Skip to main content

Commercial Cellulosic Ethanol: The Role of Plant-Expressed Enzymes

  • Chapter
  • First Online:
Biofuels

Abstract

The use and production of biofuels has risen dramatically in recent years Bioethanol comprises 85% of total global biofuels production, with benefits including reduction of greenhouse gas emissions and promotion of energy independence and rural economic development. Ethanol is primarily made from corn grain in the USA and sugarcane juice in Brazil. However, ethanol production using current technologies will ultimately be limited by land availability, government policy, and alternative uses for these agricultural products. Biomass feedstocks are an enormous and renewable source of fermentable sugars that could potentially provide a significant proportion of transport fuels globally. A major technical challenge in making cellulosic ethanol economically viable is the need to lower the costs of the enzymes needed to convert biomass to fermentable sugars. The expression of cellulases and hemicellulases in crop plants and their integration with existing ethanol production systems are key technologies under development that will significantly improve the process economics of cellulosic ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeev R. M.; Goldenkova I. V.; Musiychuk K. A.; Piruzian E. S. Expression of a thermostable bacterial cellulase in transgenic tobacco plants. Russ. J. Genet. 393: 376–382; 2003. doi:10.1023/A:1023227802029.

    Google Scholar 

  • Aden, A. Biochemical production of ethanol from corn stover: 2007 state of technology model. Technical report NREL/TP-510-43205, National Renewable Energy Laboratory, Golden, CO USA. http://www.nrel.gov/docs/fy08osti/43205.pdf (accessed 8 Jan 2009); 2008.

  • Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Lukas, J. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Technical report NREL/TP-510-32438 (http://www.nrel.gov/docs/fy02osti/32438.pdf (accessed 8 Jan 2009); 2002.

  • Agbogbo F. K.; Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol. Lett. 30: 1515–1524; 2008. doi:10.1007/s10529-008-9728-z.

    Article  CAS  PubMed  Google Scholar 

  • Almeida J. R. M.; Modig T.; Petersson A.; Hahn-Hagerdal B.; Liden G.; Gorwa-Grauslund M. F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340–349; 2007. doi:10.1002/jctb.1676.

    Article  CAS  Google Scholar 

  • Anonymous. Enzyme contract concludes successfully. Ethanol Producer June 2005. http://www.ethanolproducer.com/article.jsp?article_id = 201 (accessed 26 Jan 2009); 2005.

  • Anonymous. Food prices: fact versus fiction. Biofuels International 2(5). http://biofuels-news.com/content_item_details.php?item_id = 126 (accessed 4 Jan 2009); 2008.

  • Aspegren K.; Mannonen L.; Ritala A.; Puupponen-Pimia R.; Kurten U.; Salmenkallio-Marttila M.; Kauppinen V.; Teeri T. H. Secretion of a heat-stable fungal β-glucanase from transgenic, suspension-cultured barley cells. Mol. Breed 1: 91–99; 1995. doi:10.1007/BF01682092.

    Article  CAS  Google Scholar 

  • Berlin A.; Maximenko V.; Gilkes N.; Saddler J. Optimization of enzyme complexes for lignocellulosic hydrolysis. Biotechnol. Bioeng. 972: 287–296; 2007. doi:10.1002/bit.21238.

    Article  Google Scholar 

  • Biswas G. C. G.; Ransom C.; Sticklen M. Expression of biologically active Acidothermus ­cellulolyticus endoglucanase in transgenic maize plants. Plant Sci. 7: 617–623; 2006. doi:10.1016/j.plantsci.2006.06.004.

    Article  Google Scholar 

  • Bock R. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr. Opin. Biotechnol. 18: 100–106; 2007. doi:10.1016/j.copbio.2006.12.001.

    Article  CAS  PubMed  Google Scholar 

  • Buanafina M. M. O.; Langdon T.; Hauck B.; Dalton S.; Morris P. Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnol. J. 6: 1–17; 2008. doi:10.1111/j.1467-7652.2007.00317.x.

    Article  Google Scholar 

  • Carlson S. R.; Rudgers G. W.; Zieler H.; Mach J. M.; Luo S.; Grunden E.; Krol C.; Copenhaver G. P.; Preuss D. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLoS Genet. 310: 1965–1974; 2007. doi: 10.1371/journal.pgen.0030179.

    Google Scholar 

  • Carpita N. C.; Defernez M.; Findlay K.; Wells B.; Shoue D. A.; Catchpole G.; Wilson R. H.; McCann M. C. Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 1272: 551–565; 2003. doi:10.1104/pp.010146.

    Google Scholar 

  • Carroll A.; Somerville C. Cellulosic biofuels. Annu. Rev. Plant Biol. 60: 165–182; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Chang M. C. Y. Harnessing energy from plant biomass. Curr. Opin. Chem. Biol. 11: 677–684; 2007. doi:10.1016/j.cbpa.2007.08.039.

    Article  CAS  PubMed  Google Scholar 

  • Chapple C.; Ladisch M.; Meilan R. Loosening lignin’s grip on biofuel production. Nat. Biotechnol. 257: 746–748; 2007. doi:10.1038/nbt0707-746.

    Article  Google Scholar 

  • Chen F.; Dixon R. A. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 257: 759–761; 2007. doi:10.1038/nbt1316.

    Article  Google Scholar 

  • Cheryan M.; Mehaia M. A. Ethanol production in a membrane recycle bioreactor. Conversion of glucose using Saccharomyces cerevisiae. Process Biochem. 19: 204–208; 1984.

    CAS  Google Scholar 

  • Coyle, W. The future of biofuels: a global perspective. Amber Waves 5(5). Available online at http://www.ers.usda.gov/AmberWaves/November07/Features/Biofuels.htm (accessed 7 Jan 2009); 2007.

  • Dai Z.; Hooker B. S.; Anderson D. B.; Thomas S. R. Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco, biochemical characteristics and physiological effects. Transgenic Res. 9: 43–54; 2000a. doi: 10.1023/A:1008922404834.

    Article  CAS  PubMed  Google Scholar 

  • Dai Z.; Hooker B. S.; Anderson D. B.; Thomas S. R. Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting. Mol. Breed. 6: 277–285; 2000b. doi:10.1023/A:1009653011948.

    Article  CAS  Google Scholar 

  • Dai Z.; Hooker B. S.; Quesenberry R. D.; Gao J. Expression of Trichoderma reesei exo-­cellobiohydrolase I in transgenic tobacco leaves and calli. Appl. Biochem. Biotechnol. 77–79: 689–699; 1999. doi:10.1385/ABAB:79:1-3:689.

    Article  PubMed  Google Scholar 

  • Dai Z.; Hooker B. S.; Quesenberry R. D.; Thomas S. R. Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translation modification. Transgenic Res. 14: 627–643; 2005. doi:10.1007/s11248-005-5695-5.

    Article  CAS  PubMed  Google Scholar 

  • Cellulases of mesophilic microorganisms—cellulosome and noncellulosome producers. Ann. N.Y. Acad. Sci. 1125: 267–279; 2008. doi: 10.1196/annals.1419.002.

    Google Scholar 

  • Dale, J. L.; Dugdale, B.; Hafner, G. J.; Hermann, S. R.; Becker, D. K. A construct capable of release in closed circular form from a larger nucleotide sequence permitting site specific expression and/or developmentally regulated expression of selected genetic sequences. International Patent Application WO 01/72996 A1; 2001.

    Google Scholar 

  • Dale, J. L.; Dugdale, B.; Hafner, G. J.; Hermann, S. R.; Becker, D. K.; Harding, R. M.; Chowpongpang, S. Construct capable of release in closed circular form from a larger nucleotide sequence permitting site specific expression and/or developmentally regulated expression of selected genetic sequences. US Patent Application US2004/0121430 A1; 2004.

    Google Scholar 

  • Dunn-Coleman, N.; Landgon, T.; Morris, P. Manipulation of the phenolic acid content and digestibility of plant cell walls by targeted expression of genes encoding cell wall degrading enzymes. US patent application US2003/0024009 A1; 2001.

    Google Scholar 

  • Eggeman T.; Elander R. T. Process and economic analysis of pretreatment technologies. Bioresour. Technol. 96: 2019–2025; 2005. doi:10.1016/j.biortech.2005.01.017.

    Article  CAS  PubMed  Google Scholar 

  • Fulton, L.; Howes, T.; Hardy, J. Biofuels for transport—an international perspective. International Energy Agency, Paris, France. Available online at http://www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf (accessed 23 Jan 2009); 2004.

  • Galbe M.; Sassner P.; Wingren A.; Zacchi G. Process engineering economics of bioethanol production. Adv. Biochem. Eng. Biotechnol. 108: 303–327; 2007. doi: 10.1007/10_2007_063.

    CAS  PubMed  Google Scholar 

  • Galbe M.; Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv. Biochem. Eng. Biotechnol. 108: 41–65; 2007. doi:10.1007/10_2007_070.

    CAS  PubMed  Google Scholar 

  • Goldemberg J.; Guardabasi P. Are biofuels a feasible option? Energy Policy 37: 10–14; 2009. doi:10.1016/j.enpol.2008.08.031.

    Article  Google Scholar 

  • Graham R. L.; Nelson R.; Sheehan J.; Perlack R. D.; Wright L. L. Current and potential U.S. corn stover supplies. Agron. J. 99: 1–11; 2007. doi:10.1016/S0065-2113(04)92001-9.

    Article  Google Scholar 

  • Greer, D. Commercializing Cellulosic Ethanol. Biocycle 49(11):47. Available online at http://www.jgpress.com/archives/_free/001764.html (accessed 4 Jan 2009); 2008.

    Google Scholar 

  • Gressel J. Transgenics are imperative for biofuel crops. Plant Sci. 174: 246–263; 2008. doi:10.1016/j.plantsci.2007.11.009.

    Article  CAS  Google Scholar 

  • Herbers K.; Flint H. J.; Sonnewald U. Apoplastic expression of the xylanase and β (1-3,1-4) glucanase domains of the xyn D gene from Ruminococcus flavefaciens leads to functional polypeptides in transgenic tobacco plants. Mol. Breed. 2: 81–87; 1996. doi: 10.1007/BF00171354.

    Article  CAS  Google Scholar 

  • Herbers K.; Wilke I.; Sonnewald U. A thermostable xylanase from Clostidium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Nat. Biotechnol. 13: 63–66; 1995. doi:10.1038/nbt0195-63.

    Article  CAS  Google Scholar 

  • Himmel M. E.; Ding S.-Y.; Johnson D. K.; Adney W. S.; Nimlos M. R.; Brady J. W.; Foust T. D. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804–807; 2007. doi:10.1126/science.1137016.

    Article  CAS  PubMed  Google Scholar 

  • Ho N. W. Y.; Chen Z.; Brainard A. P. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 645: 1852–1859; 1998.

    Google Scholar 

  • Hood E. E.; Love R.; Lane J.; Bray J.; Clough R.; Pappu K.; Drees C.; Hood K. R.; Yoon S.; Ahmad A.; Howard J. A. Subcellular targeting is a key condition for high level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol. J. 5: 709–719; 2007. doi:10.1111/j.1467-7652.2007.00275.x.

    Article  CAS  PubMed  Google Scholar 

  • Hooker B. S.; Dai Z.; Anderson D. B.; Quesenberry R. D.; Ruth M. F.; Thomas S. R. Production of microbial cellulases in transgenic crop plants. In: HimmelM. E.; BakerJ.O.; SaddlerJ. N. (eds) Glycosyl hydrolases for biomass conversion. American Chemical Society, Washington, DC, pp 55–90; 2001.

    Google Scholar 

  • Horvath H.; Huang J.; Wong O.; Kohl E.; Okita T.; Kannagara C. G.; von Wettstein D. The production of recombinant proteins in transgenic barley grains. Proc. Natl. Acad. Sci. U. S. A. 974: 1914–1919; 2000. doi:10.1073/pnas.030527497.

    Article  Google Scholar 

  • Houghton, J.; Weatherwax, S.; Ferrell, J. Breaking the biological barriers to cellulosic ethanol: a joint research agenda. US Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy 206 pp; 2006.

    Google Scholar 

  • Hyunjong B.; Lee D.-S.; Hwang I. Dual targeting of a xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J. Exp. Bot. 571: 161–169; 2006. doi:10.1093/jxb/erj019.

    Google Scholar 

  • Ingram L. O.; Aldrich H. C.; Borges A. C. C.; Causey T. B.; Martinez A.; Morales F.; Saleh A.; Underwood S. A.; Yomano L. P.; York S. W.; Zaldivar J.; Zhou S. Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15: 855–866; 1999. doi:10.1021/bp9901062.

    Article  CAS  PubMed  Google Scholar 

  • Jensen L. G.; Olsen O.; Kops O.; Wolf N.; Thomsen K. K.; von Wettstein D. Transgenic barley expressing a protein-engineered, thermostable (1-3,1-4)-β-glucanase during germination. Proc. Natl. Acad. Sci. U. S. A. 93: 3487–3491; 1996. doi:10.1073/pnas.93.8.3487.

    Article  CAS  PubMed  Google Scholar 

  • Jin R.; Richter S.; Zhong R.; Lamppa G. K. Expression and import of an active cellulase from a thermophilic bacterium into the chloroplast both in vitro and in vivo. Plant Mol. Biol. 51: 493–507; 2003. doi:10.1023/A:1022354124741.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen H.; Kristensen J. B.; Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod. Biorefin. 1: 119–134; 2007. doi:10.1002/bbb.4.

    Article  Google Scholar 

  • Kawazu T.; Ohta T.; Ito K.; Shibata M.; Kimura T.; Saaka K.; Ohmiya K. Expression of a Ruminococcus albus cellulase gene in tobacco suspension cells. J. Ferment. Bioeng. 823: 205–209; 1996. doi:10.1016/0922-338X(96)88809-X.

    Article  Google Scholar 

  • Kawazu T.; Sun J.-L.; Shibata M.; Kimura T.; Saaka K.; Ohmiya K. Expression of a bacterial endoglucanase gene in tobacco increases digestibility of its cell wall fibers. J. Biosci. Bioeng. 884: 421–425; 1999. doi:10.1016/S1389-1723(99)80220-5.

    Article  Google Scholar 

  • Kim S.; Dale B. E. Global potential biofuel production from wasted crops and crop residues. Biomass Bioenerg. 26: 361–375; 2004. doi:10.1016/j.biombioe.2003.08.002.

    Article  Google Scholar 

  • Kim T. H.; Lee Y. Y. Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresour. Technol. 97: 224–232; 2006. doi:10.1016/j.biortech.2005.02.040.

    Article  CAS  PubMed  Google Scholar 

  • Kimura T.; Mizutani T.; Tanaka T.; Koyama T.; Sakka K.; Ohmiya K. Molecular breeding of transgenic rice expressing a xylanase domain of the xynA gene from Clostridium thermocellum. Appl. Microbiol. Biotechnol. 62: 374–379; 2003. doi:10.1007/s00253-003-1301-z.

    Article  CAS  PubMed  Google Scholar 

  • Kline, K. L.; Oladosu, G. A.; Wolfe, A. K.; Perlack, R. D.; Dale, V. H.; McMahon, M. Biofuel feedstock assessment for selected countries. Report ORNL/TM-2007/224 prepared by Oak Ridge National Laboratory for the US Department of Energy (DOE). Available online at http://www.osti.gov/bridge/purl.cover.jsp;jsessionid=FD7D1D5D71C9ACFE53C44AE856766653?purl=/924080-y8ATDg/ (accessed 4 Jan 2009); 2008.

  • Koonin S. E. Getting serious about biofuels. Science 311: 435; 2006. doi:10.1126/science.1124886.

    Article  CAS  PubMed  Google Scholar 

  • Lavelle, M.; Garber, K. Fixing the food crisis. US News and World Report, May 19 2008, pp 36–42; 2008.

    Google Scholar 

  • Lebel E. G.; Heifetz P. B.; Ward E. R.; Uknes S. J. Transgenic plant expressing a cellulase. US Patent 7361806 B2; 2008.

    Google Scholar 

  • Li L.; Zhou Y.; Cheng X.; Sun J.; Marita J. M.; Ralph J.; Chiang V. L. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc. Natl. Acad. Sci. U. S. A. 1008: 4939–4944; 2003. doi:10.1073/pnas.0831166100.

    Article  Google Scholar 

  • Li X.; Weng J.-K.; Chapple C. Improvement of biomass through lignin modification. Plant J. 54: 569–581; 2008. doi:10.1111/j.1365-313X.2008.03457.x.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y.; Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627–642; 2006. doi:10.1007/s00253-005-0229-x.

    Article  CAS  PubMed  Google Scholar 

  • Litzen, D.; Dixon, D.; Gilcrease, P.; Winter, R. Pretreatment of biomass for ethanol production. US Patent Application US2006/0141584 A1; 2006.

    Google Scholar 

  • Liu J.-H.; Selinger L. B.; Cheng K.-J.; Beauchemin K. A.; Moloney M. M. Plant seed oil-bodies as an immobilization matrix for recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Mol. Breed. 3: 463–470; 1997. doi:10.1023/A:1009604119618.

    Article  CAS  Google Scholar 

  • Lu Y.; Zhang Y.-H. P.; Lynd L. R. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc. Natl. Acad. Sci. U. S. A. 10344: 16165–16169; 2006. doi:10.1073/pnas.0605381103.

    Article  Google Scholar 

  • Lynd L. R.; Laser M. S.; Bransby D.; Dale B. E.; Davison B.; Hamilton R.; Himmel M.; Keller M.; McMillan J. D.; Sheehan J.; Wyman C. E. How biotech can transform biofuels. Nat. Biotechnol. 262: 169–172; 2008. doi: 10.1038/nbt0208-169.

    Google Scholar 

  • Lynd L. R.; van Zyl W. H.; McBride J. E.; Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16: 577–583; 2005. doi:10.1016/j.copbio.2005.08.009.

    Article  CAS  PubMed  Google Scholar 

  • Martinot, E. et al. Renewables 2007: World Status Report. Renewable energy policy network for the 21st century (REN21) and Worldwatch Institute, Washington, DC, USA. Available online at http://www.worldwatch.org/files/pdf/renewables2007.pdf (accessed 15 Jan 2009); 2007.

  • McCann M. C.; Carpita N. C. Designing the deconstruction of plant cell walls. Curr. Opin. Plant Biol. 11: 314–320; 2008. doi:10.1016/j.pbi.2008.04.001.

    Article  CAS  PubMed  Google Scholar 

  • Mei C.; Park S. H.; Sabzikar R.; Qi C.; Ransom C.; Sticklen M. Green tissue-specific production of a microbial endo-cellulase in maize (Zea mays L.) endoplasmic-reticulum and mitochondria converts cellulose to fermentable sugars. J. Chem. Technol. Biotechnol 84: 689–695; 2009.

    Article  CAS  Google Scholar 

  • Merino S. T.; Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol. 108: 95–120; 2007. doi:10.1007/10_2007_066.

    CAS  PubMed  Google Scholar 

  • Murashima K.; Kosugi A.; Doi R. H. Synergistic effects of cellulosmal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation. J. Bacteriol. 1855: 1518–1524; 2003. doi:10.1128/JB.185.5.1518-1524.2003.

    Article  Google Scholar 

  • Nuutila A. M.; Ritala A.; Skadsen R. W.; Mannonen L.; Kauppinen V. Expression of fungal thermotolerant endo-1,4-β-endoglucanase in transgenic barley seeds during germination. Plant Mol. Biol. 41: 777–783; 1999. doi: 10.1023/A:1006318206471.

    Article  CAS  PubMed  Google Scholar 

  • Ohgren K.; Bura R.; Saddler J.; Zacchi G. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol. 98: 2503–2520; 2007. doi:10.1016/j.biortech.2006.09.003.

    Article  PubMed  Google Scholar 

  • Oraby H.; Venkatesh B.; Dale B.; Ahmad R.; Ransom C.; Oehmke J.; Sticklen M. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgen. Res. 16: 739–749; 2007. doi:10.1007/s11248-006-9064-9.

    Article  CAS  Google Scholar 

  • Panagiotou G.; Olsson L. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng. 962: 250–258; 2007. doi:10.1002/bit.21100.

    Article  Google Scholar 

  • Patel M.; Johnson J. S.; Brettell R. L. S.; Jacobsen J.; Xue G. -P. Transgenic barley expressing a fungal xylanase gene in the endosperm of developing grains. Mol. Breed. 6: 113–123; 2000. doi:10.1023/A:1009640427515.

    Article  CAS  Google Scholar 

  • Phillipson B. A. Expression of a hybrid (1-3,1-4)-β-glucanase in barley protoplasts. Plant Sci. 91: 195–206; 1993. doi:10.1016/0168-9452(93)90142-M.

    Article  CAS  Google Scholar 

  • Ransom C.; Balan V.; Biswas G.; Dale B.; Crockett E.; Sticklen M. Heterologous Acidothermus cellulolyticus 1,4-β-endoglucanase E1 produced within corn biomass converts corn stover into glucose. Appl. Biochem. Biotechnol. 136–140: 207–219; 2007. doi:10.1007/s12010-007-9053-3.

    Article  Google Scholar 

  • Rath, A. Focus on raw materials could reap big rewards. Bioenergy Business July/August 2007, pp 16–18; 2007.

    Google Scholar 

  • Sainz, M. B.; Dale, J. Towards cellulosic ethanol from sugarcane bagasse. Proceedings of the Australian Society of Sugar Cane Technologists 31: 18–23; 2009.

    Google Scholar 

  • Sanchez O. J.; Cardona C. A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99: 5270–5295; 2008. doi:10.1016/j.biortech.2007.11.013.

    Article  CAS  PubMed  Google Scholar 

  • Somerville C. Biofuels. Curr. Biol. 174: R115–R119; 2007. doi:10.1016/j.cub.2007.01.010.

    Google Scholar 

  • Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science 315: 801–804; 2007. doi:10.1126/science.1139612.

    Article  CAS  PubMed  Google Scholar 

  • Sticklen M. Plant genetic engineering to improve biomass characteristics for biofuels. Curr. Opin. Biotechnol. 17: 315–319; 2006. doi:10.1016/j.copbio.2006.05.003.

    Article  CAS  PubMed  Google Scholar 

  • Sticklen M. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat. Rev. Genet. 9: 433–443; 2008. doi:10.1038/nrg2336.

    Article  CAS  PubMed  Google Scholar 

  • Streatfield S. J. Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol. J. 5: 2–15; 2007. doi:10.1111/j.1467-7652.2006.00216.x.

    Article  CAS  PubMed  Google Scholar 

  • Sun J.; Kawazu T.; Kimura T.; Karita S.; Sakka K.; Ohmiya K. High expression of the xylanase B gene from Clostridium stercorarium in tobacco cells. J. Ferment. Bioeng. 843: 219–223; 1997. doi: 10.1016/S0922-338X(97)82057-0.

    Article  Google Scholar 

  • Sun Y.;Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1–11; 2002. doi:10.1016/S0960-8524(01)00212-7.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y.; Cheng J. J.; Himmel M. E.; Skory C. D.; Adney W. S.; Thomas S. R.; Tisserat B.; Nishimura Y.; Yamamoto Y. T. Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. Bioresour. Technol. 98: 2866–2872; 2007. doi:10.1016/j.biortech.2006.09.055.

    Article  CAS  PubMed  Google Scholar 

  • Syngenta. The potential of corn amylase for helping to meet US energy needs. http://www.­syngenta.com/en/corporate_responsibility/pdf/Fact%20Sheet%20The%20Potental%20of%20CA%20for%20Helping%20Meet%20US%20Energy%20Needs.pdf (accessed 7 February 2009); 2009.

  • Taherzadeh M. J.; Karimi K. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 24: 707–738; 2007.

    Google Scholar 

  • Taylor L. E.; Dai Z.; Decker S. R.; Brunecky R.; Adney W. S.; Ding S.-Y.; Himmel M. E. Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol. 268: 413–424; 2008. doi:10.1016/j.tibtech.2008.05.002.

    Article  Google Scholar 

  • Teymouri F.; Alizadeh H.; Laureano-Perez L.; Dale B.; Sticklen M. Effects of ammonia fiber explosion treatment on activity of endoglucanase from Acidothermus cellulolyticus in transgenic plant. Appl. Biochem. Biotechnol. 113–116: 1183–1191; 2004. doi:10.1385/ABAB:116:1-3:1183.

    Article  PubMed  Google Scholar 

  • Tyner W. The US ethanol and biofuels boom: its origins, current status and future prospects. Bioscience 587: 646–653; 2008. doi:10.1641/B580718.

    Article  Google Scholar 

  • US Department of Energy. Biomass program: biomass feedstock composition and property database. Available online at http://www1.eere.energy.gov/biomass/feedstock_databases.html (accessed 5 February 2009); 2009.

  • Viikari L.; Alapuranen M.; Puranen T.; Vehmaanpera J.; Siika-aho M. Thermostable enzymes in lignocellulose hydrolysis. Adv. Biochem. Eng. Biotechnol. 108: 121–145; 2007. doi:10.1007/10_2007_065.

    CAS  PubMed  Google Scholar 

  • Vogel J. Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 11: 301–307; 2008. doi:10.1016/j.pbi.2008.03.002.

    Article  CAS  PubMed  Google Scholar 

  • Waltz E. Cellulosic ethanol booms despite unproven business models. Nat. Biotechnol. 261: 8–9; 2008. doi:10.1038/nbt0108-8.

    Article  Google Scholar 

  • Wang M.; Wu M.; Huo H. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ. Res. Lett. 2: 024001; 2007(13 pp).

    Article  Google Scholar 

  • Weng J. K.; Li X.; Bonawitz N. D.; Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr. Opin. Biotechnol. 19: 166–172; 2008. doi:10.1016/j.copbio.2008.02.014.

    Article  CAS  PubMed  Google Scholar 

  • Wyman C. E. What is (and is not) vital in advancing cellulosic ethanol. Trends Biotechnol. 254: 153–157; 2007. doi:10.1016/j.tibtech.2007.02.009.

    Article  Google Scholar 

  • Wyman C. E.; Dale B. E.; Elander R. T.; Holtzapple M.; Ladisch M. R.; Lee Y. Y. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96: 1959–1966; 2005a. doi:10.1016/j.biortech.2005.01.010.

    Article  CAS  PubMed  Google Scholar 

  • Wyman C. E.; Dale B. E.; Elander R. T.; Holtzapple M.; Ladisch M. R.; Lee Y. Y. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour. Technol. 96: 2026–2032; 2005b. doi: 10.1016/j.biortech.2005.01.018.

    Article  CAS  PubMed  Google Scholar 

  • Xue G. P.; Patel M.; Johnson J. S.; Smyth D. J.; Vickers C. E. Selectable marker-free transgenic barley producing a high level of cellulase (1,4-β-glucanase) in developing grains. Plant Cell. Rep. 21: 1088–1094; 2003. doi:10.1007/s00299-003-0627-4.

    Article  CAS  PubMed  Google Scholar 

  • Yang B.; Wyman C. E. BSA Treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng. 944: 611–617; 2006. doi: 10.1002/bit.20750.

    Article  Google Scholar 

  • Yang B.; Wyman C. E. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioproc. Biorefin. 2: 26–40; 2008. doi:10.1002/bbb.49.

    Article  CAS  Google Scholar 

  • Yomano L. P.; York S. W.; Ingram L. O. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20: 132–138; 1998. doi:10.1038/sj.jim.2900496.

    Article  CAS  PubMed  Google Scholar 

  • Yu L.-X.; Gray B. N.; Rutzke C. J.; Walker L. P.; Wilson D. B.; Hanson M. R. Expression of thermostable microbial cellulases in the chloroplasts of nicotine-free tobacco. J. Biotechnol. 131: 362–369; 2007a. doi:10.1016/j.jbiotec.2007.07.942.

    Article  CAS  PubMed  Google Scholar 

  • Yu W.; Han F.; Gao Z.; Vega J. M.; Birchler J. A. Construction and behavior of engineered minichromosomes in maize. Proc. Natl. Acad. Sci. U. S. A. 10421: 8924–8929; 2007b. doi:10.1073/pnas.0700932104.

    Article  Google Scholar 

  • Zeigler M. T.; Thomas S. R.; Danna K. J. Accumulation of a thermostable endo-1,4-β-d-glucanase in the apoplast of Arabidopsis thaliana leaves. Mol. Breed. 6: 37–46; 2000. doi: 10.1023/A:1009667524690.

    Article  Google Scholar 

  • Zhang M.; Eddy C.; Deanda K.; Finkelstein M.; Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267: 240–243; 1995. doi:10.1126/science.267.5195.240.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y.-H. P.; Himmel H. E.; Mielenz J. R. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24: 452–481; 2006. doi:10.1016/j.biotechadv.2005.10.002.

    Article  CAS  Google Scholar 

  • Zhang Y.-H. P.; Lynd L. R. Toward an aggregated understanding of enzymatic hydrolysis of ­cellulose: non-complexed cellulase systems. Biotechnol. Bioeng. 887: 797–824; 2004. doi:10.1002/bit.20282.

    Article  Google Scholar 

  • Ziegelhoffer T.; Raasch J. A.; Austin-Phillips S. Dramatic effects of truncation and sub-cellular targeting on the accumulation of recombinant microbial cellulase in tobacco. Mol. Breed. 8: 147–158; 2001. doi:10.1023/A:1013338312948.

    Article  CAS  Google Scholar 

  • Ziegelhoffer T.; Will J.; Austin-Phillips S. Expression of bacterial cellulase genes in transgenic alfalfa (Mendicago sativa L.), potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.). Mol. Breed. 5: 309–318; 1999. doi:10.1023/A:1009646830403.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to my colleagues Nancy Nye and Sherrica Morris for help in accessing references and to Karen Bruce, Terry Stone, John Steffens, Tom Bregger, Larry Gasper, and Scott Betts for helpful comments on the manuscript. My apologies to those colleagues whose publications I have not been able to include due to space constraints. The Syngenta Centre for Sugarcane Biofuels Development is supported by Syngenta, the Queensland University of Technology, Farmacule Bioindustries and by a grant from the National and International Research Alliances Program of the Queensland State government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel B. Sainz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sainz, M.B. (2011). Commercial Cellulosic Ethanol: The Role of Plant-Expressed Enzymes. In: Tomes, D., Lakshmanan, P., Songstad, D. (eds) Biofuels. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7145-6_13

Download citation

Publish with us

Policies and ethics