Skip to main content

The Clinical Pharmacology of Potassium Channels

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

Abstract

Potassium channels form a remarkably diverse group of ion channel structures.1 More subtypes of potassium channels, with different biophysical and/or pharmacologic properties, are known than of any other type of ion channel. One of the most important roles of these channels is the regulation of membrane potential and excitability in nerve and muscle cells. Many potassium channels in turn are regulated by second messengers and other molecules of intermediary metabolism, such as G proteins, cAMP, ATP, inositol trisphosphate, and calcium.2 In this manner potassium channels provide an important link between membrane potential and cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rudy B. Diversity and ubiquity of K channels. Neuroscience 1988; 25: 729–749.

    Article  PubMed  CAS  Google Scholar 

  2. Levitan IB, Kaczamarek LK. The Neuron. New York: Oxford University Press; 1991:193–272.

    Google Scholar 

  3. Yellen G. Permeation in potassium channels: Implications for channel structure. Ann Rev Biophys Biophys Chem 1987; 16:227–246.

    Article  CAS  Google Scholar 

  4. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952; 117:500–544.

    PubMed  CAS  Google Scholar 

  5. Adrian RH. Rectification in muscle membrane. Prog Biophys Mol Biol 1969; 19:340–369.

    Article  Google Scholar 

  6. Hagiwara S, Kusano K, Saito N. Membrane changes of Onchidium nerve cell in potassium-rich media. J Physiol 1961; 275:357–376.

    Google Scholar 

  7. Marty A. Ca2+-dependent K+ channels with large unitary conductance. Trends Neurosci 1983; 6:262–265.

    Article  CAS  Google Scholar 

  8. Blatz AL, Magleby KL. Single apamin-blocked Ca2+-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 1986; 323:718–720.

    Article  PubMed  CAS  Google Scholar 

  9. Hermann A, Erxleben C. Charybdotoxin selectivity blocks small Ca2+-activated K+ channels in Aplysia neurons. J Gen Physiol 1987; 90:27–47.

    Article  PubMed  CAS  Google Scholar 

  10. Meech RW. Calcium-dependent potassium activation in nervous tissues. Ann Rev Biophys Bioeng 1978; 7:1–18.

    Article  CAS  Google Scholar 

  11. Petersen OH, Maruyama Y. Calcium-activated potassium channels and their role in secretion. Nature 1984; 307:693–696.

    Article  PubMed  CAS  Google Scholar 

  12. Cook NS. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol Sei 1988; 9:21–28.

    Article  CAS  Google Scholar 

  13. Adams PR, Brown DA, Constanti A. Pharmacological inhibition of the M-current. J Physiol 1982; 332:223–262.

    PubMed  CAS  Google Scholar 

  14. Richards NW, Dawson DC. Single potassium channels blocked by lidocaine and quinine in isolated turtle colon epithelial cells. Am J Physiol 1986; 251:C85–C89.

    PubMed  CAS  Google Scholar 

  15. Dunne MJ, Petersen OH. Potassium selective ion channels in insulin-secreting cells: Physiology, pharmacology and their role in stimulus-secretion coupling. Biochim Biophys Acta 1991; 1071:67–82.

    PubMed  CAS  Google Scholar 

  16. Davies NW, Standen NB, Stanfield PR. ATP-dependent potassium channels of muscle cells: Their properties, regulation and possible functions. J Bioenerg Biomembr 1991; 32:509–535.

    Article  Google Scholar 

  17. Belardetti F, Siegelbaum SA. Up and down modulation of single K+ channels function by distinct second messengers. Trends Neurosci 1988; 11:232–238.

    Article  PubMed  CAS  Google Scholar 

  18. Dunlap K, Holz GG, Rane SG. G proteins as regulators of ion channel function. Trends Neurosci 1987; 10:241–244.

    Article  CAS  Google Scholar 

  19. Loubatières A. Effects of sulfonylureas on the pancreas. In: Volk BW, Wellman KE, eds. The Diabetic Pancreas. New York: Plenum Press; 1977: 489–515.

    Google Scholar 

  20. Schmid-Antomarchi H, de Weille JR, Fosset M, Lazdunski M. The antidiabetic sulphonylurea glibenclamide is a potent blocker of the ATP-modulated K+ channel in insulin secreting cells. Biochem Biophys Res Commun 1987; 146:21–25.

    Article  PubMed  CAS  Google Scholar 

  21. Gylfe E, Hellman B, Sehlin J, Taljedal LB. Interaction of sulphonylurea with the pancreatic B cell. Experientia 1984; 40:1126–1134.

    Article  PubMed  CAS  Google Scholar 

  22. Sturgess NC, KozlowoskiRZ, CarringtonCA, Hales CN, Ashford MLJ. Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Br J Pharmacol 1988; 95:83–94.

    PubMed  CAS  Google Scholar 

  23. Bernardi H, Fosset M, Lazdunski M. Characterization, purification and affinity labeling of the brain [3H]glibenclamide-binding protein, a putative neuronal ATP-regulated K+ channel. Proc Natl Acad Sei USA 1988; 85:9816–9820.

    Article  CAS  Google Scholar 

  24. Aguilar-Bryan L, Nelson DA, Vu QA, Humphrey MB, Boyd AE III. Photoaffinity labeling and partial purification of the B cell sulphonylurea receptor using a novel biologically active glyburide analog. J Biol Chem 1990; 14:8218–8224.

    Google Scholar 

  25. Robertson DW, Schober DA, Krushinski JH, Mais DE, Thompson DC, Gehlert DR. Expedient synthesis and biochemical properties of an 125I-labelled analogue of glyburide, a radioligand for ATP-inhibited potassium channels. J Med Chem 1990; 33:3124–3126.

    Article  PubMed  CAS  Google Scholar 

  26. Gehlert DR, Gackenheimer SL, Mais DE, Robertson DW. Quantitative autoradiography of the binding sites for [125I]iodoglyburide, a novel, high affinity ligand for ATP-sensitive potassium channels in rat brain. J Pharmacol Exp Ther 1991; 257:901–907.

    PubMed  CAS  Google Scholar 

  27. Gopalakrishnan M, Johnson DE, Janis RA, Triggle DJ. Characterization of binding of the ATP-sensitive potassium channel ligand [3H]glyburide, to neuronal and muscle preparations. J Pharmacol Exp Ther 1991; 257:1162–1171.

    PubMed  CAS  Google Scholar 

  28. Beckheit SS, Restivo M, Boutjdir M, Henhin R, Gooyandeh K, Assadi M, Khatib S, Gough W, El-Sherif N. Effects of glyburide on ischaemia-induced changes in extracellular potassium and local myocardial activation: A potential new approach to the management of ischaemia-induced malignant ventricular arrythmias. Am Heart J 1990; 119:1025–1033.

    Article  Google Scholar 

  29. Kantor PFW, Coetzee WA, Carmeliet EE, Dennis SC, Opie LH. Reduction of ischaemic K+ loss and arrythmias in rat hearts. Circ Res 1990; 66:478–485.

    PubMed  CAS  Google Scholar 

  30. Singh IS, Chaterjee TK, Ghosh JJ. Modification of morphine antinociceptive response by blood glucose status: Possible involvement of cellular energetics. Eur J Pharmacol 1983; 90:437–439.

    Article  PubMed  CAS  Google Scholar 

  31. Ocana M, Del Pozo E, Barrios M, Robles LI, Baeyens JM. An ATP-dependent potassium channel blocker antagonizes morphine analgesia. Eur J Pharmacol 1990; 186:377–378.

    Article  PubMed  CAS  Google Scholar 

  32. Hopkins WF, Fatherazi S, Cook DL. The oral hypoglycemic agent, U-56324, inhibits the activity of ATP-sensitive potassium channels in cell-free membrane patches from cultured mouse pancreatic B-cells. FEBS Lett 1990; 277:101–104.

    Article  PubMed  CAS  Google Scholar 

  33. Chan SLF, Dunne MJ, Stillings MR. The α2-adrenoceptor antagonist efaroxan modulates ATP-dependent potassium channels in insulin-secreting cells. Eur J Pharmacol 1991; 204:41–48.

    Article  PubMed  CAS  Google Scholar 

  34. Muller M, De Weille JR, Lazdunski M. Chlorpromazine and related phenothiazines inhibit the ATP-sensitive K+ channel. Eur J Pharmacol 1991; 198:101–104.

    Article  PubMed  CAS  Google Scholar 

  35. Carmeliet E. Electrophysiologic and voltage clamp analysis of the effects of Sotalol on isolated cardiac muscle and purkin je fibres. J Pharmacol Exp Ther 1985; 232:817–825.

    PubMed  CAS  Google Scholar 

  36. Bacaner MB, Clay JR, Shrier A, Brochu RM. Potassium channel blockade: A mechanism for suppressing ventricular fibrillation. Proc Natl Acad Sei USA 1986; 83:2223–2227.

    Article  CAS  Google Scholar 

  37. Heisenbuttel RH, Bigger JT. Bretylium tosylate—A newly available drug for ventricular arrythmias. Ann Int Med 1979; 91:229–238.

    Google Scholar 

  38. Gwilt M, Arrowsmith JE, Blackburn KJ, Burges RA, Cross PE, Dalrymple HW, Higgins AJ. UK-68, 798: A novel potent and highly selective class III antiarrhythmic agent which blocks potassium channels in cardiac cells. J Pharmacol Exp Ther 1991; 256:318–324.

    PubMed  CAS  Google Scholar 

  39. Chi L, Mu D-X, Drisoll EM, Lucchesi BR. Antiarrhythmic and electrophysiologic actions of CK-3579 and sematilide in conscious canine model of sudden coronary death. J Cardiovasc Pharmacol 1990; 16:312–324.

    Article  PubMed  CAS  Google Scholar 

  40. Colatsky TJ, Jurkiewicz NK, Follmer CH, Bird LB. Antiarrhythmic efficacy of Wy48,986, a novel class III antiarrhythmic agent, on ventricular arrhythmias induced by coronary ligation in dogs and pigs: Effects on acute, subacute and chronic phase post-ligation arrhythmias. J Mol Cell Cardiol 1989; 21(suppl 12):S10.

    Google Scholar 

  41. Katoh H, Ogawa S, Furuno I, Yoh S, Saeki K, Nakamura Y. Electrophysiologic effects of E-4031, a class III antiarrhythmic agent, on reentrant ventricular arrhythmias in a canine 7 day old infarction model. J Pharmacol Exp Ther 1990; 253:1077–1082.

    PubMed  CAS  Google Scholar 

  42. Carlsson L, Almgren O, Duker G. QTU prolongation and torsade de pointes induced by putative class III antiarrhythmic agents in the rabbit: Etiology and interventions. J Cardiovasc Pharmacol 1990; 16:276–285.

    Article  PubMed  CAS  Google Scholar 

  43. Hondeghem LM, Snyders DJ. Class III antiarrhythmics have a lot of potential but a long way to go. Reduced effectiveness and dangers of reverse use dependence. Circulation 1990; 81:686–690.

    Article  PubMed  CAS  Google Scholar 

  44. Murray NMF, Newsom-Davis J. Treatment with oral 4-aminopyridine in disorders of neuromuscular transmission. Neurology 1981; 31:265–271.

    PubMed  CAS  Google Scholar 

  45. Lundh H, Nilsson O, Rosen I. Effects of 4-aminopyridine on normal and demyelinated mammalian nerve fibres. Nature 1980; 283:570–572.

    Article  Google Scholar 

  46. Sherratt RM, Bostock H, Sears TA. Effects of 4-aminopyridine on normal and demyelinated mammalian nerve fibres. Nature 1980; 283:570–572.

    Article  PubMed  CAS  Google Scholar 

  47. Strong PN. Potassium channel toxins. Pharmacol Ther 1990; 46:137–162.

    Article  PubMed  CAS  Google Scholar 

  48. Castle NS, Haylett DG, Jenkinson DH. Toxins in the characterization of potassium channels. Trends Neurosci 1989; 12:59–65.

    Article  PubMed  CAS  Google Scholar 

  49. Moczydlowski E, Lucchesi K, Ravindran A. An emerging pharmacology of peptide toxins targeted against potassium channels. J Membr Biol 1988; 105:95–111.

    Article  PubMed  CAS  Google Scholar 

  50. Brewster BS, Strong PN. Naturally occurring potassium channel blockers. In: Weston AH, Hamilton TC, eds. Potassium channel modulators: Pharmacological, molecular and clinical aspects. Oxford: Blackwell; 1992:592.

    Google Scholar 

  51. Bidard JN, Gandolfo G, Mourre C, Gottesmann C, Lazdunski M. The brain response to the bee venom peptide MCD: Activation and densensitisation of a hippocampal target. Brain Res 1987; 418:235–244.

    Article  PubMed  CAS  Google Scholar 

  52. Gandolfo G, Gottesmann C, Bidard JN, Lazdunski M. K+ channel openers prevent epilepsy induced by the bee venom peptide MCD. Eur J Pharmacol 1989; 159:329–330.

    Article  PubMed  CAS  Google Scholar 

  53. Cherubini E, Ben-Ari Y, Goh M, Bidard JN, Lazdunski M. Long term potentiation of synaptic transmission in the hippocampus induced by a bee venom peptide. Nature 1987; 328:70–73.

    Article  PubMed  CAS  Google Scholar 

  54. Halliwell JV, Othman IB, Pelchen-Matthews A, Dolly JO. Central action of dendrotoxin: Selective reduction of a transient K conductance in hippocampus and binding to localized acceptors. Proc Natl Acad Sei USA 1986; 83:493–497.

    Article  CAS  Google Scholar 

  55. Bondy CA, Gainer H, Russell JT. Effects of stimulus frequency and potassium channel blockade on the secretion of vasopressin and oxytocin from the neurohypophysis. Neuroendocrinology 1987; 46:258–267.

    Article  PubMed  CAS  Google Scholar 

  56. Rehm H, Lazdunski M. Purification and subunit structure of a putative K+-channel protein: Identification by its binding properties for dendro toxin I. Proc Natl Acad Sei USA 1988; 85:4919–4923.

    Article  CAS  Google Scholar 

  57. Parcej DN, Dolly JO. Dendro toxin acceptor from bovine synaptic plasma membranes. Binding properties, purification and subunit composition of a putative constituent of certain voltage-activated K+ channels. Biochem J 1989; 257:899–903.

    PubMed  CAS  Google Scholar 

  58. Banks BEC, Dempsey CE, Vernon CA, Warner JA, Yamey J. Antiinflammatory activity of bee venom peptide 401 (mast cell degranulating peptide) and compound 48/80 results from mast cell degranulation in vivo. Br J Pharmacol 1990; 99:350–354.

    PubMed  CAS  Google Scholar 

  59. Blatz AL, Magleby KL. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 1986; 323:718–720.

    Article  PubMed  CAS  Google Scholar 

  60. Capiod T, Ogden DC. The properties of calcium-activated potassium channels in guinea-pig isolated hepatocytes. J Physiol 1989; 409:285–295.

    PubMed  CAS  Google Scholar 

  61. Habermann E. Neurotoxicity of apamin and MCD peptide upon central application. Naunyn-Schmiedeberg’s Arch Pharmacol 1977; 300:189–191.

    Article  CAS  Google Scholar 

  62. Vincent JP, Schweitz H, Lazdunski M. Structure-function relationships and the site of action of apamin, a neurotoxic polypeptide of bee venom with an action on the central nervous system. Biochemistry 1975; 14:2521–2525.

    Article  PubMed  CAS  Google Scholar 

  63. Cook NS, Haylett DG. Effects of apamin, quinine and neuromuscular blockers on calcium-activated potassium channels in guinea-pig hepatocytes. J Physiol 1985; 358:373–394.

    PubMed  CAS  Google Scholar 

  64. Demonchaux P, Ganellin CR, Dunn PM, Haylett DG, Jenkinson DH. Search for the pharmacophore of the potassium channel blocker, apamin. Eur J Med Chem 1991; 26:915–920.

    Article  CAS  Google Scholar 

  65. Suarez-Kurtz G, Garcia ML, Kaczorowski GJ. Effects of charybdotoxin and iberitoxin on the spontaneous motility and tonus of different guinea pig smooth muscle tissues. J Pharmacol Exp Ther 1991; 259:439–443.

    PubMed  CAS  Google Scholar 

  66. Jones TR, Charette L, Garcia ML, Kaczorowski GJ. Selective inhibition of guinea pig trachea by charybdotoxin, a potent calcium-activated potassium channel inhibitor. J Pharmacol Exp Ther 1990; 256:697–706.

    Google Scholar 

  67. Ohnishi ST, Katagi H, Katagi C. Inhibition of the in vitro formation of dense cells and of irreversibly sickled cells by charybdotoxin, a specific inhibitor of calcium-activated potassium efflux. Biochim Biophys Acta 1989; 1010:199–203.

    Article  PubMed  CAS  Google Scholar 

  68. Tominaga T, Katagi H, Ohnishi ST. Is calcium-activated potassium efflux involved in the formation of ischaemic brain oedema? Brain Res 1988; 460:376–378.

    Article  PubMed  CAS  Google Scholar 

  69. Price M, Lee SC, Deutsch C. Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc Natl Acad Sei USA 1989; 86:10171–10175.

    Article  CAS  Google Scholar 

  70. Gelfand EW, Or R. Charybdotoxin-sensitive, calcium-dependent membrane potential changes are not involved in human T or B cell activation and proliferation. J Immunol 1991; 147:3452–3458.

    PubMed  CAS  Google Scholar 

  71. Schweitz H, Bidard JN, Maes P, Lazdunski M. Charybdotoxin is a new member of the K+ channel toxin family that includes dendrotoxin I and mast cell degranulating peptide. Biochemistry 1989; 28:9708–9714.

    Article  PubMed  CAS  Google Scholar 

  72. Fosset M, Schmid-Antomarchi H, Hugues M, Romey G, Lazdunski M. The presence in pig brain of an endogenous equivalent of apamin, the bee venom peptide that specifically blocks Ca2+-channels. Proc Natl Acad Sei USA 1984; 81:7228–7232.

    Article  CAS  Google Scholar 

  73. Bourque CW, Brown DA. Apamin and d-tubocurarine block the after-hyperpolarization of rat supraoptic neurosecretory neurons. Neurosci Lett 1987; 82:185–190.

    Article  PubMed  CAS  Google Scholar 

  74. Cherubini E, Ben-Ari Y, Goh M, Bidard JN, Lazdunski M. Long term potentiation of synaptic transmission in the hippocampus induced by a bee venom peptide. Nature 1987; 328:70–73.

    Article  PubMed  CAS  Google Scholar 

  75. Virsolvy-Vergine A, Bruck M, Duf our M, Cauvin A, Lupo B, Bataille D. An endogenous ligand for the central sulphonylurea receptor. FEBS Lett 1988; 242:65–69.

    CAS  Google Scholar 

  76. Furukawa K, Itoh T, Kajiwara M, Kitamura K, Suzuki H, Ito Y, Kuriyama H. Vasodilating actions of 2-nicotinamidoethyl nitrate on porcine and guinea-pig coronary arteries. J Pharmacol Exp Ther 1981; 218:248–259.

    PubMed  CAS  Google Scholar 

  77. Hamilton TC, Weir SW, Weston AH. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein. Br J Pharmacol 1986; 88:103–111.

    PubMed  CAS  Google Scholar 

  78. Bray KM, Newgreen DT, Small RC, Southerton JS, Taylor SG, Weir SW, Weston AH. Evidence that the mechanism of the inhibitory action of pinacidil in rat and guinea pig smooth muscle differs from that of glyceryl trinitrate. Br J Pharmacol 1987; 91:421–429.

    PubMed  CAS  Google Scholar 

  79. Holzman S. Cyclic GMP as a possible mediator of coronary arterial relaxation by nicorandil. J Cardiovasc Pharmacol 1983; 5:364–370.

    Article  Google Scholar 

  80. Meisheri K, Cipkus LA, Taylor CJ. Mechanism of action of minoxidil sulphate-induced vasodilation: A role for increased K+ permeability. J Pharmacol Exp Ther 1988; 245:751–760.

    PubMed  CAS  Google Scholar 

  81. Gross F. Drugs acting on arteriolar smooth muscle—Diazoxide. In: Gross F, ed. Antihypertensive agents. Berlin: Springer-Verlag; 1977:430–443.

    Google Scholar 

  82. Edwards G, Weston AH. Structure-activity relationships of K+ channel openers. Trends Pharmacol Sei 1990; 11:417–422.

    Article  CAS  Google Scholar 

  83. Steensgard-Hansen F, Carlsen JE. Effects of long term treatment with pinacidil and nifedipine on left ventricular anatomy and function in patients with mild to moderate systemic hypertension. Drugs 1988; 36(suppl 7):70.

    Article  Google Scholar 

  84. Goldberg MR, Rockhold RW. Beneficial effects of pinacidil on plasma lipids. J Hypertension 1986; 4(suppl 5):575.

    Google Scholar 

  85. Sakai K, Shiraka Y, Nabuta H. Cardiovascular effect of a new coronary vasodilator 2-nicotinamide ethyl nitrate (SG-75): Comparison with nitroglycerin and diltiazem. J Cardiovasc Pharmacol 1981; 3:139–150.

    Article  PubMed  CAS  Google Scholar 

  86. Kishida H, Murao S. Effect of a new coronary vasodilator, nicorandil, on variant angina pectoris. Clin Pharmacol Ther 1987; 42:166–174.

    Article  PubMed  CAS  Google Scholar 

  87. Allen SL, Boyle JP, Cortijo J, Foster RW, Morgan GP, Small RC. Electrical and mechanical effects of BRL34915 in guinea-pig isolated trachealis. Br J Pharmacol 1986; 89:395–405.

    PubMed  CAS  Google Scholar 

  88. Black JL, Barnes PJ. Potassium channels and airway function: New therapeutic prospects. Thorax 1990; 45:213–218.

    Article  PubMed  CAS  Google Scholar 

  89. den Hertog A, van den Akker J, Nelemans A. Effect of cromakalim on smooth muscle cells of guinea pig taeni caeci. Eur J Pharmacol 1989; 174:287–291.

    Article  Google Scholar 

  90. Piper I, Minshall E, Downing SJ, Hollingsworth M, Sadraei H. Effect of several potassium channel openers and glibenclamide on the uterus of the rat. Br J Pharmacol 1990; 101:901–907.

    PubMed  CAS  Google Scholar 

  91. Malmgren A, Anderson KE, Sjogren C, Andersson PO. Effects of pinacidil and cromakalim (BRL34915) on bladder function in rats with detrusor instability. J Urol 1989; 142:1134–1138.

    PubMed  CAS  Google Scholar 

  92. Malgrem A, Andersson K-E, Andersson PO, Fovaeus M, Sjogren C. Effects of cromakalim (BRL34915) and pinacidil on normal and hypertrophied rat detrusor in vitro. J Urol 1990; 143:828–834.

    Google Scholar 

  93. Alzheimer C, ten Bruggencate G. Actions of BRL 34915 (cromakalim) upon convulsive discharges in guinea-pig hippocampal slices. Naunyn-Schmiedeberg’s Arch Pharmacol 1988; 337:429–434.

    CAS  Google Scholar 

  94. Schmid-Antomarchi H, Amoroso S, Fosset M, Lazdunski M. K+ channel openers activate brain sulphonylurea-sensitive K+ channels and block neurosecretion. Proc Natl Acad Sei USA 1990; 87:3489–3492.

    Article  CAS  Google Scholar 

  95. Murphy KPSJ, Greenfield SA. ATP-sensitive potassium channels counteract anoxia in neurones of the substantia nigra. Exp Brain Res 1991; 84: 355–358.

    Article  PubMed  CAS  Google Scholar 

  96. Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunski M. Glucose, sulphonylureas and neurotransmitter release: Role of ATP-sensitive K+ channels. Science 1990; 247:852–854.

    Article  PubMed  CAS  Google Scholar 

  97. Krnjevic K. Adenosine triphosphate sensitive potassium channels in anoxia. Stroke 1991; 21:190–193.

    Google Scholar 

  98. Gandolfo G, Romettino S, Gottesmann C, van Luijtelaar G, Counen A, Bidard JN, Lazdunski M. K+ channel openers decrease seizures in genetically epileptic rats. Eur J Pharmacol 1989; 167:181–183.

    Article  PubMed  CAS  Google Scholar 

  99. Gandolfo G, Gottesmann C, Bidard JN, Lazdunski M. K+ channel openers prevent epilepsy induced by the bee venom peptide MCD. Eur J Pharmacol 1989; 159:329–330.

    Article  PubMed  CAS  Google Scholar 

  100. Zona C, Tancredi V, Palma E, Pirroni GC, Avoli M. Potassium currents in rat cortical neurons in cultures are enhanced by the antiepileptic drug carbamazepine. Can J Physiol Pharmacol 1990; 68:545–547.

    Article  PubMed  CAS  Google Scholar 

  101. Spuler A, Lehmann-Horn F, Gräfe P. Cromakalim (BRL 34915) restores in vitro the membrane potential of depolarized human skeletal muscle fibres. Naunyn-Schmiedeberg’s Arch Pharmacol 1989; 339:327–331.

    CAS  Google Scholar 

  102. Quasthoff S, Spuler A, Spittelmeister W, Lehmann-Horn F, Gräfe P. K+ channel openers suppress myotonic activity of human skeletal muscle in vitro. Eur J Pharmacol 1990; 186:125–128.

    Article  PubMed  CAS  Google Scholar 

  103. Gräfe P, Quasthoff S, Strupp M, Lehmann-Horn F. Enhancement of K+ conductance improves in vitro the contraction force of skeletal muscle in hypokalemic periodic paralysis. Muscle Nerv 1990; 13:451–457.

    Article  Google Scholar 

  104. Duty S, Weston AH. Potassium channel openers: Pharmacological effects and future uses. Drugs 1990; 6:758–791.

    Google Scholar 

  105. Evans JM, Longman SD. Potassium channel activators. Ann Rep Med Chem 1991; 26:73–82.

    Article  CAS  Google Scholar 

  106. Buckingham RE, Hamilton RC, Howleytt DR, Mooto S, Wilson C. Inhibition by glibenclamide of the vasorelaxant action of cromakalim in the rat. Br J Pharmacol 1989; 97:57–64.

    PubMed  CAS  Google Scholar 

  107. Sanguinetti MC, Scott AL, Zingare CJ, Siegl PKS. BRL 34915 (cromakalim) activates ATP-sensitive K+ current in cardiac muscle. Proc Natl Acad Sei USA 1988; 85:8360–8364.

    Article  CAS  Google Scholar 

  108. Dunne MJ, Yule DI, Gallacher DV, Petersen OH. Comparative study of the effects of cromakalim and diazoxide on membrane potential, [Ca]i? and ATP-sensitive potassium currents in insulin-secreting cells. J Membr Biol 1990; 114:53–60.

    Article  PubMed  CAS  Google Scholar 

  109. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 1989; 245:177–180.

    Article  PubMed  CAS  Google Scholar 

  110. Gelband CH, McCoullough JR, van Breemen C. Modulation of vascular Ca2+-activated K+ channels by cromakalim, pinacidil and glyburide. Biophysic J 1990; 57:509a.

    Google Scholar 

  111. Strong PN, Weir SS, Beech DJ, Hiestand P, Kocher HP. Potassium channel toxins from Leiurus quinquestriatus hebraeus venom: Purification of charybdotoxin and a second toxin which inhibits cromakalim-stimulated 86Rb+ efflux from aortic smooth muscle. Br J Pharmacol 1989; 98:817–826.

    PubMed  CAS  Google Scholar 

  112. Beech DJ, Bolton TB. Properties of the cromakalim-induced potassium conductance in smooth muscle cells isolated from the rabbit portal vein. Br J Pharmacol 1989; 98:851–864.

    PubMed  CAS  Google Scholar 

  113. Kajioka S, Oike M, Kitamura K. Nicorandil opens a calcium-dependent potassium channel in smooth muscle cells of the rat portal vein. J Pharmacol Exp Ther 1990; 245:905–913.

    Google Scholar 

  114. Nakao K, Bolton TB. Cromakalim-induced potassium currents in single dispersed smooth muscle cells of rabbit artery and vein. Br J Pharmacol 1991; 102:155P.

    Google Scholar 

  115. Quasthoff S, Franke C, Hatt H, Richter-Turter M. Two different types of potassium channels in human skeletal muscle activated by potassium channel openers. Neurosci Lett 1990; 119:191–194.

    Article  PubMed  CAS  Google Scholar 

  116. Weston AH, Edwards G. Recent progress in potassium channel opener pharmacology. Biochem Pharmacol 1992; 43:47–54.

    Article  PubMed  CAS  Google Scholar 

  117. Chen G, Suzuki H, Weston AH. Acetylcholine releases endothelium-derived hyperpolarising factors and EDRF from rat blood vessels. Br J Pharmacol 1988; 95:1165–1174.

    PubMed  CAS  Google Scholar 

  118. Olesen SP, Clapham DE, Davies PF. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 1988; 331:168–170.

    Article  PubMed  CAS  Google Scholar 

  119. Nelson MT, Huang Y, Brayden JE, Hescheler J, Standen NB. Activation of K+ channels is involved in arterialdilations to calcitonin gene-related peptide. Nature 1990; 344:770–773.

    Article  PubMed  CAS  Google Scholar 

  120. De Weille J, Schmid-Antomarchi H, Fosset M, Lazdunski M. ATP-sensitive K+ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc Natl Acad Sei USA 1988; 85:1312–1316.

    Article  Google Scholar 

  121. De Weille JR, Schmid-Antomarchi H, Fosset M, Lazdunski M. Regulation of ATP-sensitive K+ channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP. Proc Natl Acad Sei USA 1989; 86:2971–2975.

    Article  Google Scholar 

  122. Kirsch GE, Codina J, Birnbaumer L, Brown AM. Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol 1990; 259.H820–H826.

    PubMed  CAS  Google Scholar 

  123. Nelson MT, Huang Y, Brayden JE, Heschler J, Standen NB. Atrial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature 1990; 344:770–773.

    Article  PubMed  CAS  Google Scholar 

  124. Keung EC, Li Q. Lactate activates ATP-sensitive potassium channels in guinea-pig ventricular myocytes. J Clin Invest 1991; 88:1772–1777.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Strong, P.N. (1994). The Clinical Pharmacology of Potassium Channels. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics