Skip to main content

Advertisement

Log in

An overview of triple-negative breast cancer

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors comprising various breast cancers simply defined by the absence of estrogen receptor, progesterone receptor and overexpression of human epidermal growth factor receptor 2 gene. In this review, we discuss the epidemiology, risk factors, clinical characteristics and prognostic variables of TNBC, and present the summary of recommended treatment strategies and all other available treatment options.

Methods

We performed a systematic literature search using Medline and selected those articles which seemed relevant for this review. In addition, the ClinicalTrials.gov was also scanned for ongoing trials.

Results

TNBC accounts for 10–20 % of all invasive breast cancers and has been found to be associated with African–American race, younger age, higher grade and mitotic index, and more advanced stage at diagnosis. Locoregional treatment is similar to other invasive breast cancer subtypes and involves surgery—mastectomy with or without adjuvant radiotherapy or breast conservation followed by adjuvant radiotherapy. Due to lack of drug-targetable receptors, chemotherapy is the only recommended systemic treatment to improve disease outcome. TNBC is sensitive to chemotherapy as demonstrated by high pathological complete response rates achieved after neoadjuvant chemotherapy, and this approach also allows for breast-conserving surgery. The peak risk of relapse is at 3 years after surgery, thereafter recurrence risk rapidly decreases. Survival after metastatic relapse is shorter as compared to other breast cancer subtypes, treatment options are few and response rates are poor and lack durability. Important molecular characteristics have now been identified that can subdivide this group of breast cancers further and can provide alternative systemic therapies.

Conclusions

To improve therapeutic outcome of TNBC, reliable predictive biomarkers and newer drugs against the known molecular pathways are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyle P (2006) The globalisation of cancer. Lancet 368:629–630

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  3. Autier P, Boniol M, La Vecchia C, Vatten L, Gavin A, Héry C, Heanue M (2010) Disparities in breast cancer mortality trends between 30 European countries: retrospective trend analysis of WHO mortality database. Br Med J 341:c3620

    Article  Google Scholar 

  4. Engebraaten O, Vollan HK, Børresen-Dale AL (2013) Triple-negative breast cancer and the need for new therapeutic targets. Am J Pathol 183:1064–1074

    Article  CAS  PubMed  Google Scholar 

  5. Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    Article  CAS  PubMed  Google Scholar 

  6. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  7. Sørlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  PubMed Central  Google Scholar 

  8. Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28:1684–1691

    Article  PubMed  Google Scholar 

  9. Krishnamurthy S, Poornima R, Challa VR, Goud YG (2012) Triple negative breast cancer—our experience and review. Indian J Surg Oncol 3:12–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rakha EA, Putti TC, Abd El-Rehim DM et al (2006) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208:495–506

    Article  CAS  PubMed  Google Scholar 

  11. van de Rijn M, Perou CM, Tibshirani R et al (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161:1991–1996

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790–800

    Article  CAS  PubMed  Google Scholar 

  13. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ, Panel members (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22:1736–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vona-Davis L, Rose DP, Hazard H, Howard-McNatt M, Adkins F, Partin J, Hobbs G (2008) Triple-negative breast cancer and obesity in a rural Appalachian population. Cancer Epidemiol Biomarkers Prev 17:3319–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carey LA, Perou CM, Livasy CA et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502

    Article  CAS  PubMed  Google Scholar 

  16. Rakha EA, El-Rehim DA, Paish C et al (2006) Basal phenotype identifies a poor prognostic subgroup of breast cancer of clinical importance. Eur J Cancer 42:3149–3156

    Article  CAS  PubMed  Google Scholar 

  17. Rakha EA, Reis-Filho JS, Ellis IO (2008) Basal-like breast cancer: a critical review. J Clin Oncol 26:2568–2581

    Article  PubMed  Google Scholar 

  18. Carey LA (2011) Directed therapy of subtypes of triple-negative breast cancer. Oncologist 16:71–78

    Article  PubMed  Google Scholar 

  19. Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, Viens F, Birnbaum D (2008) How basal are triple-negative breast cancers? Int J Cancer 123:236–240

    Article  CAS  PubMed  Google Scholar 

  20. Rakha EA, El-Sayed ME, Green AR et al (2007) Prognostic markers in triple-negative breast cancer. Cancer 109:25–32

    Article  CAS  PubMed  Google Scholar 

  21. Reis-Filho JS, Tutt AN (2008) Triple negative tumours: a critical review. Histopathology 52:108–118

    Article  CAS  PubMed  Google Scholar 

  22. Brouckaert O, Wildiers H, Floris G, Neven P (2012) Update on triple-negative breast cancer: prognosis and management strategies. Int J Womens Health 4:511–520

    PubMed  PubMed Central  Google Scholar 

  23. Fisher B, Brown AM, Dimitrov NV et al (1990) Two months of doxorubicin–cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical adjuvant Breast and Bowel Project B-15. J Clin Oncol 8:1483–1496

    CAS  PubMed  Google Scholar 

  24. Roché H, Fumoleau P, Spielmann M et al (2006) Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC PACS 01 Trial. J Clin Oncol 24:5664–5671

    Article  PubMed  CAS  Google Scholar 

  25. Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17:1474–1481

    CAS  PubMed  Google Scholar 

  26. Press MF, Slamon DJ, Flom KJ, Park J, Zhou JY, Bernstein L (2002) Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J Clin Oncol 20:3095–3105

    CAS  PubMed  Google Scholar 

  27. Oyama T, Ishikawa Y, Hayashi M, Arihiro K, Horiguchi J (2007) The effects of fixation, processing and evaluation criteria on immunohistochemical detection of hormone receptors in breast cancer. Breast Cancer 14:182–188

    Article  PubMed  Google Scholar 

  28. Ross JS, Symmans WF, Pusztai L, Hortobagyi GN (2007) Standardizing slide-based assays in breast cancer: hormone receptors, HER2, and sentinel lymph nodes. Clin Cancer Res 13:2831–2835

    Article  CAS  PubMed  Google Scholar 

  29. Gown AM (2008) Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol 21:S8–S15

    Article  CAS  PubMed  Google Scholar 

  30. Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28:2784–2795

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131:18–43

    CAS  PubMed  Google Scholar 

  32. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer Registry. Cancer 109:1721–1728

    Article  PubMed  Google Scholar 

  33. Stark A, Kleer CG, Martin I et al (2010) African ancestry and higher prevalence of triple-negative breast cancer: findings from an international study. Cancer 116:4926–4932

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rauh C, Gass P, Heusinger K et al (2014) Association of molecular subtypes with breast cancer risk factors: a case-only analysis. Eur J Cancer Prev (epub ahead of print)

  35. Kwan ML, Kushi LH, Weltzien E et al (2009) Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors. Breast Cancer Res 11:R31

    Article  PubMed  PubMed Central  Google Scholar 

  36. Millikan RC, Newman B, Tse CK et al (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109:123–139

    Article  PubMed  PubMed Central  Google Scholar 

  37. Phipps AI, Chlebowski RT, Prentice R et al (2011) Reproductive history and oral contraceptive use in relation to risk of triple-negative breast cancer. J Natl Cancer Inst 103:470–477

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dolle JM, Daling JR, White E, Brinton LA, Doody DR, Porter PL, Malone KE (2009) Risk factors for triple-negative breast cancer in women under the age of 45 years. Cancer Epidemiol Biomarkers Prev 18:1157–1166

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kabat GC, Kim M, Phipps AI et al (2011) Smoking and alcohol consumption in relation to risk of triple-negative breast cancer in a cohort of postmenopausal women. Cancer Causes Control 22:775–783

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang XR, Chang-Claude J, Goode EL et al (2011) Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 103:250–263

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maiti B, Kundranda MN, Spiro TP et al (2010) The association of metabolic syndrome with triple-negative breast cancer. Breast Cancer Res Treat 121:479–483

    Article  CAS  PubMed  Google Scholar 

  42. Pichard C, Plu-Bureau G, Neves-E Castro M, Gompel A (2008) Insulin resistance, obesity and breast cancer risk. Maturitas 60:19–30

    Article  CAS  PubMed  Google Scholar 

  43. Evans DG, Howell A (2012) Are we ready for online tools in decision making for BRCA1/2 mutation carriers? J Clin Oncol 30:471–473

    Article  CAS  PubMed  Google Scholar 

  44. Lakhani SR, Van De Vijver MJ, Jacquemier J, Anderson TJ, Osin PF, McGuffog L, Easton DF (2002) The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 20:2310–2318

    Article  CAS  PubMed  Google Scholar 

  45. Atchley DP, Albarracin CT, Lopez A et al (2008) Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol 26:4282–4288

    Article  PubMed  Google Scholar 

  46. Comen EA, Davids M, Kirchhoff T et al (2008) Prevalence of BRCA1 and BRCA2 mutations in Jewish women with triple negative breast cancer. J Clin Oncol 26:749sSuppl:abstr 22002

  47. Robertson L, Hanson H, Seal S et al (2012) BRCA1 testing should be offered to individuals with triple negative breast cancer diagnosed below 50 years. Br J Cancer 106:1234–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Evans DG, Howell A, Ward D et al (2011) Prevalence of BRCA1 and BRCA2 mutations in triple negative breast cancer. J Med Genet 48:520–522

    Article  CAS  PubMed  Google Scholar 

  49. Andrés R, Pajares I, Balmaña J et al (2014) Association of BRCA1 germline mutations in young onset triple-negative breast cancer (TNBC). Clin Transl Oncol 16:280–284

    Article  PubMed  CAS  Google Scholar 

  50. Couch F, Hart SN, Sharma P et al (2014) Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol 33:304–311

    Article  PubMed  CAS  Google Scholar 

  51. Stevens KN, Vachon CM, Lee AM et al (2011) Common breast cancer susceptibility loci are associated with triple negative breast cancer. Cancer Res 71:6240–6249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stevens KN, Fredericksen Z, Vachon CM et al (2012) 19p13.1 is a triple negative-specific breast cancer susceptibility locus. Cancer Res 72:1795–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Purrington KS, Slager S, Eccles D et al (2014) Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis 35:1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shah SP, Roth A, Goya R et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–399

    CAS  PubMed  Google Scholar 

  55. Dent R, Trudeau M, Pritchard KI et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434

    Article  PubMed  Google Scholar 

  56. Montagna E, Maisonneuve P, Rotmensz N et al (2013) Heterogeneity of triple-negative breast cancer: histologic subtyping to inform the outcome. Clin Breast Cancer 13:31–39

    Article  PubMed  Google Scholar 

  57. Azoulay S, Laé M, Fréneaux P et al (2005) KIT is highly expressed in adenoid cystic carcinoma of the breast, a basal-like carcinoma associated with a favorable outcome. Mod Pathol 18:1623–1631

    CAS  PubMed  Google Scholar 

  58. Fourquet A, Vilcoq JR, Zafrani B, Schlienger F, Jullien D, Campana F (1987) Medullary breast carcinoma: the role of radiotherapy as primary treatment. Radiother Oncol 10:1–6

    Article  CAS  PubMed  Google Scholar 

  59. Dendale R, Vincent-Salomon A, Mouret-Fourme E et al (2003) Medullary breast carcinoma: prognostic implications of p53 expression. Int J Biol Markers 18:99–105

    CAS  PubMed  Google Scholar 

  60. Hennessy BT, Giordano S, Broglio K et al (2006) Biphasic metaplastic sarcomatoid carcinoma of the breast. Ann Oncol 17:605–613

    Article  CAS  PubMed  Google Scholar 

  61. Dowsett M, Cuzick J, Wale C, Howell T, Houghton J, Baum M (2005) Retrospective analysis of time to recurrence in the ATAC trial according to hormone receptor status: an hypothesis-generating study. J Clin Oncol 23:7512–7517

    Article  CAS  PubMed  Google Scholar 

  62. Crabb SJ, Cheang MC, Leung S, Immonen T, Nielsen TO, Huntsman DD, Bajdik CD, Chia SK (2008) Basal breast cancer molecular subtype predicts for lower incidence of axillary lymph node metastases in primary breast cancer. Clin Breast Cancer 8:249–256

    Article  PubMed  Google Scholar 

  63. Tan DS, Marchió C, Jones RL, Savage K, Smith IE, Dowsett M, Reis-Filho JS (2008) Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat 111:27–44

    Article  CAS  PubMed  Google Scholar 

  64. Yang WT, Dryden M, Broglio K et al (2008) Mammographic features of triple receptor-negative primary breast cancers in young premenopausal women. Breast Cancer Res Treat 111:405–410

    Article  PubMed  Google Scholar 

  65. Wang Y, Ikeda DM, Narasimhan B, Longacre TA, Bleicher RJ, Pal S, Jackman RJ, Jeffrey SS (2008) Estrogen receptor-negative invasive breast cancer: imaging features of tumors with and without human epidermal growth factor receptor type 2 overexpression. Radiology 246:367–375

    Article  PubMed  Google Scholar 

  66. Dogan BE, Gonzalez-Angulo AM, Gilcrease M, Dryden MJ, Yang WT (2010) Multimodality imaging of triple receptor-negative tumors with mammography, ultrasound, and MRI. AJR Am J Roentgenol 194:1160–1166

    Article  PubMed  Google Scholar 

  67. Ko ES, Lee BH, Kim HA, Noh WC, Kim MS, Lee SA (2010) Triple-negative breast cancer: correlation between imaging and pathological findings. Eur Radiol 20:1111–1117

    Article  PubMed  Google Scholar 

  68. Heusinger K, Jud SM, Häberle L et al (2012) Association of mammographic density with hormone receptors in invasive breast cancers: Results from a case-only study. Int J Cancer 131:2643–2649

    Article  CAS  PubMed  Google Scholar 

  69. Lerma E, Peiro G, Ramón T et al (2007) Immunohistochemical heterogeneity of breast carcinomas negative for estrogen receptors, progesterone receptors and Her2/neu (basal-like breast carcinomas). Mod Pathol 20:1200–1207

    Article  CAS  PubMed  Google Scholar 

  70. Uematsu T, Kasami M, Yuen S (2009) Triple-negative breast cancer: correlation between MR imaging and pathologic findings. Radiology 250:638–647

    Article  PubMed  Google Scholar 

  71. Dogan BE, Turnbull LW (2012) Imaging of triple-negative breast cancer. Ann Oncol 23:vi23–vi29

    Article  PubMed  Google Scholar 

  72. Basu S, Chen W, Tchou J, Mavi A, Cermik T, Czerniecki B, Schnall M, Alavi A (2008) Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer 112:995–1000

    Article  CAS  PubMed  Google Scholar 

  73. Straver ME, Aukema TS, Olmos RA, Rutgers EJ, Gilhuijs KG, Schot ME, Vogel WV, Peeters MJ (2010) Feasibility of FDG PET/CT to monitor the response of axillary lymph node metastases to neoadjuvant chemotherapy in breast cancer patients. Eur J Nucl Med Mol Imaging 37:1069–1076

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28:3271–3277

    Article  PubMed  Google Scholar 

  75. Jatoi I, Anderson WF, Jeong JH, Redmond CK (2011) Breast cancer adjuvant therapy: time to consider its time-dependent effects. J Clin Oncol 29:2301–2304

    Article  PubMed  PubMed Central  Google Scholar 

  76. Montagna E, Bagnardi V, Rotmensz N et al (2012) Breast cancer subtypes and outcome after local and regional relapse. Ann Oncol 23:324–331

    Article  CAS  PubMed  Google Scholar 

  77. Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, Foekens JA, Martens JW (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68:3108–3114

    Article  CAS  PubMed  Google Scholar 

  78. Heitz F, Harter P, Traut A, Lueck HJ, Beutel B, du Bois A (2008) Cerebral metastases (CM) in breast can-cer (BC) with focus on triple-negative tumors. J Clin Oncol 26,15 s Suppl:abst 1010

  79. Aleskandarany MA, Green AR, Benhasouna AA, Barros FF, Neal K, Reis-Filho JS, Ellis IO, Rakha EA (2012) Prognostic value of proliferation assay in the luminal, HER2-positive, and triple-negative biologic classes of breast cancer. Breast Cancer Res 14:R3

    Article  PubMed  PubMed Central  Google Scholar 

  80. Peng Y (2012) Potential prognostic tumor biomarkers in triple-negative breast carcinoma. Beijing Da Xue Xue Bao 44:666–672

    CAS  PubMed  Google Scholar 

  81. Cancello G, Maisonneuve P, Rotmensz N et al (2011) Prognosis in women with small (T1 mic, T1a, T1b) node-negative operable breast cancer by immunohistochemically selected subtypes. Breast Cancer Res Treat 127:713–720

    Article  CAS  PubMed  Google Scholar 

  82. von Minckwitz G, Untch M, Blohmer JU et al (2012) Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 30:1796–1804

    Article  Google Scholar 

  83. Liedtke C, Mazouni C, Hess KR et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26:1275–1281

    Article  PubMed  Google Scholar 

  84. Straver ME, Glas AM, Hannemann J et al (2010) The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 119:551–558

    Article  PubMed  Google Scholar 

  85. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA (2010) Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 11:174–183

    Article  CAS  PubMed  Google Scholar 

  86. Fasching PA, Heusinger K, Haeberle L et al (2011) Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer 11:486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schmidt G, Meyberg-Solomayer G, Gerlinger C et al (2014) Identification of prognostic different subgroups in triple negative breast cancer by Her2-neu protein expression. Arch Gynecol Obstet 290:1221–1229

    Article  CAS  PubMed  Google Scholar 

  88. Bianchini G, Qi Y, Alvarez RH et al (2010) Molecular anatomy of breast cancer stroma and its prognostic value in estrogen receptor-positive and -negative cancers. J Clin Oncol 28:4316–4323

    Article  PubMed  Google Scholar 

  89. Győrffy B, Hatzis C, Sanft T, Hofstatter E, Aktas B, Pusztai L (2015) Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res 17:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Aapro M, Wildiers H (2012) Triple-negative breast cancer in the older population. Ann Oncol 23(Suppl 6):vi52–vi55

    Article  PubMed  Google Scholar 

  91. Parker CC, Ampil F, Burton G, Li BD, Chu QD (2010) Is breast conservation therapy a viable option for patients with triple-receptor negative breast cancer? Surgery 148:386–391

    Article  PubMed  Google Scholar 

  92. Solin LJ, Hwang WT, Vapiwala N (2009) Outcome after breast conservation treatment with radiation for women with triple-negative early-stage invasive breast carcinoma. Clin Breast Cancer 9:96–100

    Article  PubMed  Google Scholar 

  93. Panoff JE, Hurley J, Takita C et al (2011) Risk of locoregional recurrence by receptor status in breast cancer patients receiving modern systemic therapy and post-mastectomy radiation. Breast Cancer Res Treat 128:899–906

    Article  CAS  PubMed  Google Scholar 

  94. Eiermann W, Vallis KA (2012) Locoregional treatments for triple-negative breast cancer. Ann Oncol 23(Suppl6):vi30–vi34

    PubMed  Google Scholar 

  95. Gonzalez-Angulo AM, Timms KM, Liu S et al (2011) Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res 17:1082–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bayraktar S, Gutierrez-Barrera AM, Liu D et al (2011) Outcome of triple-negative breast cancer in patients with or without deleterious BRCA mutations. Breast Cancer Res Treat 130:145–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dragun AE, Pan J, Rai SN, Kruse B, Jain D (2011) Locoregional recurrence in patients with triple-negative breast cancer: preliminary results of a single institution study. Am J Clin Oncol 34:231–237

    Article  PubMed  Google Scholar 

  98. Abdulkarim BS, Cuartero J, Hanson J, Deschênes J, Lesniak D, Sabri S (2011) Increased risk of locoregional recurrence for women with T1-2N0 triple-negative breast cancer treated with modified radical mastectomy without adjuvant radiation therapy compared with breast-conserving therapy. J Clin Oncol 29:2852–2858

    Article  PubMed  Google Scholar 

  99. Jagsi R, Raad RA, Goldberg S, Sullivan T, Michaelson J, Powell SN, Taghian AG (2005) Locoregional recurrence rates and prognostic factors for failure in node-negative patients treated with mastectomy: implications for postmastectomy radiation. Int J Radiat Oncol Biol Phys 62:1035–1039

    Article  PubMed  Google Scholar 

  100. Truong PT, Lesperance M, Culhaci A, Kader HA, Speers CH, Olivotto IA (2005) Patient subsets with T1-T2, node negative breast cancer at high locoregional recurrence risk after mastectomy. Int J Radiat Oncol Biol Phys 62:175–182

    Article  PubMed  Google Scholar 

  101. Aebi S, Davidson T, Gruber G, Cardoso F, ESMO Guidelines Working Group (2011) Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 22(Suppl6):vi12–vi24

    PubMed  Google Scholar 

  102. Breast Cancer v2 (2014) National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology (NCCN Guidelines). http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed 21 July 2014

  103. Kyndi M, Sorensen FB, Knudsen H, Overgaard M, Nielsen HM, Overgaard J, Danish Breast Cancer Cooperative Group (2008) Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in high-risk breast cancer: the Danish Breast Cancer Cooperative Group. J Clin Oncol 26:1419–1426

    Article  CAS  PubMed  Google Scholar 

  104. Chen X, Yu X, Chen J, Yang Z, Shao Z, Zhang Z, Guo X, Feng Y (2013) Radiotherapy can improve the disease-free survival rate in triple-negative breast cancer patients with T1-T2 disease and one to three positive lymph nodes after mastectomy. Oncologist 18:141–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Carey LA, Dees EC, Sawyer L et al (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334

    Article  CAS  PubMed  Google Scholar 

  106. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG, Clarke M, Coates AS, Darby SC et al (2008) Adjuvant chemotherapy in oestrogen-receptor-poor breast cancer: patient-level meta-analysis of randomised trials. Lancet 371:29–40

    Article  CAS  Google Scholar 

  107. Berry DA, Cirrincione C, Henderson IC et al (2006) Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295:1658–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rastogi P, Anderson SJ, Bear HD et al (2008) Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 26:778–785

    Article  PubMed  Google Scholar 

  109. Cortazar P, Zhang L, Untch M et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384:164–172

    Article  PubMed  Google Scholar 

  110. Huober J, von Minckwitz G, Denkert C et al (2010) Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. Breast Cancer Res Treat 124:133–140

    Article  CAS  PubMed  Google Scholar 

  111. De Laurentiis M, Cancello G, D’Agostino D et al (2008) Taxane-based combinations as adjuvant chemotherapy of early breast cancer: a meta-analysis of randomized trials. J Clin Oncol 26:44–53

    Article  PubMed  CAS  Google Scholar 

  112. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Peto R, Davies C, Godwin J et al (2012) Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379:432–444

    Article  CAS  Google Scholar 

  113. Metzger-Filho O, Tutt A, de Azambuja E et al (2012) Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 30:1879–1887

    Article  CAS  PubMed  Google Scholar 

  114. Rouzier R, Perou CM, Symmans WF et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11:5678–5685

    Article  CAS  PubMed  Google Scholar 

  115. Martin M, Romero A, Lopez Garcia-Asenjo J et al (2010) Molecular and genomic predictors of response to single-agent doxorubicin (ADR) versus single-agent docetaxel (DOC) in primary breast cancer (PBC). J Clin Oncol 28(15suppl):502

    Google Scholar 

  116. Martin M, Romero A, Cheang MC et al (2011) Genomic predictors of response to doxorubicin versus docetaxel in primary breast cancer. Breast Cancer Res Treat 128:127–136

    Article  CAS  PubMed  Google Scholar 

  117. Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney F, Jones A (2010) Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer 10:337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. von Minckwitz G, Untch M, Nuesch E et al (2011) Impact of treatment characteristics on response of different breast cancer phenotypes: pooled analysis of the German neo-adjuvant chemotherapy trials. Breast Cancer Res Treat 125:145–156

    Article  Google Scholar 

  119. Untch M, Jackisch C, Schneeweiss A et al (2014) A randomized phase III trial comparing neoadjuvant chemotherapy with weekly nanoparticle-based paclitaxel with solvent-based paclitaxel followed by anthracyline/cyclophosphamide for patients with early breast cancer (GeparSepto); GBG 69. Paper presented at San Antonio Breast Cancer Symposium; San Antonio, TX. abst S2-07

  120. Isakoff SJ (2010) Triple-negative breast cancer: role of specific chemotherapy agents. Cancer J 16:53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gronwald J, Byrski T, Huzarski T et al (2009) Neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. J Clin Oncol 27(15suppl):502

    Google Scholar 

  122. Byrski T, Huzarski T, Dent R et al (2009) Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat 115:359–363

    Article  CAS  PubMed  Google Scholar 

  123. Byrski T, Gronwald J, Huzarski T et al (2010) Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 28:375–379

    Article  CAS  PubMed  Google Scholar 

  124. Sikov WM, Dizon DS, Strenger R et al (2009) Frequent pathologic complete responses in aggressive stages II to III breast cancers with every-4-week carboplatin and weekly paclitaxel with or without trastuzumab: a Brown University Oncology Group Study. J Clin Oncol 27:4693–4700

    Article  CAS  PubMed  Google Scholar 

  125. Chen XS, Nie XQ, Chen CM et al (2010) Weekly paclitaxel plus carboplatin is an effective nonanthracycline-containing regimen as neoadjuvant chemotherapy for breast cancer. Ann Oncol 21:961–967

    Article  CAS  PubMed  Google Scholar 

  126. Chang HR, Glaspy J, Allison MA, Kass FC, Elashoff R, Chung DU, Gornbein J (2010) Differential response of triple-negative breast cancer to a docetaxel and carboplatin-based neoadjuvant treatment. Cancer 116:4227–4237

    Article  CAS  PubMed  Google Scholar 

  127. Alba E, Chacon JL, Lluch A et al (2011) Chemotherapy (CT) with or without carboplatin as neoadjuvant treatment in patients with basal-like breast cancer: GEICAM 2006–03-A multicenter, randomized phase II study. J Clin Oncol 29(15suppl):1015

    Google Scholar 

  128. von Minckwitz G, Schneeweiss A, Loibl S et al (2014) Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol 15:747–756

    Article  CAS  Google Scholar 

  129. Sikov WM, Berry DA, Perou CM et al (2015) Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol 33:13–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schwentner L, Wolters R, Wischnewsky M et al (2011) Triple-negative breast cancer: the effect of guideline-adherent adjuvant treatment on the cumulative survival—a retrospective multicenter cohort study of 3,658 patients. J Clin Oncol 29(27suppl):1063

    Google Scholar 

  131. Joensuu H, Gligorov J (2012) Adjuvant treatments for triple-negative breast cancers. Ann Oncol 23:vi40–vi45

    Article  PubMed  Google Scholar 

  132. Amir E, Miller N, Geddie W et al (2012) Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J Clin Oncol 30:587–592

    Article  PubMed  Google Scholar 

  133. Perez EA, Patel T, Moreno-Aspitia A (2010) Efficacy of ixabepilone in ER/PR/HER2-negative (triple-negative) breast cancer. Breast Cancer Res Treat 121:261–271

    Article  CAS  PubMed  Google Scholar 

  134. Cortes J, O’Shaughnessy J, Loesch D et al (2011) Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study. Lancet 377:914–923

    Article  CAS  PubMed  Google Scholar 

  135. Twelves C, Akerele C, Wanders J, Cortes JA on behalf of the Study 305 investigators (2010) Eribulin mesylate (E7389) versus treatment of physician’s choice (TPC) in patients (PTS) with metastatic breast cancer (MBC): subgroup analyses from the EMBRACE study. Ann Oncol 21(Suppl8):2750

    Google Scholar 

  136. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376

    Article  CAS  PubMed  Google Scholar 

  137. Schneider BP, Miller KD (2005) Angiogenesis of breast cancer. J Clin Oncol 23:1782–1790

    Article  CAS  PubMed  Google Scholar 

  138. Robert NJ, Diéras V, Glaspy J et al (2011) RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29:1252–1260

    Article  CAS  PubMed  Google Scholar 

  139. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  CAS  PubMed  Google Scholar 

  140. Brufsky A, Valero V, Tiangco B et al (2012) Second-line bevacizumab-containing therapy in patients with triple-negative breast cancer: subgroup analysis of the RIBBON-2 trial. Breast Cancer Res Treat 133:1067–1075

    Article  CAS  PubMed  Google Scholar 

  141. Gerber B, Loibl S, Eidtmann H et al (2013) Neoadjuvant bevacizumab and anthracycline–taxane-based chemotherapy in 678 triple-negative primary breast cancers; results from the geparquinto study (GBG 44). Ann Oncol 24:2978–2984

    Article  CAS  PubMed  Google Scholar 

  142. Bear HD, Tang G, Rastogi P et al (2012) Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N Engl J Med 366:310–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cameron D, Brown J, Dent R et al (2013) Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): Primary results of a randomised, phase 3 trial. Lancet Oncol 14:933–942

    Article  CAS  PubMed  Google Scholar 

  144. D’Agostino RB Sr (2011) Changing end points in breast-cancer drug approval–the Avastin story. N Eng J Med 365:e2

    Article  Google Scholar 

  145. Web site. http://clinicaltrials.gov. Accessed 21 July 2014

  146. Farmer H, McCabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  CAS  PubMed  Google Scholar 

  147. O’Shaughnessy J, Osborne C, Pippen JE et al (2011) Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 364:205–214

    Article  PubMed  Google Scholar 

  148. Gelmon KA, Hirte HW, Robidoux A et al (2010) Can we define tumors that will respond to PARP inhibitors? A phase II correlative study of olaparib in advanced serous ovarian cancer and triple-negative breast cancer. J Clin Oncol 28(15suppl):3002

    Google Scholar 

  149. Rivera E, Lee J, Davies A (2008) Clinical development of ixabepilone and other epothilones in patients with advanced solid tumors. Oncologist 13:1207–1223

    Article  CAS  PubMed  Google Scholar 

  150. Baselga J, Zambetti M, Llombart-Cussac A et al (2009) Phase II genomics study of ixabepilone as neoadjuvant treatment for breast cancer. J Clin Oncol 27:526–534

    Article  CAS  PubMed  Google Scholar 

  151. Carey LA, Rugo HS, Marcom PK et al (2012) TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol 30:2615–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Baselga J, Gomez P, Greil R et al (2013) Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J Clin Oncol 31:2586–2592

    Article  CAS  PubMed  Google Scholar 

  153. Carey LA, O’Shaughnessy J, Hoadley K et al (2009) Potential predictive markers of benefit from cetuximab in metastatic breast cancer: an analysis of two randomized phase 2 trials. In: Proceedings of the 32nd Annual CTRC-AACR San Antonio Breast Cancer Symposium, San Antonio, TX; AACR Philadelphia, PA: abst 2014

  154. Baselga J, Albanell J, Ruiz A et al (2005) Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J Clin Oncol 23:5323–5333

    Article  CAS  PubMed  Google Scholar 

  155. Dickler MN, Rugo HS, Eberle CA et al (2008) A phase II trial of erlotinib in combination with bevacizumab in patients with metastatic breast cancer. Clin Cancer Res 14:7878–7883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N (2009) Triple-negative breast cancer–current status and future directions. Ann Oncol 20:1913–1927

    Article  CAS  PubMed  Google Scholar 

  157. Corkery B, Crown J, Clynes M, O’Donovan N (2009) Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol 20:862–867

    Article  CAS  PubMed  Google Scholar 

  158. Finn RS, Dering J, Ginther C, Wilson CA, Glaspy F, Tchekmedyian N, Slamon DJ (2007) Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/“triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat 105:319–326

    Article  CAS  PubMed  Google Scholar 

  159. Tryfonopoulos D, Walsh S, Collins DM et al (2011) Src: a potential target for the treatment of triple-negative breast cancer. Ann Oncol 22:2234–2240

    Article  CAS  PubMed  Google Scholar 

  160. Fornier MN, Morris PG, Abbruzzi A et al (2011) A phase I study of dasatinib and weekly paclitaxel for metastatic breast cancer. Ann Oncol 22:2575–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Saal LH, Holm K, Maurer M et al (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65:2554–2559

    Article  CAS  PubMed  Google Scholar 

  162. Ellard SL, Clemons M, Gelmon KA et al (2009) Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND.163. J Clin Oncol 27:4536–4541

    Article  CAS  PubMed  Google Scholar 

  163. Cancer Genome Atlas Network, Koboldt DC, Fulton RS, McLellan MD (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  CAS  Google Scholar 

  164. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Horiuchi D, Kusdra L, Huskey NE et al (2012) MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med 209:679–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jeong H, Ryu YJ, An J, Lee Y, Kim A (2012) Epithelial-mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology 60:E87–E95

    Article  PubMed  Google Scholar 

  167. Dutta B, Pusztai L, Qi Y et al (2012) A network-based, integrative study to identify core biological pathways that drive breast cancer clinical subtypes. Br J Cancer 106:1107–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Stagg J, Allard B (2013) Immunotherapeutic approaches in triple-negative breast cancer: latest research and clinical prospects. Ther Adv Med Oncol 5:169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hall RE, Aspinall JO, Horsfall DJ, Birrell SN, Bentel JM, Sutherland RL, Tilley WD (1996) Expression of the androgen receptor and an androgen-responsive protein, apolipoprotein D, in human breast cancer. Br J Cancer 74:1175–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kuenen-Boumeester V, Van der Kwast TH, Claassen CC, Look MF, Liem GS, Klijn JG, Henzen-Logmans SC (1996) The clinical significance of androgen receptors in breast cancer and their relation to histological and cell biological parameters. Eur J Cancer 32A:1560–1565

    Article  CAS  PubMed  Google Scholar 

  171. Ogawa Y, Hai E, Matsumoto K et al (2008) Androgen receptor expression in breast cancer: relationship with clinicopathological factors and biomarkers. Int J Clin Oncol 13:431–435

    Article  CAS  PubMed  Google Scholar 

  172. Yu Q, Niu Y, Liu N et al (2011) Expression of androgen receptor in breast cancer and its significance as a prognostic factor. Ann Oncol 22:1288–1294

    Article  CAS  PubMed  Google Scholar 

  173. Peters AA, Buchanan G, Ricciardelli C et al (2009) Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer. Cancer Res 69:6131–6140

    Article  CAS  PubMed  Google Scholar 

  174. Søreide JA, Lea OA, Varhaug JE, Skarstein A, Kvinnsland S (1992) Androgen receptors in operable breast cancer: relation to other steroid hormone receptors, correlations to prognostic factors and predictive value for effect of adjuvant tamoxifen treatment. Eur J Surg Oncol 18:112–118

    PubMed  Google Scholar 

  175. Bryan RM, Mercer RJ, Bennett RC, Rennie GC, Lie TH, Morgan FJ (1984) Androgen receptors in breast cancer. Cancer 54:2436–2440

    Article  CAS  PubMed  Google Scholar 

  176. Persijn JP, Korsten CB, Engelsman E (1975) Oestrogen and androgen receptors in breast cancer and response to endocrine therapy. Br Med J 4:503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hankinson SE, Willett WC, Manson JE, Colditz GA, Hunter DJ, Spiegelman D, Barbieri RL, Speizer FE (1998) Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 90:1292–1299

    Article  CAS  PubMed  Google Scholar 

  178. Micheli A, Meneghini E, Secreto G et al (2007) Plasma testosterone and prognosis of postmenopausal breast cancer patients. J Clin Oncol 25:2685–2690

    Article  CAS  PubMed  Google Scholar 

  179. Panet-Raymond V, Gottlieb B, Beitel LK, Pinsky L, Trifiro MA (2000) Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Mol Cell Endocrinol 167:139–150

    Article  CAS  PubMed  Google Scholar 

  180. Clarke BL, Khosla S (2009) New selective estrogen and androgen receptor modulators. Curr Opin Rheumatol 21:374–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Recchione C, Venturelli E, Manzari A, Cavalleri A, Martinetti A, Secreto G (1995) Testosterone, dihydrotestosterone and oestradiol levels in postmenopausal breast cancer tissues. J Steroid Biochem Mol Biol 52:541–546

    Article  CAS  PubMed  Google Scholar 

  182. Suzuki T, Miki Y, Moriya T et al (2007) 5Alpha-reductase type 1 and aromatase in breast carcinoma as regulators of in situ androgen production. Int J Cancer 120:285–291

    Article  CAS  PubMed  Google Scholar 

  183. Byrne MJ, Gebski V, Forbes J et al (1997) Medroxyprogesterone acetate addition or substitution for tamoxifen in advanced tamoxifen-resistant breast cancer: a phase III randomized trial. Australian-New Zealand Breast Cancer Trials Group. J Clin Oncol 15:3141–3148

    CAS  PubMed  Google Scholar 

  184. Buchanan G, Birrell SN, Peters AA et al (2005) Decreased androgen receptor levels and receptor function in breast cancer contribute to the failure of response to medroxyprogesterone acetate. Cancer Res 65:8487–8496

    Article  CAS  PubMed  Google Scholar 

  185. Gholami S, Chen CH, Lou E, De Brot M, Fujisawa S, Chen NG, Szalay AA, Fong Y (2012) Vaccinia virus GLV-1h153 is effective in treating and preventing metastatic triple-negative breast cancer. Ann Surg 256:437–445

    Article  PubMed  Google Scholar 

  186. Gluz O, Nitz UA, Harbeck N et al (2008) Triple-negative high-risk breast cancer derives particular benefit from dose intensification of adjuvant chemotherapy: results of WSG AM-01 trial. Ann Oncol 19:861–870

    Article  CAS  PubMed  Google Scholar 

  187. Rodenhuis S, Bontenbal M, van Hoesel QG et al (2006) Efficacy of high-dose alkylating chemotherapy in HER2/neu-negative breast cancer. Ann Oncol 17:588–596

    Article  CAS  PubMed  Google Scholar 

  188. Nieto Y, Shpall EJ (2009) High-dose chemotherapy for high-risk primary and metastatic breast cancer: is another look warranted? Curr Opin Oncol 21:150–157

    Article  CAS  PubMed  Google Scholar 

  189. Berry DA, Ueno NT, Johnson MM et al (2011) High-dose chemotherapy with autologous stem-cell support as adjuvant therapy in breast cancer: overview of 15 randomized trials. J Clin Oncol 29:3214–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Aggarwal, R. An overview of triple-negative breast cancer. Arch Gynecol Obstet 293, 247–269 (2016). https://doi.org/10.1007/s00404-015-3859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-015-3859-y

Keywords

Navigation