Skip to main content
Log in

Comparative study of the effects of cromakalim (BRL 34915) and diazoxide on membrane potential, [Ca2+] i and ATP-sensitive potassium currents in insulin-secreting cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Patch-clamp and single cell [Ca2+] i measurements have been used to investigate the effects of the potassium channel modulators cromakalim, diazoxide and tolbutamide on the insulin-secreting cell line RINm5F. In intact cells, with an average cellular transmembrane potential of −62±2 mV (n=42) and an average basal [Ca2+] i of 102±6nm (n=37), glucose (2.5–10mm): (i) depolarized the membrane, through a decrease in the outward KATP current, (ii) evoked Ca2+ spike potentials, and (iii) caused a sharp rise in [Ca2+] i . In the continued presence of glucose both cromakalim (100–200 μm) and diazoxide (100 μm) repolarized the membrane, terminated Ca2+ spike potentials and attenuated the secretagogue-induced rise in [Ca2+] i . In whole cells (voltage-clamp records) and excised outside-out membrane patches, both cromakalim and diazoxide enhanced the current by opening ATP-sensitive K+ channels. Diazoxide was consistently found to be more potent than cromakalim. Tolbutamide, a specific inhibitor of ATP-sensitive K+ channels, reversed the effects of cromakalim on membrane potential and KATP currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altszuler, N., Hampshire, J., Morarv, E. 1977. On the mechanism of diazoxide-induced hyperpolarisation.Diabetes 26: 931–935

    Google Scholar 

  • Ashcroft, F.M. 1988. Adenosine 5′-triphosphate sensitive potassium channels.Annu. Rev. Neurosci. 11: 97–118

    Google Scholar 

  • Ashcroft, F.M., Harrison, D.E., Ashcroft, S.J.H. 1984. Glucose induces closure of single potassium channels in isolated rat pancreatic B-cells.Nature (London) 312: 446–448

    Google Scholar 

  • Ashcroft, F.M., Kakei, M., Kelly, R.P., Sutton, R. 1987. ATP-sensitive K+ channels in human isolated pancreatic B-cells.FEBS Lett. 215: 9–12

    Google Scholar 

  • Byerly, L., Hagiwara, S. 1982. Calcium currents in intracellularly perfused nerve cell bodies ofLimnea stagalis.J. Physiol. (London) 322: 503–528

    Google Scholar 

  • Cook, N.S. 1988. The pharmacology of potassium channels and their therapeutic potential.Trends Pharmacol. Sci. 9: 21–28

    Google Scholar 

  • Cook, D.L., Hales, C.N. 1984. Intracellular ATP directly blocks K+ channels in pancreatic B-cells.Nature (London) 311: 271–273

    Google Scholar 

  • Cook, N.S., Quast, U., Weir, S.W. 1988. In vitro and in vivo comparison of two K+ channel openers, diazoxide and BRL 34915.Pfluegers Arch. 411: R49

    Google Scholar 

  • Dunne, M.J. 1989. Protein phosphorylation is required for diazoxide to open ATP-sensitive potassium channels in insulin (RINm5F) secreting cells.FEBS Lett. 250: 262–266

    Google Scholar 

  • Dunne, M.J., Aspinall, R.J., Petersen, O.H. 1990. The effects of cromakalim on ATP-sensitive postassium channels in insulinsecreting cells.Br. J. Pharmacol. 99: 169–175

    Google Scholar 

  • Dunne, M.J., Bullett, M.J., Li, G., Wollheim, C.B., Petersen, O.H. 1989. Galanin activates nucleotide-dependent K+ channels in insulin-secreting cells via a pertussis toxin-sensitive G-protein.EMBO J. 8: 412–420

    Google Scholar 

  • Dunne, M.J., Findlay, I., Petersen, O.H. 1988a. Effects of pyridine nucleotides on the gating of ATP-sensitive potassium channels in insulin-secreting cells.J. Membrane Biol. 102: 205–216

    Google Scholar 

  • Dunne, M.J., Findlay, I., Petersen, O.H., Wollheim, C.B. 1986. ATP-sensitive K+ channels in an insulin-secreting cell line are inhibited byd-glyceraldehyde and activated by membrane permeabilization.J. Membrane Biol. 93: 271–279

    Google Scholar 

  • Dunne, M.J., Ilott, M.C., Petersen, O.H. 1987. Interactions of diazoxide, tolbutamide and ATP4− on nucleotide-dependent K+ channels in an insulin-secreting cell line.J. Membrane Biol. 99: 215–224

    Google Scholar 

  • Dunne, M.J., Petersen, O.H. 1989. Ion channels in insulin-secreting cells; their role in stimulus-secretion coupling.In: Epithelial Secretion of Water and Electrolytes. J.A. Young and P.Y.D. Wong, editors. Springer-Verlag, W. Germany(in press)

    Google Scholar 

  • Dunne, M.J., West-Jordan, J.A., Abraham, R.J., Edwards, R.T.H., Petersen, O.H. 1988b. The gating of nucleotide-sensitive K+ channels in insulin-secreting cells can be modulated by changes in the ratio ATP4−/ADP3− and by nonhydrolyzable derivatives of both ATP and ADP.J. Membrane Biol. 104: 165–172

    Google Scholar 

  • Escande, D., Thuringer, D., Leguern, S., Cavero, I. 1988. The potassium channel opener cromakalim (BRL 34915) activated ATP-dependent K+ channels in isolated cardiac myocytes.Biochem. Biophys. Res. Commun. 154: 620–625

    Google Scholar 

  • Faivre, J.-J., Findlay, I. 1989. Effects of tolbutamide, glibenclamide and diazoxide upon action potentials recorded from rat ventricular muscle.Biochim. Biophys. Acta. 984: 1–5

    Google Scholar 

  • Fenwick, E.M., Marty, A., Neher, E. 1982. Sodium and calcium channels in bovine chromaffin cells.J. Physiol (London) 331: 599–635

    Google Scholar 

  • Findlay, I., Dunne, M.J. 1986. ATP maintains ATP-inhibited K+ channels in an operational state.Pfluegers Arch. 407: 238–240

    Google Scholar 

  • Findlay, I., Dunne, M.J., Petersen, O.H. 1985. ATP-sensitive inward rectifier and voltage- and calcium-activated K+ channels in cultured pancreatic islet cells.J. Membrane Biol. 88: 165–172

    Google Scholar 

  • Grynkiewicz, G., Poenie, M., Tsien, R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties.J. Biol. Chem. 260: 3440–3450

    Google Scholar 

  • Halban, P.A., Praz, G.A., Wollheim, C.B. 1983. Abnormal glucose metabolism accompanies failure of glucose to stimulate insulin release from a pancreatic cell line (RINm5F).Biochem. J. 212: 439–443

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high resolution current recordings from cells and cell-free membrane patches.Pfluegers Arch. 391: 85–100

    Google Scholar 

  • Hamilton, T.C., Weir, S.W., Weston, A.H. 1986. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein.Br. J. Pharmacol. 88: 103–111

    Google Scholar 

  • Henquin, J.C. 1980. Tolbutamide stimulation and inhibition of insulin release: Studies of the underlying ionic mechanism in isolated rat islets.Diabetologia 18: 151–160

    Google Scholar 

  • Henquin, J.C., Charles, S., Nenquin, M., Mathat, F. 1982. Diazoxide and D600 inhibition of insulin release. Distinct mechanisms explain the specificity for different stimuli.Diabetes 31: 776–783

    Google Scholar 

  • Henquin, J.C., Meissner, H.P. 1982. Opposite effects of tolbutamide and diazoxide on86Rb fluxes and membrane potential in mouse pancreatic B-cells.Biochem. Pharmacol. 31: 1407–1413

    Google Scholar 

  • Katayama, M., Hofmann, F., Trautwein, W. 1985. On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea pig heart.Pfluegers Arch. 405: 285–293

    Google Scholar 

  • Matthews, E.K., Sakamoto, Y. 1975. Electrical characteristics of pancreatic islet cells.J. Physiol. (London) 246: 421–437

    Google Scholar 

  • Petersen, O.H. 1988. Control of potassium channels in insulin-secreting cells.ISI Atlas Sci. (Biochem.) 1: 144–149

    Google Scholar 

  • Petersen, O.H., Dunne, M.J. 1989. Regulation of K+ channels plays a crucial role in the control of insulin secretion.Pfluegers Arch. 414: S115-S120

    Google Scholar 

  • Petersen, O.H., Findlay, I. 1987. Electrophysiology of the pancreas.Physiol. Rev. 67: 1054–1116

    Google Scholar 

  • Praz, G.A., Halban, P.A., Wollheim, C.B., Blondel, B., Strauss, A.J., Renold, A.E. 1983. Regulation of immunoreactive-insulin release from a rat cell line (RINm5F).Biochem J. 210: 345–352

    Google Scholar 

  • Quast, U., Cook, N.S. 1989. In vitro and in vivo comparison of two K+ channel openers, diazoxide and cromakalim, and there inhibition by glibenclamide.J. Pharmacol. Exp. Ther. 250: 261–271

    Google Scholar 

  • Ribalet, B., Eddlestone, G.T., Ciani, S. 1988. Metabolic regulation of the K(ATP) and a K(MAXI) channel in the insulin-secreting RINm5F cell.J. Gen. Physiol. 92: 219–237

    Google Scholar 

  • Rorsman, P., Arkhammar, P., Berggren, P.-O. 1986. Voltage-activated Na+ currents and their suppression by phorbol ester in clonal insulin-producing RINm5F cells.Am. J. Physiol. 251: C912-C919

    Google Scholar 

  • Rorsman, P., Trube, G. 1985. Glucose-dependent K+ channels in pancreatic B-cells are regulated by intracellular ATP.Pfluegers Arch. 405: 305–309

    Google Scholar 

  • Sanguinetti, M.C., Scott, A.L., Zingaro, G.J., Siegl, P.K.S. 1988. BRL 34915 (cromakalim) activates ATP-sensitive K+ current in cardiac muscle.Proc. Nat. Acad. Sci USA 85: 8360–8364

    Google Scholar 

  • Schlegel, W., Winiger, B.P., Mollard, P., Voucher, P., Warnin, F., Zahnd, G.R., Wollheim, C.B., Dufy, B. 1987. Oscillations of cytosolic Ca2+ in pituitary cells due to action potentials.Nature (London) 329: 719–721

    Google Scholar 

  • Schlegel, W., Winiger, B.P., Warnin, F., Zahnd, G.R., Wollheim, C.B. 1988. Monitoring receptor mediated regulation of cytosolic calcium in single pituitary cells by dual excitation microfluorimetry.J. Recept. Res. 8: 493–507

    Google Scholar 

  • Schmid-Antomarchi, H., De Weille, J., Fosset, M., Lazdunski, M. 1987. The antidiabetic sulphonylurea glibenclamide is a potent blocker of ATP-modulated K+ channels in insulin-secreting cells.Biochem. Biophys. Res. Commun. 146: 21–25

    Google Scholar 

  • Shetty, S.S., Weiss, G.B. 1987. Dissociation of actions of BRL 34915 in the rat portal vein.Eur. J. Pharmacol. 141: 485–488

    Google Scholar 

  • Standen, N.B., Quayle, J.M., Davies, N.W., Brayden, J.E., Huang, Y., Nelson, M.T. 1989. Hyperpolarizing vasodialators activate ATP-sensitive K+ channels in arterial smooth muscle cells.Science 245: 177–180

    Google Scholar 

  • Trube, G., Rorsman, P., Ohno-Shosaku, T. 1986. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic B-cells.Pfluegers Arch. 407: 493–499

    Google Scholar 

  • Velasco, J.M., Petersen, J.U.H., Petersen, O.H. 1988. Single-channels Ba2+ currents in insulin-secreting cells are activated by glyceraldehyde stimulation.FEBS Lett. 231: 366–370

    Google Scholar 

  • Wollheim, C.B., Biden, T.J. 1987. Signal transduction in insulin secretion: Comparison between fuel and receptor agonist.Ann. NY Acad. Sci. 488: 317–333

    Google Scholar 

  • Yule, D.I., Gallacher, D.V. 1988. Oscillations of cytosolic calcium in single pancreatic acinar cells stimulated by acetylcholine.FEBS Lett. 239: 558–562

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunne, M.J., Yule, D.I., Gallacher, D.V. et al. Comparative study of the effects of cromakalim (BRL 34915) and diazoxide on membrane potential, [Ca2+] i and ATP-sensitive potassium currents in insulin-secreting cells. J. Membrain Biol. 114, 53–60 (1990). https://doi.org/10.1007/BF01869384

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869384

Key Words

Navigation