Skip to main content

Microsporogenesis and Formation of the Male Gametophyte

  • Chapter
Developmental Biology of Flowering Plants

Abstract

The life cycle of flowering plants is characterized by an alternation between a dominant sporophytic generation and a highly reduced gametophytic generation. The seedling plant born of germination of the seed and the adult plant evolved from the seedling, constituting parts of the sporophytic generation, were topics of discussion in the previous chapters. The sporophyte eventually produces flowers. As the name implies, the function of the sporophyte is to generate spores, and it does so by meiosis of the spore mother cells; spores germinate or divide by simple mitotic divisions to produce the gamete-producing generation called the gametophyte. Production of spores and formation of gametes are important events in the sexual reproductive cycle that take place in the flower. Flowering plants have two morphologically different kinds of gametophytes, one that gives rise to male gametes or sperm cells and another that produces female ga-metes or egg cells. The floral organ concerned with male sexual reproduction is the stamen, and the part of the stamen where events of male sexual reproduction occur is the anther. A number of morphological and cellular changes accompany the overall growth of the anther from its primordial stage to the point when sperm cells are produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Goldberg, R.B., Beals, T.P, and Sanders, P.M. 1993. Anther development: basic principles and practical applications. Plant Cell 5: 1217–1229.

    PubMed  CAS  Google Scholar 

  • Levings, C.S. III. 1993. Thoughts on cytoplasmic male sterility in cms-Tmaize. Plant Cell 5: 1285–1290.

    PubMed  Google Scholar 

  • McCormick, S. 1993. Male gametophyte development. Plant Cell 5: 1265–1275.

    PubMed  Google Scholar 

  • Taylor, L.P., and Hepler, P.K. 1997. Pollen germination and tube growth. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 461–491.

    Article  PubMed  CAS  Google Scholar 

  • Twell D., Park, S.K., and Lalanne, E. 1998. Asymmetric division and cell-fate determination in developing pollen. Trends Plant Sci. 3: 305–310.

    Article  Google Scholar 

References

  • Aarts, M.G.M., Hodge, R., Kalantidis, K., Florack, D., Wilson, Z.A., Mulligan, B.J., Stiekema, W.J., Scott, R., and Pereira, A. 1997. The Arabidopsis MALE STERILITY2 protein shares similarity with reductases in elongation/ condensation complexes. Plant J. 12: 615–623.

    Article  PubMed  CAS  Google Scholar 

  • Albani, D., Altosaar, I., Arnison, P.G., and Fabijanski, S.F. 1991. A gene showing sequence similarity to pectin esterase is specifically expressed in developing pollen of Brassica napus.Sequences in its 5’ flanking region are conserved in other pollen-specific promoters. Plant Mol. Biol. 16: 501–513.

    Article  PubMed  CAS  Google Scholar 

  • Beals, T.R, and Goldberg, R.B. 1997. A novel cell ablation strategy blocks tobacco anther dehiscence. Plant Cell 9: 1527–1545.

    PubMed  CAS  Google Scholar 

  • Bedinger, P.A., and Edgerton, M.D. 1990. Developmental staging of maize microspores reveals a transition in developing microspore proteins. Plant Physiol. 92: 474–479.

    Article  PubMed  CAS  Google Scholar 

  • Bouchard, R.A. 1990. Characterization of expressed meiotic prophase repeat transcript clones of Lïlium:meiosis-specific expression, relatedness, and affinities to small heat shock protein genes. Genome 33: 68–79.

    Article  PubMed  CAS  Google Scholar 

  • Brewbaker, J.L., and Kwack, B.H. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Am. J. Bot. 50: 859–865.

    Article  CAS  Google Scholar 

  • Brown, R.C., and Lemmon, B.E. 1991a. Pollen development in orchids. 3. A novel generative pole microtubule system predicts unequal pollen mitosis. J. Cell Sci. 99: 273–281.

    Google Scholar 

  • Brown, R.C., and Lemmon, B.E. 1991b. Pollen development in orchids. 5. A generative cell domain involved in spatial control of the hemispherical cell plate. J. Cell Sci. 100: 559–565.

    Google Scholar 

  • Brown, R.C., and Lemmon, B.E. 1992. Pollen development in orchids. 4. Cytoskeleton and ultrastructure of the unequal pollen mitosis in Phalaenopsis. Protoplasma 167: 183–192.

    Article  Google Scholar 

  • Brown, S.M., and Crouch, M.L. 1990. Characterization of a gene family abundantly expressed in Oenothera organensispollen that shows sequence similarity to polygalacturonase. Plant Cell 2: 263–274.

    PubMed  CAS  Google Scholar 

  • Cai, G., Bartalesi, A., Del Casino, C, Moscatelli, A., Tiezzi, A., and Cresti, M. 1993. The kinesin-immunoreactive homologue from Nicotiana tabacumpollen tubes: biochemical properties and subcellular localization. Planta 191: 496–506.

    Article  CAS  Google Scholar 

  • Callis, J., and Bedinger, P. 1994. Developmentally regulated loss of ubiquitin and ubiquitinated proteins during pollen maturation in maize. Proc. Natl. Acad. Sci. U.S.A. 91: 6074–6077.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.-C.S., and McCormick, S. 1996. Sidecar pollen, an Arabidopsis thalianamale gametophytic mutant with aberrant cell divisions during pollen development. Development 122: 3243–3253.

    PubMed  CAS  Google Scholar 

  • Condeelis, J.S. 1974. The identification of F actin in the pollen tube and protoplast of Amaryllis belladonna. Exp. Cell Res. 88: 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Corriveau, J.L., and Coleman, A.W. 1988. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am. J. Bot. 75: 1443–1458.

    Article  Google Scholar 

  • Cosgrove, D.J., Bedinger, P., and Durachko, D.M. 1997. Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci. U.S.A. 94: 6559–6564.

    Article  PubMed  CAS  Google Scholar 

  • Cresti, M., Pacini, E., Ciampolini, R, and Sarfatti, G. 1977. Germination and early tube development in vitro of Lycopersicum peruvianumpollen: ultrastructural features. Planta 136: 239–247.

    Article  Google Scholar 

  • D’Amato, F. 1984. Role of polyploidy in reproductive organs and tissues. In Embryology of Angiosperms, B.M. Johri, ed. Berlin: Springer-Verlag. pp. 519–566.

    Chapter  Google Scholar 

  • Dewey, R.E., Levings, C.S. III, and Timothy, D.H. 1986. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44: 439–449.

    Article  PubMed  CAS  Google Scholar 

  • Dewey, R.E., Timothy, D.H., and Levings, C.S. III. 1987. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc. Natl. Acad. Sci. U.S.A. 84: 5374–5378.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, H.G., and Heslop-Harrison, J. 1971. The mode of growth of the inner layer of the pollen-grain exine in Lilium. Cytobios 4: 233–243.

    PubMed  CAS  Google Scholar 

  • Dickinson, H.G., and Heslop-Harrison, J. 1977. Ribosomes, membranes and organelles during meiosis in angiosperms. Phil. Trans. Roy. Soc. Lond. 277B: 327–342.

    Google Scholar 

  • Eady, C, Lindsey, K., and Twell, D. 1994. Differential activation and conserved vegetative cell-specific activity of a late pollen promoter in species with bicellular and tricellular pollen. Plant J. 5: 543–550.

    Article  CAS  Google Scholar 

  • Eady, C, Lindsey, K., and Twell, D. 1995. The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell 7: 65–74.

    PubMed  CAS  Google Scholar 

  • Eyal, Y., Curie, C, and McCormick, S. 1995. Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell 7:373–384.

    PubMed  CAS  Google Scholar 

  • Frankis R., and Mascarenhas, J.R 1980. Messenger RNA in the ungerminated pollen grain: a direct demonstration of its presence. Ann. Bot. 45: 595–599.

    CAS  Google Scholar 

  • Górska-Brylass, A. 1967. Transitory callose envelope surrounding the generative cell in pollen grains. Acta Soc. Bot. Polon. 36: 419–422.

    Google Scholar 

  • Hanson, D.D., Hamilton, D.A., Travis, J.L., Bashe, D.M., and Mascarenhas, J.R 1989. Characterization of a pollenspecific cDNA clone from Zea maysand its expression. Plant Cell 1: 173–179.

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison, J. 1962. Origin of exine. Nature 195: 1069–1071.

    Article  CAS  Google Scholar 

  • Heslop-Harrison, J. 1963. An ultrastructural study of pollen wall ontogeny in Sïlene pendula. Grana Palynol. 4: 7–24.

    Article  Google Scholar 

  • Heslop-Harrison, J. 1966. Cytoplasmic connexions between angiosperm meiocytes. Ann. Bot. 30: 221–230.

    Google Scholar 

  • Heslop-Harrison, J. 1968. Pollen wall development. Science 161: 230–237.

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison, J. 1971. Wall pattern formation in angiosperm microsporogenesis. Symp. Soc. Exp. Biol. 25: 277–300.

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison, J. 1987. Pollen germination and pollen-tube growth. Int. Rev. Cytol. 107: 1–78.

    Article  Google Scholar 

  • Heslop-Harrison, J., Heslop-Harrison, Y., Cresti, M., Tiezzi, A., and Ciampolini, F. 1986. Actin during pollen germination. J. Cell Sci. 86: 1–8.

    CAS  Google Scholar 

  • Hülskamp, M., Parekh, N.S., Grini, P., Schneitz,K., Zimmermann, I., Lolle, S.J., and Pruitt, R.E. 1997. The STUDgene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana]. Dev. Biol. 187: 114–1

    Article  PubMed  Google Scholar 

  • Ji, L.-H., and Langridge, P. 1994. An early meiosis cDNA clone from wheat. Mol. Gen. Genet. 243: 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, Y, Kobayashi, E., Sato, S., Hotta, Y, Miyajima, N., Tanaka, A., and Tabata, S. 1994. Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Res. 1: 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Kohno, T., Okagaki T., Kohama K., and Shimmen, T. 1991. Pollen tube extract supports the movement of actin filaments in vitro. Protoplasma 161: 75–77.

    Article  Google Scholar 

  • Kohno, T., and Shimmen, T. 1988a. Mechanism of Ca2+ inhibition of cytoplasmic streaming in lily pollen tubes. J. Cell Sci. 91: 501–509.

    Google Scholar 

  • Kohno, T., and Shimmen, T. 1988b. Accelerated sliding of pollen tube organelles along Characeae actin bundles regulated by Ca2+. J. Cell Biol 106: 1539–1543.

    Article  PubMed  CAS  Google Scholar 

  • Koltunow, A.M., Truettner, J., Cox, K.H., Wallroth, M., and Goldberg, R.B. 1990. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201–1224.

    PubMed  CAS  Google Scholar 

  • Kulikauskas R., Hou A., Muschietti J., and McCormick, S. 1995. Comparisons of diverse plant species reveal that only grasses show drastically reduced levels of ubiquitin monomer in mature pollen. Sex. Plant Re-prod. 8: 326–332.

    Google Scholar 

  • La Cour, L.F. 1949. Nuclear differentiation in the pollen grain. Heredity 3: 319–337.

    Article  Google Scholar 

  • Lafleur, G.J., and Mascarenhas, J.P. 1978. The dependence of generative cell division in Tradescantiapollen tubes on protein and RNA synthesis. Plant Sci. Lett. 12: 251–255.

    Article  CAS  Google Scholar 

  • Li, Y.Q., Chen, F, Linskens, H.F., and Cresti, M. 1994. Distribution of unesterified and esterified pectins in cell walls of pollen tubes of flowering plants. Sex. Plant Reprod. 7: 145–152.

    Google Scholar 

  • Lin, Y, Wang, Y, Zhu, J.-K., and Yang, Z. 1996. Localization of a Rho GTPase implies a role in tip growth and movement of the generative cell in pollen tubes. Plant Cell 8: 293–303.

    PubMed  CAS  Google Scholar 

  • Lin, Y, and Yang, Z. 1997. Inhibition of pollen tube elongation by microinjected anti-RopIPs antibodies suggests a crucial role for Rho-type GTPases in the control of tip growth. Plant Cell 9: 1647–1659.

    PubMed  CAS  Google Scholar 

  • Linskens, H.F. 1967. Isolation of ribosomes from pollen. Planta 73: 194–200.

    Article  CAS  Google Scholar 

  • Malhó, R., and Trewavas, A.J. 1996. Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8: 1935–1949.

    PubMed  Google Scholar 

  • Mandaron, P., Niogret, M.F., Mache, R., and Monéger, F. 1990. In vitroprotein synthesis in isolated microspores of Zea maysat several stages of development. Theor. Appl. Genet. 80: 134–138.

    CAS  Google Scholar 

  • Mariani, C, de Beuckeleer, M., Truettner, J., Leemans, J., and Goldberg, R.B. 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347: 737–741.

    Article  CAS  Google Scholar 

  • Mariani, C, Gossele, V., de Beuckeleer, M., deBlock, M., Goldberg, R.B., de Greef, W, and Leemans, J. 1992. A chimeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357: 384–387.

    Article  CAS  Google Scholar 

  • Mascarenhas, J.P, and Bell, E. 1969. Protein synthesis during germination of pollen. Studies on polyribosome formation. Biochim. Biophys. Acta 179: 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas, J.P, and Bell, E. 1970. RNA synthesis during development of the male gametophyte of Tradescantia. Dev. Biol. 21: 475–490.

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas, J.P, and Lafountain, J. 1972. growth of the pollen tube. Tissue Cell 4: 11–14.

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas, J.P., and Mermelstein, J. 1981. Messenger RNAs: their utilization and degradation during pollen germination and tube growth. Acta Soc. Bot. Polon. 50: 13–20.

    CAS  Google Scholar 

  • Mascarenhas, N.T., Bashe, D., Eisenberg, A., Willing, R.P., Xiao, C.-M., and Mascarenhas, J.P. 1984. Messenger RNAs in corn pollen and protein synthesis during germination and pollen tube growth. Theor. Appl. Genet. 68: 323–326.

    Article  CAS  Google Scholar 

  • McCormick, S. 1991. Molecular analysis of male gametogenesis in plants. Trends Genet. 7: 298–303.

    PubMed  CAS  Google Scholar 

  • Mepham, R.H., and Lane, G.R. 1970. Observations on the fine structure of developing microspores of Tradescantia bracteata. Protoplasma 70: 1–20.

    Article  Google Scholar 

  • Mogensen, H.L. 1992. The male germ unit: concept, composition, and significance. Int. Rev. Cytol. 140: 129–147.

    Article  Google Scholar 

  • Mu, J.-H., Lee, H.-S., and Kao, T.-H. 1994. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflataand the activity of its encoded kinase. Plant Cell 6: 709–721.

    PubMed  CAS  Google Scholar 

  • Murgia, M., Charzynska, M., Rougier, M., and Cresti, M. 1991. Secretory tapetum of Brassica oleraceaL.: polarity and ultrastructural features. Sex. Plant Reprod. 4: 28–35.

    Google Scholar 

  • Muschietti, J., Dircks, L., Vancanneyt, G., and McCormick, S. 1994. LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52RNA hydrates and germinates abnormally and cannot achieve fertilization. Plant J. 6: 321–338.

    Article  PubMed  CAS  Google Scholar 

  • Oakeley, E.J., Podesta A., and Jost, J.-P 1997. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc. Natl. Acad. Sci. U.S.A. 94: 11721–11725.

    Article  PubMed  CAS  Google Scholar 

  • Ohyama T., Iwaikawa, Y, Kobayashi, T., Hotta Y., and Tabata, S. 1992. Isolation of synaptonemal complexes from lily microsporocytes. Plant Sci. 86: 115–124.

    Article  Google Scholar 

  • Palevitz, B.A., and Tiezzi, A. 1992. Organization, composition, and function of the generative cell and sperm cytoskeleton. Int. Rev. Cytol. 140: 149–185.

    Article  Google Scholar 

  • Peddada, L.B., and Mascarenhas, J.P. 1975. The synthesis of 5S ribosomal RNA during pollen development. Dev. Growth Differ. 17: 1–8.

    Article  CAS  Google Scholar 

  • Picton, J.M., and Steer, M.W. 1981. Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantiausing cytochalasin D. j. Cell Sci. 49: 261–272.

    PubMed  CAS  Google Scholar 

  • Picton, J.M., and Steer, M.W. 1982. A model for the mechanism of tip extension in pollen tubes. J. Theor. Biol. 98: 15–20.

    Article  Google Scholar 

  • Picton, J.M., and Steer, M.W. 1983. Membrane recycling and the control of secretory activity in pollen tubes. J. Cell Sci. 63: 303–310.

    PubMed  CAS  Google Scholar 

  • Picton, J.M., and Steer, M.W. 1985. The effects of ruthenium red, lanthanum, fluorescein isothiocyanate and trifluoperazine on vesicle transport, vesicle fusion and tip extension in pollen tubes. Planta 163: 20–26.

    Article  CAS  Google Scholar 

  • Pierson, E.S., Miller, D.D., Callaham, D.A., Shipley, A.M., Rivers, B.A., Cresti M., and Hepler, P.K. 1994. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6: 1815–1828.

    PubMed  CAS  Google Scholar 

  • Polowick, P.L., and Sawhney, V.K. 1993. Differentiation of the tapetum during microsporogenesis in tomato (Lycopersicon esculentumMill.), with special reference to the tapetal cell wall. Ann. Bot. 72: 595–605.

    Article  Google Scholar 

  • Porter, E.K., Parry, D., and Dickinson, H.G. 1983. Changes in poly(A)+ RNA during male meiosis in Lilium. J. Cell Sci. 62: 177–186.

    PubMed  CAS  Google Scholar 

  • Preuss, D., Rhee, S.Y, and Davis, R.W 1994. Tetrad analysis possible in Arabidopsiswith mutation of the QUARTET (QRT) genes. Science 264: 1458–1460.

    Article  PubMed  CAS  Google Scholar 

  • Pring, D.R., and Levings, C.S. III. 1978. Heterogeneity of maize cytoplasmic genomes among male-sterile cytoplasms. Genetics 89: 121–136.

    PubMed  CAS  Google Scholar 

  • Raghavan, V. 1981. A transient accumulation of poly(A)-containing RNA in the tapetum of Hyoscyamus nigerduring microsporogenesis. Dev. Biol. 81: 342–348.

    Article  PubMed  CAS  Google Scholar 

  • Raghavan, V. 1984. Protein synthetic activity during normal pollen development and during induced pollen embryogenesis in Hyoscyamus niger. Can. J. Bot. 62: 2493–2513.

    Article  CAS  Google Scholar 

  • Raghavan, V. 1989. mRNAs and a cloned histone gene are differentially expressed during anther and pollen development in rice (Oryza sativaL.). J. Cell Sci. 92: 217–229.

    PubMed  CAS  Google Scholar 

  • Raghavan, V. 1997. Molecular Embryology of Flowering Plants. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Reinold, S., Hauffe, K.D., and Douglas, C.J. 1993. Tobacco and parsley 4-coumarate:coenzyme A ligase genes are temporally and spatially regulated in a cell type-specific manner during tobacco flower development. Plant Physiol. 101: 373–383.

    PubMed  CAS  Google Scholar 

  • Rhee, S.Y, and Somerville, C.R. 1998. Tetrad pollen formation in quartetmutants of Arabidopsis thalianais associated with persistence of pectic polysaccharides in the pollen mother cell wall. Plant J. 15: 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Risueño, M.C., Giménez-Martin, G., and Garcia, M.I.R. 1973. Structural changes in the cell wall of meiocytes. Cytologia 38: 177–186.

    Google Scholar 

  • Rubinstein, A.L., Prata, R.T.N., and Bedinger, PA. 1995. Developmental accumulation of hydroxyproline and hydroxyproline-containing proteins in Zea mayspollen. Sex. Plant Reprod. 8: 27–32.

    Article  Google Scholar 

  • Russell, S.D. 1984. Ultrastructure of the sperm of Plumbago zeylanica.II. Quantitative cytology and three-dimensional organization. Planta 162: 385–391.

    Article  Google Scholar 

  • Russell, S.D., and Cass, D.D. 1981. Ultrastructure of the sperms of Plumbago zeylanica.I. Cytology and association with the vegetative nucleus. Protoplasma 107: 85–107.

    Article  Google Scholar 

  • Sanger, J.M., and Jackson, WT. 1971. Fine structure study of pollen development in Haemanthus katherinaeBaker. II. Microtubules and elongation of the generative cells. J. Cell Sci. 8: 303–315.

    PubMed  CAS  Google Scholar 

  • Schiefelbein, J., Galway M., Masucci J., and Ford, S. 1993. Pollen tube and root-hair tip growth is disrupted in amutant of Arabidopsis thaliana. Plant Physiol 103: 979–985.

    Article  PubMed  CAS  Google Scholar 

  • Schrauwen, J.A.M., de Groot, P.F.M., van Herpen, M.M.A., van der Lee, T., Reynen, W.H., Weterings, K.A.P., and Wullems, G.J. 1990. Stage-related expression of mRNAs during pollen development in lily and tobacco. Planta 182: 298–304.

    Article  CAS  Google Scholar 

  • Schrauwen, J.A.M., Mettenmeyer, T., Croes, A.F., and Wullems, G.J. 1996. Tapetum-specific genes: what role do they play in male gametophyte development? Acta Bot. Neerl. 45: 1–15.

    CAS  Google Scholar 

  • Sheldon, J.M., and Dickinson, H.G. 1983. Determination of patterning in the pollen wall of Lilium henryi. J. Cell Sci. 63: 191–208.

    PubMed  CAS  Google Scholar 

  • Singh, M.B., O’Neill, P.M., and Knox, R.B. 1985. Initiation and post-meiotic β-galactosidase synthesis during microsporogenesis in oilseed rape. Plant Physiol. 77: 225–228.

    Article  PubMed  CAS  Google Scholar 

  • Spielman, M., Preuss, D., Li, F.-L., Browne, W.E., Scott, R.J., and Dickinson, H.G. 1997. TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development 124: 2645–2657.

    PubMed  CAS  Google Scholar 

  • Staiger, D., Kappeler, S., Müller, M., and Apel, K. 1994. The proteins encoded by two tapetum-specific transcripts, Satap35 and Satap44, from Sinapis albaL. are localized in the exine cell wall layer of developing microspores. Planta 192: 221–231.

    Article  PubMed  CAS  Google Scholar 

  • Staiger, C.J., and Cande, W.Z. 1990. Microtubule distribution in dv, a maize mutant defective in the prophase to metaphase transition. Dev. Biol. 138: 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Staiger, C.J., and Cande, W.Z. 1991. Microfilament distribution in maize meiotic mutants correlates with microtubule organization. Plant Cell 3: 637–644.

    PubMed  Google Scholar 

  • Stern, H., and Hotta, Y. 1977. Biochemistry of meiosis. Phil. Trans. Roy. Soc. Lond. 277B: 277–294.

    Google Scholar 

  • Stern, H., and Hotta, Y. 1984. Chromosome organization in the regulation of meiotic prophase. Symp. Soc. Exp. Biol. 38: 161–175.

    PubMed  CAS  Google Scholar 

  • Stinson, J., and Mascarenhas, J.P. 1985. Onset of alcohol dehydrogenase synthesis during microsporogenesis in maize. Plant Physiol. 77:222–224.

    Article  PubMed  CAS  Google Scholar 

  • Stinson, J.R., Eisenberg, A.J., Willing, R.P., Pe, M.E., Hanson, D.D., and Mascarenhas, J.P. 1987. Genes expressed in the male gametophyte of flowering plants and their isolation. Plant Physiol. 83: 442–447.

    Article  PubMed  CAS  Google Scholar 

  • Süss, J., and Tupý, J. 1979. Poly (A)+ RNA synthesis in germinating pollen of Nicotiana tabacumL. Biol. Plant. 21: 365–371.

    Article  Google Scholar 

  • Takahashi, M. 1995. Three-dimensional aspects of exine initiation and development in Lilium longiflorum(Liliaceae). Am. J. Bot. 82: 847–854.

    Article  Google Scholar 

  • Tanaka, I., and Wakabayashi, T. 1992. Organization of the actin and microtubule cytoskeleton preceding pollen germination. An analysis using cultured pollen protoplasts of Lilium longiflorum. Planta 186: 473–482.

    Article  CAS  Google Scholar 

  • Tanksley, S.D., Zamir, D., and Rick, CM. 1981. Evidence for extensive overlap of sporophytic and gametophytic gene expression of Lycopersicon esculentum. Science 213: 453–455.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J.H., and McMaster, R.D. 1954. Autoradiographic and microphotometric studies of desoxyribose nucleic acid during microgametogenesis in Lilium longiflorum. Chromosoma 6: 480–521.

    Google Scholar 

  • Terada, R., Nakyama, T., Iwabuchi, M., and Shimamoto, K. 1993. A wheat histone H3 promoter confers cell division-dependent and-independent expression of the gus Agene in transgenic rice plants. Plant J. 3: 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Tirlapur, U.K., Cai, C, Faleri, C, Moscatelli, A., Scali, M., Del Casino, C, Tiezzi, A., and Cresti, M. 1995. Confocal imaging and immunogold electron microscopy of changes in distribution of myosin during pollen hydration, germination and pollen tube growth in Nicotiana tabacumL. Eur. J. Cell Biol. 67: 209–217.

    PubMed  CAS  Google Scholar 

  • Tiwari, S.C., and Polito, V.S. 1988. Spatial and temporal organization of actin during hydration, activation, and germination of pollen in Pyrus communisL.: a population study. Protoplasma 147: 5–15.

    Article  Google Scholar 

  • Tsuchiya, T., Toriyama, K., Yoshikawa, M., Ejiri, S.-L, and Hinata, K. 1995. Tapetum-specific expression of the gene for an endo-β-1,3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol. 36: 487–494.

    PubMed  CAS  Google Scholar 

  • Tupý, J. 1977. RNA synthesis and polysome formation in pollen tubes. Biol. Plant. 19: 300–308.

    Article  Google Scholar 

  • Twell, D. 1992. Use of a nuclear-targeted β-glucuronidase fusion protein to demonstrate vegetative cell-specific gene expression in developing pollen. Plant J. 2: 887–892.

    Article  CAS  Google Scholar 

  • Twell, D. 1994. The diversity and regulation of gene expression in the pathway of male gametophyte development. In Molecular and Cellular Aspects of Plant Reproduction. R.J. Scott and A.D. Stead, eds. Cambridge: Cambridge University Press. pp. 83–135.

    Chapter  Google Scholar 

  • Twell, D. 1995. Diphtheria toxin-mediated cell ablation in developing pollen: vegetative cell ablation blocks generative cell migration. Protoplasma 187: 144–154.

    Article  CAS  Google Scholar 

  • Twell, D., Yamaguchi, J., Wing, R.A., Ushiba, J., and Mc-Cormick, S. 1991. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 5: 496–507.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, K., and Tanaka, I. 1995a. The appearance of male gamete-specific histones gH2B and gH3 during pollen development in Lilium longiflorum. Dev. Biol. 169: 210–217.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, K., and Tanaka, I. 1995b. Male gametic nucleus-specific H2B and H3 histones, designated gH2B and gH3, in Lilium longiflorum. Planta 197: 289–295.

    Article  CAS  Google Scholar 

  • Ursin, V.M., Yamaguchi, J., and McCormick, S. 1989. Gametophytic and sporophytic expression of anther-specific genes in developing tomato anthers. Plant Cell 1: 727–736.

    PubMed  CAS  Google Scholar 

  • Walters, M.S. 1985. Meiosis readiness in Lilium. Can. J. Genet. Cytol. 27: 33–38.

    CAS  Google Scholar 

  • Warmke, H.E., and Lee, S.-L.J. 1977. Mitochondrial degeneration in Texas cytoplasmic male-sterile corn anthers. J. Hered. 68: 213–222.

    Google Scholar 

  • Warmke, H.E., and Lee, S.-L.J. 1978. Pollen abortion in T cytoplasmic male-sterile corn (Zea mays):a suggested mechanism. Science 200: 561–563.

    Article  PubMed  CAS  Google Scholar 

  • Weterings, K., Reijnen, W., van Aarssen, R., Kortstee, A., Spijkers, J., van Herpen, M., Schrauwen, J., and Wullems, G. 1992. Characterization of a pollen-specific cDNA clone from Nicotiana tabacumexpressed during microgametogenesis and germination. Plant Mol. Biol. 18: 1101–1111.

    Article  PubMed  CAS  Google Scholar 

  • Weterings, K., Reijnen, W., Wijn, G., van de Heuvel, K., Appeldoorn, N., deKort, G., van Herpen, M, Schrauwen, J., and Wullems, G. 1995. Molecular characterization of the pollen-specific genomic clone NTPg303 and in situ localization of expression. Sex. Plant Reprod. 8: 11–17.

    Article  Google Scholar 

  • Wing, R.A., Yamaguchi, J., Larabell, S.K., Ursin, V.M., and McCormick, S. 1989. Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia. Plant Mol. Biol. 14: 17–28.

    Article  Google Scholar 

  • Worrall, D., Hird, D.L., Hodge, R., Paul, W, Draper, J., and Scott, R. 1992. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4: 759–771.

    PubMed  CAS  Google Scholar 

  • Wunderlich, R. 1954. Ãœber das Antherentapetum mit besonderer Berücksichtigung seiner Kernzahal. Österr. Bot. Z. 101: 1–63.

    Article  Google Scholar 

  • Xu H., Knox, R.B., Taylor, P.E., and Singh, M.B. 1995. Bcp1, a gene required for male fertility in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 92: 2106–2110.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, C., Zee, S.Y., and Yang, H.Y. 1990. Microtubule organization of in situ and isolated generative cells in Zephyranthes grandifloraLindl. Sex. Plant Reprod. 3: 213–218.

    Article  Google Scholar 

  • Zhu, T., Mogensen, H.L., and Smith, S.E. 1992. Heritable paternal cytoplasmic organelles in alfalfa sperm cells: ultrastructural reconstruction and quantitative cytology. Eur. J. Cell Biol. 59: 211–218.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raghavan, V. (2000). Microsporogenesis and Formation of the Male Gametophyte. In: Developmental Biology of Flowering Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1234-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1234-8_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7054-6

  • Online ISBN: 978-1-4612-1234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics