Skip to main content
Log in

Heterologous Acidothermus cellulolyticus 1,4-β-endoglucanase E1 produced within the corn biomass converts corn stover into glucose

  • Session 1B: Plant Biotechnology And Genomics
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-β glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic® (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bordetsky, A., Hwang, R., Korin, A., Lovaas, D., and Tonachel, L. (2005), Issue Paper, Natural Resources Defense Council, Institute for the Analysis of Global Security.

  2. Renewable Fuels Association (2005), Ethanol Industry Outlook Report, Washington, DC.

  3. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., and Erbach, D. C. (2005), Technical Report, US Department of Energy and US Department of Agriculture, Oak Ridge, TN.

  4. Kim, S. and Dale, B. E. (2004), Biomass Bioenergy 26, 361–375.

    Article  Google Scholar 

  5. Greene, N., Celik, F. E., Dale, B., et al. (2004), Issue Paper, Natural Resources Detense Council.

  6. Singh, S. P., Ekanem, E., Wakefield, T., and Comer, S. (2003), Int. Food Agribusiness Manage. Rev. 5, 1–15.

    Google Scholar 

  7. Knauf, M. and Moniruzzaman, M. (2004), Int. Sugar. J. 106, 147–150.

    CAS  Google Scholar 

  8. Sticklen, M. B. (2004), 2nd International Ukrainian Conference on Biomass for Energy, Kyiv, Ukraine, 20–22 September 2004, pp. 133.

  9. Ingledew, W. M. (1995), In: The Alcohol Textbook. Lyons, T. P., Kelsall, D., and Murtagh, J., (eds.), Nottingham University Press, Nottingham, UK, pp. 55–79.

    Google Scholar 

  10. Lynd, L. R., van Zyl, W. H., McBride, J. E., and Laser, M. (2005), Curr. Opin. Biotechnol. 16, 577–583.

    Article  CAS  Google Scholar 

  11. Kabel, M. A., van der Maarel, M. J. E. C., Klip, G., Voragen, A. G. J., and Schols, H. A. (2006), Biotechnol. Bioeng. 93, 56–63.

    Article  CAS  Google Scholar 

  12. Ziegler, M. T., Thomas, S. R., and Danna, K. J. (2000), Mol. Breeding 6, 37–46.

    Article  CAS  Google Scholar 

  13. Ziegelhoffer, T., Raasch, J. A., and Austin-Phillips, S. (2001), Mol. Breeding 8, 147–158.

    Article  CAS  Google Scholar 

  14. Howard, R. L., Abotsi, E., Jansen van Rensburg, E. L., and Howard, S. (2003), Afr. J. Biotechnol. 2, 602–619.

    CAS  Google Scholar 

  15. Wyman, C. E. (1999), Annu. Rev. Energy Environ. 24, 189–226.

    Article  Google Scholar 

  16. Horn, M. E., Woodard, S. L., and Howard, J. A. (2004), Plant Cell Rep. 22, 711–720.

    Article  CAS  Google Scholar 

  17. Hong, C.-Y., Cheng, K.-J., Tseng, T.-H., Wang, C.-S., Liu, L.-F., and Yu, S.-M. (2004), Transgenic Res. 13, 29–39.

    Article  CAS  Google Scholar 

  18. Chiang, C.-M., Yeh, F.-S., Huang, L.-F., et al. (2005), Mol. Breeding 15, 125–143.

    Article  CAS  Google Scholar 

  19. Liu, H. L., Li, W. S., Lei, T., et al. (2005), Acta Biochim. Biophys. Sin. 37, 153–158.

    Article  CAS  Google Scholar 

  20. Schulman, A. H. (2002), In: Plant Biotechnology and Transgenic Plants, Oksman-Caldenetey, K.-M. and Barz, W. H. (eds.), Basel, New York, pp. 255–282.

  21. Sahrawy, M., Avila, C., Chueca, A., Canovas, F. M., and Lopez-Gorge, J. (2004), J. Exp. Bot. 55, 2495–2503.

    Article  CAS  Google Scholar 

  22. Qi, B., Fraser, T., Mugford, S., Dobson, G., et al. (2004), Nat. Biotech. 22, 739–745.

    Article  CAS  Google Scholar 

  23. Baker, J. O., Adney, W. S., Nieves, R. A., Thomas, S. R., Wilson, D. B., and Himmel, M. E. (1994), Appl. Biochem. Biotechnol. 45–46, 245–256.

    Article  Google Scholar 

  24. Tucker, M. P., Mohegheghi, A., Grohmann, K., and Himmel, M. E. (1989), Bio/Technol. 7, 817–820.

    Article  CAS  Google Scholar 

  25. Dai, Z., Hooker, B. S., Anderson, D. B., and Thomas, S. R. (2000), Mol. Breeding 6, 277–285.

    Article  CAS  Google Scholar 

  26. Dai, Z., Hooker, B. S., Anderson, D. B., and Thomas, S. R. (2000), Transgenic Res. 9, 43–54.

    Article  CAS  Google Scholar 

  27. Xu, D., Duan, X., Wang, B., Hong, B., Ho, T., and Wu, R. (1996), Plant Physiol. 110, 249–257.

    Google Scholar 

  28. Cao, J., Duan, X., McElroy, D., and Wu, R. (1992), Plant Cell Rep. 11, 586–591.

    Article  CAS  Google Scholar 

  29. Armstrong, C. L., Green, C. E., and Phillips, R. L. (1991), Maize Genet. Coop. Newslett. 65, 92–93.

    Google Scholar 

  30. Vain, P., McMullen, M. D., and Finer, J. J. (1993), Plant Cell Rep. 12, 84–88.

    Article  Google Scholar 

  31. Chu, C. C., Wang, C. C., Sun, C. S., Hus, C., Yin, K. C., and Chu, C. Y. (1975), Sci. Sinica 18, 659–668.

    Google Scholar 

  32. Armstrong, C. L. and Green, C. E. (1985), Planta 164, 207–214.

    Article  CAS  Google Scholar 

  33. Zhang, S., Warkentin, D., Sun, B., Zhong, H., and Sticklen, M. (1996), Theor. Appl. Genet. 92, 752–761.

    Article  Google Scholar 

  34. Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., and Allard, R. W. (1984), Proc. Natl. Acad. Sci. USA 81, 8014–8018.

    Article  CAS  Google Scholar 

  35. Bradford, M. (1976), Anal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  36. Teymouri, F., Alizadeh, H., Laureano-Perez, L., Dale, B. E., and Sticklen, M. B. (2004), Appl. Biochem. Biotechnol. 116, 1183–1192.

    Article  Google Scholar 

  37. Ragauskas, A. J., Williams, C. K., Davison, B. H., et al. (2006), Science 311, 484–489.

    Article  CAS  Google Scholar 

  38. Sticklen, M. B. (2006), Curr. Opin. Biotechnol. 17(3), 315–319.

    Article  CAS  Google Scholar 

  39. Ziegelhoffer, T., Will, J., and Austin-Phillips, S. (1999), Mol. Breeding 5, 309–318.

    Article  CAS  Google Scholar 

  40. Bayer, E. A., Chanzy, H., Lamed, R., and Shoham, Y. (1998), Curr. Opin. Struct. Biol. 8, 548–557.

    Article  CAS  Google Scholar 

  41. Bruins, M. E., Janssen, A. E. M., and Boom, R. M. (2001), Appl. Biochem. Biotehnol. 90, 155–186.

    Article  CAS  Google Scholar 

  42. Hyunjong, B., Lee, D.-S., and Hwang, I. (2006), J. Exp. Bot. 57, 161–169.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Sticklen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ransom, C., Balan, V., Biswas, G. et al. Heterologous Acidothermus cellulolyticus 1,4-β-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. Appl Biochem Biotechnol 137, 207–219 (2007). https://doi.org/10.1007/s12010-007-9053-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-9053-3

Index Entries

Navigation