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K et al (2008) Cancer stem cell markers in common cancers – therapeutic implications. Trends Mol Med 14:450–460

    Article  CAS  PubMed  Google Scholar 

  75. Prud’homme GJ (2012) Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des 18:2838–2849

    Article  PubMed  Google Scholar 

  76. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and A. Cancer Res 65:6207–6219

    Article  CAS  PubMed  Google Scholar 

  77. Yu C, Yao Z, Jiang Y, Keller ET (2012) Prostate cancer stem cell biology. Minerva Urol Nefrol 64:19–33

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bao B, Mitrea C, Wijesinghe P, Marchetti L, Girsch E, Farr RL et al (2017) Treating triple negative breast cancer cells with erlotinib plus a select antioxidant overcomes drug resistance by targeting cancer cell heterogeneity. Sci Rep 7:44125. https://doi.org/10.1038/srep44125.:44125

    Article  PubMed  PubMed Central  Google Scholar 

  80. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  81. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689

    Article  CAS  PubMed  Google Scholar 

  82. Lino MM, Merlo A, Boulay JL (2010) Notch signaling in glioblastoma: a developmental drug target? BMC Med 8:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Miele L (2006) Notch signaling. Clin Cancer Res 12:1074–1079

    Article  CAS  PubMed  Google Scholar 

  84. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66:649–661

    Article  CAS  PubMed  Google Scholar 

  85. Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3:756–767

    Article  CAS  PubMed  Google Scholar 

  86. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271

    Article  CAS  PubMed  Google Scholar 

  87. Jing Y, Han Z, Zhang S, Liu Y, Wei L (2011) Epithelial-mesenchymal transition in tumor microenvironment. Cell Biosci 1:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rangel MC, Bertolette D, Castro NP, Klauzinska M, Cuttitta F, Salomon DS (2016) Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer. Breast Cancer Res Treat 156:211–226

    Article  PubMed  PubMed Central  Google Scholar 

  89. Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R et al (2010) Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29:2013–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Farnie G, Clarke RB (2007) Mammary stem cells and breast cancer – role of Notch signalling. Stem Cell Rev 3:169–175

    Article  CAS  PubMed  Google Scholar 

  91. Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR et al (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70:709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Soady KJ, Kendrick H, Gao Q, Tutt A, Zvelebil M, Ordonez LD et al (2015) Mouse mammary stem cells express prognostic markers for triple-negative breast cancer. Breast Cancer Res 17:31. https://doi.org/10.1186/s13058-015-0539-6.:31-0539

    Article  PubMed  PubMed Central  Google Scholar 

  93. D’Angelo RC, Ouzounova M, Davis A, Choi D, Tchuenkam SM, Kim G et al (2015) Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity. Mol Cancer Ther 14:779–787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. DeSano JT, Xu L (2009) MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J 11:682–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Perera RJ, Ray A (2007) MicroRNAs in the search for understanding human diseases. BioDrugs 21:97–104

    Article  CAS  PubMed  Google Scholar 

  96. Bienz M, Clevers H (2003) Armadillo/beta-catenin signals in the nucleus – proof beyond a reasonable doubt? Nat Cell Biol 5:179–182

    Article  CAS  PubMed  Google Scholar 

  97. Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science 287:1606–1609

    Article  CAS  PubMed  Google Scholar 

  98. Yu QC, Verheyen EM, Zeng YA (2016) Mammary development and breast cancer: a Wnt perspective. Cancers (Basel) 8:cancers8070065

    Article  CAS  Google Scholar 

  99. Doucas H, Garcea G, Neal CP, Manson MM, Berry DP (2005) Changes in the Wnt signalling pathway in gastrointestinal cancers and their prognostic significance. Eur J Cancer 41:365–379

    Article  CAS  PubMed  Google Scholar 

  100. Kang CM, Kim HK, Kim H, Choi GH, Kim KS, Choi JS et al (2009) Expression of Wnt target genes in solid pseudopapillary tumor of the pancreas: a pilot study. Pancreas 38:e53–e59

    Article  CAS  PubMed  Google Scholar 

  101. Honeycutt KA, Roop DR (2004) C-Myc and epidermal stem cell fate determination. J Dermatol 31:368–375

    Article  CAS  PubMed  Google Scholar 

  102. Honeycutt KA, Koster MI, Roop DR (2004) Genes involved in stem cell fate decisions and commitment to differentiation play a role in skin disease. J Investig Dermatol Symp Proc 9:261–268

    Article  CAS  PubMed  Google Scholar 

  103. Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8:97–106

    Article  CAS  PubMed  Google Scholar 

  104. Katoh M, Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13:4042–4045

    Article  CAS  PubMed  Google Scholar 

  105. Jiang YG, Luo Y, He DL, Li X, Zhang LL, Peng T et al (2007) Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Int J Urol 14:1034–1039

    Article  CAS  PubMed  Google Scholar 

  106. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED et al (2007) Epithelial – mesenchymal and mesenchymal – epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383

    Article  CAS  PubMed  Google Scholar 

  107. Luo Y, He DL, Ning L, Shen SL, Li L, Li X et al (2006) Over-expression of hypoxia-inducible factor-1alpha increases the invasive potency of LNCaP cells in vitro. BJU Int 98:1315–1319

    Article  CAS  PubMed  Google Scholar 

  108. Liu S, Dontu G, Wicha MS (2005) Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7:86–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. de Sousa EM, Vermeulen L, Richel D, Medema JP (2011) Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res 17:647–653

    Article  PubMed  CAS  Google Scholar 

  110. Katoh M (2011) Network of WNT and other regulatory signaling cascades in pluripotent stem cells and cancer stem cells. Curr Pharm Biotechnol 12:160–170

    Article  CAS  PubMed  Google Scholar 

  111. Oishi N, Wang XW (2011) Novel therapeutic strategies for targeting liver cancer stem cells. Int J Biol Sci 7:517–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. DiMeo TA, Anderson K, Phadke P, Fan C, Perou CM, Naber S et al (2009) A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res 69:5364–5373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. King TD, Suto MJ, Li Y (2012) The Wnt/beta-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem 113:13–18

    Article  CAS  PubMed  Google Scholar 

  114. Banerjee K, Resat H (2016) Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer 138:2570–2578

    Article  CAS  PubMed  Google Scholar 

  115. Sengupta S, Nagalingam A, Muniraj N, Bonner MY, Mistriotis P, Afthinos A et al (2017) Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3. Oncogene 36:5709–5721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Foshay KM, Gallicano GI (2008) Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev 17:269–278

    Article  CAS  PubMed  Google Scholar 

  117. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR et al (2011) The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. J Clin Invest 121:2723–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gritli-Linde A, Bei M, Maas R, Zhang XM, Linde A, McMahon AP (2002) Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development 129:5323–5337

    Article  CAS  PubMed  Google Scholar 

  119. Yang L, Xie G, Fan Q, Xie J (2010) Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 29:469–481

    Article  PubMed  CAS  Google Scholar 

  120. Chaudary N, Pintilie M, Hedley D, Fyles AW, Milosevic M, Clarke B et al (2011) Hedgehog pathway signaling in cervical carcinoma and outcome after chemoradiation. Cancer 118:3105–3115

    Article  PubMed  CAS  Google Scholar 

  121. Dormoy V, Danilin S, Lindner V, Thomas L, Rothhut S, Coquard C et al (2009) The sonic hedgehog signaling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth. Mol Cancer 8:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Katoh Y, Katoh M (2009) Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 9:873–886

    Article  CAS  PubMed  Google Scholar 

  123. Choi SS, Omenetti A, Witek RP, Moylan CA, Syn WK, Jung Y et al (2009) Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am J Physiol Gastrointest Liver Physiol 297:G1093–G1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bao B, Wang Z, Li Y, Kong D, Ali S, Banerjee S et al (2011) The complexities of obesity and diabetes with the development and progression of pancreatic cancer. Biochim Biophys Acta 1815:135–146

    CAS  PubMed  Google Scholar 

  126. Shi P, Liu W, Tala WH, Li F, Zhang H et al (2017) Metformin suppresses triple-negative breast cancer stem cells by targeting KLF5 for degradation. Cell Discov 3:17010. https://doi.org/10.1038/celldisc.2017.10. eCollection;%2017.:17010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Bao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bao, B., Prasad, A.S. (2019). Targeting CSC in a Most Aggressive Subtype of Breast Cancer TNBC. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology, vol 1152. Springer, Cham. https://doi.org/10.1007/978-3-030-20301-6_17

Download citation

Publish with us

Policies and ethics