Skip to main content

Aortic Biological Prosthetic Valve for Open-Surgery and Percutaneous Implant: Procedure Simulation and Performance Assessment

  • Chapter
  • First Online:
Cardiovascular and Cardiac Therapeutic Devices

Abstract

Valvular heart disorders represent a remarkable contribution to cardiovascular diseases; in fact, more than 300,000 heart valve surgical operations were performed in 2006 worldwide. Such a huge social and economical problem calls for a dedicated multidisciplinary research, integrating different scientific fields, from medicine to engineering, along the various clinical steps, from diagnosis to treatment strategy. In particular, new manufacturing technologies and advanced materials are contributing to innovative devices for the replacement of aortic valves through minimally-invasive procedures, emerging as a valid alternative to classical open-chest surgery. Design, development and performance assessment of such devices are the natural field of application of computational biomechanics, which investigates the mechanical behaviour of biological systems and their interaction with artificial implants through the principle of mechanics. Moving from such considerations, we discuss from a biomechanical perspective the biological prostheses replacing the native aortic valve and implanted either through open-surgery or percutaneous procedures. Consequently, we focus on the use of patient-specific finite element analysis (FEA) to assess the structural performance of (i) a stentless biological prosthesis used for aortic valve replacement (AVR) and (ii) a transcatheter aortic valve implant (TAVI), where a biological valve sewn inside a stent, is crimped and properly placed in the patient’s heart by means of an endovascular procedure. From a more general point of view, our contribution underlines the potential role of computational biomechanics and realistic computer-based simulations in the surgical procedure planning, moving through a new paradigm in medicine which aims at reinforcing “diagnosis” with “prediction”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aboud, A., Breuer, M., Bossert, T., Gummert, J.: Quality of life after mechanical vs. biological aortic valve replacement. Asian Cardiovasc. Thorac. Ann. 17, 35–38 (2010)

    Article  Google Scholar 

  2. Alastrue, V., Garia, A., Pena, E., Rodriguez, J., Martinez, M., Doblare, M.: Numerical framework for patient-specific computational modelling of vascular tissue. Int. J. Numer. Methods Biomed. Eng. 26, 35–51 (2010)

    Google Scholar 

  3. Arcidiacono, G., Corvi, A., Severi, T.: Functional analysis of bioprosthetic heart valves. J. Biomech. 38, 1483–1490 (2005)

    Google Scholar 

  4. Auricchio, F., Di Loreto, M., Sacco, E.: Finite element analysis of a stenotic artery revascularization through a stent insertion. Comput. Methods Biomech. Biomed. Eng. 4, 249–263 (2001)

    Google Scholar 

  5. Auricchio, F., Conti, M., Demertzis, S., Morganti, S.: Finite element analysis of aortic root dilation: a new procedure to reproduce pathology based on experimental data. Comput. Methods Biomech. Biomed. Eng. 14(10), 875–882 (2011). doi:10.1080/10255842.2010.499867

    Google Scholar 

  6. Auricchio, F., Conti, M., Morganti, S., Totaro, P.: A computational tool to support pre-operative planning of stentless aortic valve implant. Med. Eng. Phys. 33(10), 1183–1192 (2011). doi:10.1016/j.medengphy.2011.05.006

  7. Auricchio, F., Conti, M., Ferrara, A., Morganti, S., Reali, A.: Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. Comput. Methods Biomech. Biomed. Eng. 0(0), 1–9 (2012). doi:10.1080/10255842.2012.681645

  8. Auricchio, F., Ferrara, A., Morganti, S.: Comparison and critical analysis of invariant-based models with respect to their ability in fitting human aortic valve data. Ann. Solid Struct. Mech. 4, 1–14 (2012)

    Google Scholar 

  9. Aymard, T., Eckstein, F., Englberger, L., Stalder, M., Kadner, A., Carrel, T.: The Sorin Freedom SOLO stentless aortic valve: technique of implantation and operative results in 109 patients. J. Thorac. Cardiovasc. Surg. 139, 775–777 (2010)

    Article  Google Scholar 

  10. Azadani, A., Jaussaud, N., Matthews, P., Ge, L., Chuter, T., Tseng, E.: Transcatheter aortic valves inadequately relieve stenosis in small degenerated bioprostheses. Inter. Cardiovasc. Thorac. Surg. 11, 70–77 (2010)

    Article  Google Scholar 

  11. Bashey, R., Torii, S., Angrist, A.: Age-related collagen and elastin content of human heart valves. J. Gerontol. 20, 203–208 (1967)

    Article  Google Scholar 

  12. Beck, A., Thubrikar, M., Robicsek, F.: Stress analysis of the aortic valve with and without the sinuses of valsalva. J. Heart Valve Dis. 10, 1–11 (2001)

    Google Scholar 

  13. Beholz, S., Dushe, S., Konertz, W.: Continuous suture technique for freedom stentless valve: reduced crossclamp time. Asian Cardiovasc. Thorac. Ann. 14, 128–133 (2006)

    Article  Google Scholar 

  14. Bentall, H., Bono, A.D.: A technique for complete replacement of the ascending aorta. Thorax 23, 338–339 (1968)

    Article  Google Scholar 

  15. Billiar, K.L., Sacks, M.S.: Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—Part I: Experimental results. J. Biomech. Eng. 122, 23–30 (2000)

    Article  Google Scholar 

  16. Borgognoni, C., Maizato, M., Leirner, A., Polakiewicz, M.B., Higa, O., Pitombo, R.: Effect of freeze-drying on the mechanical, physical and morphological properties of glutaraldehyde-treated bovine pericardium: evaluation of freeze-dried treated bovine pericardium properties. J. Appl. Biomater. Biomech. 8, 186–190 (2010)

    Google Scholar 

  17. Butcher, J., Mahler, G., Hochaday, L.: Aortic valve disease and treatment: the need for naturally engineered solutions. Adv. Drug Deliv. Rev. 63, 242–268 (2011)

    Article  Google Scholar 

  18. Capelli, C., Taylor, A., Migliavacca, F., Bonhoeffer, P., Schievano, S.: Patient-specific reconstructed anatomies and computer simulations are fundamental for selecting medical device treatment: application to a new percutaneous pulmonary valve. Phil. Trans. R. Soc. 368, 3027–3038 (2010)

    Article  Google Scholar 

  19. Capelli, C., Bosi, M., Cerri, E., Nordmeyer, J., Odenwald, T., Bonhoeffer, P., Migliavacca, F., Taylor, S., Schievano, A.M.:Patient-specific simulations of transcatheter aortic valve stent implantation. Med. Biol. Eng. Comput. 368, 183–192 (2012)

    Google Scholar 

  20. Carmody, C., Burriesci, G., Howard, I., Patterson, E.: An approach to the simulation of fluid–structure interaction in the aortic valve. J. Biomech. 39, 158–169 (2006)

    Article  Google Scholar 

  21. Cataloglu, A., Gould, P., Clark, R.: Validation of a simplified mathematical model for the stress analysis of human aortic heart valves. J. Biomech. 8, 347–348 (1975)

    Article  Google Scholar 

  22. Christie, G., Medland, I.: Finite Element in Biomechanics. Wiley, New York (1982)

    Google Scholar 

  23. Clark, R.: Stress-strain characteristics of fresh and frozen human aortic and mitral leaflets and chordae tendineae. J. Thorac. Cardiovasc. Surg. 66, 202–208 (1973)

    Google Scholar 

  24. Clark, R., Butterworth, G.: Characterization of the mechanics of human aortic and mitral valve leaflets. Surg. Forum 22, 134–136 (1971)

    Google Scholar 

  25. Clift, S., Fisher, J.: Finite element stress analysis of a new design of synthetic leaflet heart valve. In: Proceedings of the Institution of Mechanical Engineers—Part H, vol. 210, pp. 267–272 (1996)

    Google Scholar 

  26. Conti, C., Della Corte, A., Votta, E., Del Viscovo, L., Bancone, C., De Santo, L., Redaelli, A.: Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J. Thorac. Cardiovasc. Surg. 140, 890–896 (2010)

    Google Scholar 

  27. Conti, C., Votta, E., Della Corte, A., Del Viscovo, L., Bancone, C., Cotrufo, M., Redaelli, A.: Dynamic finite element analysis of the aortic root from MRI-derived parameters. Med. Eng. Phys. 32, 212–221 (2010)

    Google Scholar 

  28. Cribier, A., Saoudi, N., Berland, J., Savin, T., Rocha, P., Letac, B.: Percutaneous transluminal valvuloplasty of acquired aortic stenosis in elderly patients: an alternative to valve replacement. The Lancet 327, 63–67 (1986)

    Article  Google Scholar 

  29. Cribier, A., Eltchaninoff, H., Bash, A., Borenstein, N., Tron, C., Bauer, F., Derumeaux, G., Anselme, F., Laborde, F., Leon, M.: Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106, 3006–3008 (2002)

    Article  Google Scholar 

  30. David, T.: Aortic valve sparing operations. Ann. Thorac. Surg. 73, 1029–1030 (2002)

    Article  Google Scholar 

  31. David, T.E.: Aortic valve haemodynamics after aortic valve-sparing operations. Eur. J. Cardio-Thorac. Surg. 41(4), 788–789 (2012). doi:10.1093/ejcts/ezr119

    Google Scholar 

  32. De Beule, M.: Finite element stent design. Ph.D. Thesis, University of Ghent (2007/2008)

    Google Scholar 

  33. de Hart, J., Cacciola, G., Schreurs, P., Peters, G.: Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J. Biomech. 31, 629–638 (1998)

    Article  Google Scholar 

  34. Driessen, N., Boerboom, R., Huyghe, J., Bouten, C., Baaijens, F.: Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J. Biomech. Eng. 125, 549–557 (2003)

    Article  Google Scholar 

  35. Driessen, N., Bouten, C., Baaijens, F.: Improved prediction of the collagen fiber architecture in the aortic heart valve. J. Biomech. Eng. 127, 329–336 (2005)

    Google Scholar 

  36. Driessen, N., Bouten, C., Baaijens, F.: A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J. Biomech. Eng. 127, 494–503 (2005)

    Google Scholar 

  37. Dwyer, H., Matthews, P., Azadani, A., Ge, L., Guy, T.S., Tseng, E.: Migration forces of transcatheter aortic valves in patients with noncalcific aortic insufficiency. J. Thorac. Cardiovasc. Surg. 138, 1227–1233 (2009)

    Article  Google Scholar 

  38. Edwards Lifesciences web-page (last access on April 2011) The Edwards SAPIEN valve. http://www.edwards.com

  39. Einstein, D., Reinhall, P., Nicosia, M., Cochran, R., Kunzelman, K.: Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput. Methods Biomech. Biomed. Eng. 6, 33–44 (2003)

    Google Scholar 

  40. Fann, J., Chronos, N., Rowe, S., Michiels, R., Lyons, B., Leon, M., Kaplan, A.: Evolving strategies for the treatment of valvular heart: preclinical and clinical pathways for percutaneous aortic valve replacement. Cathet. Cardiovasc. Intervent. 71, 434–440 (2008)

    Article  Google Scholar 

  41. Feindel, C., David, T.E.: Aortic valve sparing operations: basic concepts. Int. J. Cardiol. 97, 61–66 (2004)

    Article  Google Scholar 

  42. Freed, A., Einstein, D., Vesely, I.: Invariant formulation for dispersed transverse isotropy in aortic heart valves. Biomech. Model. Mechanobiol. 4, 100–117 (2005)

    Article  Google Scholar 

  43. Ganguly, G., Akhunji, Z., Neethling, W., Hodge, A.: Homograft aortic valve replacement: the experience of one unit. Heart Lung Circul. 13, 161–167 (2004)

    Article  Google Scholar 

  44. Gee, M., Forster, C., Wall, W.: A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int. J. Numer. Methods Biomed. Eng. 26, 52–72 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Glauber, M., Solinas, S., Karimov, J.: Technique for implant of the stentless aortic valve Freedom Solo. Multimed. Man. Cardiothorac. Surg. 13, 161–167 (2007)

    Google Scholar 

  46. Gnyaneshwar, R., Kumar, R., Balakrishnan, K.: Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73, 1122–1129 (2002)

    Article  Google Scholar 

  47. Gould, P., Cataloglu, A., Dhatt, G., Chattophadyay, A., Clark, R.: Stress analysis of the human aortic valve. Comput. Struct. 3, 377–384 (1973)

    Article  Google Scholar 

  48. Gould, P., Cataloglu, A., Clark, R.: Mathematical modelling of human aortic valve leaflets. Appl. Math. Model. 1, 33–36 (1976)

    Article  Google Scholar 

  49. Gramiak, R., Shah, P.: Echocardiography of the normal and diseased aortic valves. Radiology 96, 1–8 (1970)

    Google Scholar 

  50. Grande, K., Cochran, R., Reinhall, P., Kunzelman, K.: Mechanisms of aortic valve incompetence in aging: a finite element model. J. Heart Valve Dis. 8, 149–156 (1999)

    Google Scholar 

  51. Grande, K., Cochran, R., Reinhall, P., Kunzelman, K.: Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. Ann. Thorac. Surg. 69, 1851–1857 (2000)

    Article  Google Scholar 

  52. Grande, K., Cochran, R., Reinhall, P., Kunzelman, K.: Mechanisms of aortic valve incompetence: finite element modeling of Marfan syndrome. J. Thorac. Cardiovasc. Surg. 122, 946–954 (2001)

    Article  Google Scholar 

  53. Grande-Allen, K.J., Cochran, R., Reinhall, P., Kunzelman, K.: Finite-element analysis of aortic valve-sparing: Influence of graft shape and stiffness. IEEE Trans. Biomed. Eng. 48, 647–659 (2001)

    Article  Google Scholar 

  54. Grbic, S., Ionasec, R., Vitanovski, D., Voigt, I., Wang, Y., Georgescu, B., Navab, N., Comaniciu, D.: Complete valvular heart apparatus model from 4d cardiac CT. Medical Image Anal. 16(5), 1003–1014 (2012). doi:10.1016/j.media.2012.02.003

  55. Grube, E., Laborde, J., Gerckens, U., Felderhoff, T., Sauren, B., Buellesfeld, L., Mueller, R., Menichelli, M., Schmidt, T., Zickmann, B., Iversen, S., Stone, G.: Percutaneous implantation of the CoreValve self-expanding valve prosthesis in high-risk patients with aortic valve disease: the Siegburg first-in-man study. Circulation 114, 1616–1624 (2006)

    Article  Google Scholar 

  56. Haj-Ali, R., Marom, G., Zekry, S.B., Rosenfeld, M., Raanani, E.: A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. J. Biomech. 45(14), 2392–2397 (2012). doi:10.1016/j.jbiomech.2012.07.017

    Google Scholar 

  57. Hammer, P.E., Chen, P.C., del Nido, P.J., Howe, R.D.: Computational model of aortic valve surgical repair using grafted pericardium. J. Biomech. 45(7), 1199–1204 (2012). doi:10.1016/j.jbiomech.2012.01.031

    Google Scholar 

  58. Henderson, Y., Johnson, F.: Two modes of closure of heart valves. Heart 4, 69–82 (1912)

    Google Scholar 

  59. Hoffman, J., Kaplan, S.: The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–900 (2002)

    Article  Google Scholar 

  60. Holmes, D., Nishimura, R., Feeder, G.: In-hospital mortality after balloon aortic valvuloplasty: frequency and associated factors. J. Am. Coll. Cardiol. 17, 189–192 (1991)

    Article  Google Scholar 

  61. Hopkins, R.: Aortic valve leaflet sparing and salvage surgery: evolution of techniques for aortic root reconstruction. Eur. J. Cardio-Thorac. Surg. 24, 886–897 (2003)

    Article  Google Scholar 

  62. Ionasec, R., Voigt, I., Georgescu, B., Wang, Y., Houle, H., Hornegger, J., Navab, N., Comaniciu, D.: Personalized modeling and assessment of the aortic-mitral coupling from 4d TEE and CT. In: Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009, Lecture Notes in Computer Science, vol. 5762, pp. 767–775. Springer, Berlin (2009)

    Google Scholar 

  63. Iung, B., Baron, G., Butchart, E., Delahaye, F., Gohlke-Barwolf, C., Levang, O., Tornos, P., Vanoverschelde, J.L., Vermeer, F., Boersma, E., Ravaud, P., Vahanian, A.: A prospective survey of patients with valvular heart disease in Europe: the Euro heart survey on valvular heart disease. Eur. Heart J. 24, 1231–1243 (2003)

    Article  Google Scholar 

  64. Knierbein, B., Mohr-Matuschek, U., Rechlin, M., Reul, H., Rau, G., Michaeli, W.: Evaluation of mechanical loading of a trileaflet polyurethane blood pump valve by finite element analysis. Int. J. Artif. Organs 13, 307–315 (1990)

    Google Scholar 

  65. Koch, T., Reddy, B., Zilla, P., Franz, T.: Aortic valve leaflet mechanical properties facilitate diastolic valve function. Comput. Methods Biomech. Biomed. Eng. 13, 225–234 (2010)

    Article  Google Scholar 

  66. Kulik, A., Bedard, P., Lam, B.K., Rubens, F., Hendry, P., Masters, R., Mesana, T., Ruel, M.: Mechanical versus bioprosthetic valve replacement in middle-aged patients. Eur. J. Cardio-Thorac. Surg. 30, 485–491 (2006)

    Article  Google Scholar 

  67. Kunzelman, K., Grande, K., David, T., Cochran, R., Verrier, E.: Aortic root and valve relationships: impact on surgical repair. J. Thorac. Cardiovasc. Surg. 107, 162–170 (1994)

    Google Scholar 

  68. Labrosse, M., Beller, C., Robicsek, F., Thubrikar, M.: Geometric modeling of functional trileaflet aortic valves: development and clinical applications.. J. Biomech. 39, 2665–2672 (2006)

    Article  Google Scholar 

  69. Labrosse, M.R., Lobo, K., Beller, C.J.: Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded. J. Biomech. 43(10), 1916–1922 (2010). doi:10.1016/j.jbiomech.2010.03.020

    Google Scholar 

  70. Labrosse, M.R., Boodhwani, M., Sohmer, B., Beller, C.J.: Modeling leaflet correction techniques in aortic valve repair: a finite element study. J. Biomech. 44(12), 2292–2298 (2011). doi:10.1016/j.jbiomech.2011.05.032

    Google Scholar 

  71. Langdon, S., Chernecky, R., Pereira, C., Abdulla, D., Lee, J.M.: Biaxial mechanica/structural effects of equibiaxial strain during crosslinking of bovine pericardial xenogrfat materials. Biomaterials 20, 137–153 (1999)

    Article  Google Scholar 

  72. Lee, J., Haberer, S.A., Boughner, D.R.: The bovine pericardial xenograft: I. Effects of fixation in aldehydes without constraints on the tensile viscoelastic properties of bovine pericardium. J. Biomed. Mater. Res. 23, 457–475 (1989)

    Article  Google Scholar 

  73. Lichtenstein, S., Cheung, A., Ye, J., Thompson, C., Carere, R., Pasupati, S., Webb, J.: Transapical transcatheter aortic valve implantation in humans: initial clinical experience. Circulation 114, 591–596 (2006)

    Article  Google Scholar 

  74. Lieberman, E., Bashore, T., Hermiller, J., Wilson, J., Pieper, K., Keeler, G., Pierce, C., Kisslo, K., Harrison, J., Davidson, C.: Balloon aortic valvuloplasty in adults: failure of procedure to improve long-term survival. J. Am. Coll. Cardiol. 26, 1522–1528 (1995)

    Article  Google Scholar 

  75. Liu, Y., Kasyanov, V., Schoephoerster, R.: Effect of fiber orientation on the stress distribution within a leaflet of a polymer composite heart valve in the closed position. J. Biomech. 40, 1099–1106 (2007)

    Article  Google Scholar 

  76. Lorell, B., Carabello, B.: Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102, 470–479 (2000)

    Article  Google Scholar 

  77. Marom, G., Haj-Ali, R., Raanani, E., Schafers, H.J., Rosenfeld, M.: A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root. Med. Biol. Eng. Comput. 50, 173–182 (2012)

    Article  Google Scholar 

  78. Martin, C., Pham, T., Sun, W.: Significant differences in the material properties between aged human and porcine aortic tissues. Eur. J. Cardio-Thorac. Surg. 40, 28–34 (2011)

    Article  Google Scholar 

  79. Martin, T., Palmer, J., Black, M.: A new apparatus for the in vitro study of aortic valve mechanics. Eng. Med. 7, 229–230 (1978)

    Article  Google Scholar 

  80. McKay, M.: The mansfield scientific aortic valvuloplasty registry: overview of acute hemodynamic results and procedural complications. J. Am. Coll. Cardiol. 17, 189–192 (1991)

    Article  Google Scholar 

  81. Messika-Zeitoun, D., Bielak, L., Peyser, P., Sheedy, P., Turner, S., Nkomo, V., Breen, J., Maalouf, J., Scott, C., Tajik, A., Enriquez-Sarano, M.: Aortic valve calcification : determinants and progression in the population. Arterioscl. Thromb. Vasc. Biol. 27, 642–648 (2007)

    Article  Google Scholar 

  82. Mohammadi, H., Bahramian, F., Wan, W.: Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method. Med. Eng. Phys. 31, 1110–1117 (2009)

    Article  Google Scholar 

  83. Nkomo, V.T., Gardin, J.M., Skelton, T.N., Gottdiener, J.S., Scott, C.G., Enriquez-Sarano, M.: Burden of valvular heart diseases: a population-based study. The Lancet 368, 1005–1011 (2006)

    Article  Google Scholar 

  84. Oses, P., Guibaud, J., Elia, N., Dubois, G., Lebreton, G., Pernot, M., Roques, X.: Freedom SOLO valve: early- and intermediate-term results of a single centre’s first 100 cases. Eur. J. Cardio-Thorac. Surg. (2010). doi:10.1016/j.ejcts.2010.04.038

  85. Padala, M., Sarin, E., Willis, P., Babaliaros, V., Block, P., Guyton, R., Thourani, V.: An engineering review of transcatheter aortic valve technologies. Cardiovasc. Eng. Technol. 1, 77–87 (2010)

    Article  Google Scholar 

  86. Pavoni, D., Badano, L., Musumeci, S., Frassani, R., Gianfagna, P., Mazzaro, E., Livi, U.: Results of aortic valve replacement with a new supra-annular pericardial stented bioprosthesis. Ann. Thorac. Surg. 82, 2133–2138 (2006)

    Article  Google Scholar 

  87. Perego, M., Veneziani, A., Vergara, C.: A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM J. Sci. Comput. 33, 1181–1211 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  88. Peterseim, D., Cen, Y., Cheruvu, S., Landolfo, K., Bashore, T., Lowe, J., Wolfe, W., Glower, D.: Long-term outcome after biologic versus mechanical aortic valve replacement in 841 patients. J. Thorac. Cardiovasc. Surg. 117, 890–897 (1999)

    Article  Google Scholar 

  89. Piazza, N., de Jaegere, P., Schultz, C., Becker, A., Serruys, P., Anderson, R.: Anatomhy of the aortic valvar complex and its implications of transcatheter implantation of the aortic valve. Circul. Cardiovasc. Intervent. 1, 74–81 (2008)

    Article  Google Scholar 

  90. Ranga, A., Bouchot, O., Mongrain, R., P, U., R, C.: Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Inter. Cardiovasc. Thorac. Surg. 5, 373–378 (2006)

    Article  Google Scholar 

  91. Ranga, A., Mongrain, R., Biadilah, Y., Cartier, R.: A compliant dynamic FEA model of the aortic valves. In: Proceedings of 12th IFToMM World Congress, Besancon (2007)

    Google Scholar 

  92. Remadi, J., Marticho, P., Nzomvuama, A., Degandta, A.: Preliminary results of 130 aortic valve replacements with a new mechanical bileaflet prosthesis: the Edwards MIRA valve. Inter. Cardiovasc. Thorac. Surg. 2, 80–83 (2003)

    Article  Google Scholar 

  93. Roger, V.L., Go, A.S., Lloyd-Jones, D.M., Adams, R.J., Berry, J.D., Brown, T.M., Carnethon, M.R., Dai, S., de Simone, G., Ford, E.S., Fox, C.S., Fullerton, H.J., Gillespie, C., Greenlund, K.J., Hailpern, S.M., Heit, J.A., Ho, P.M., Howard, V.J., Kissela, B.M., Kittner, S.J., Lackland, D.T., Lichtman, J.H., Lisabeth, L.D., Makuc, D.M., Marcus, G.M., Marelli, A., Matchar, D.B., McDermott, M.M., Meigs, J.B., Moy, C.S., Mozaffarian. D., Mussolino, M.E., Nichol, G., Paynter, N.P., Rosamond, W.D., Sorlie, P.D., Stafford, R.S., Turan, T.N., Turner, M.B., Wong, N.D., Wylie-Rosett, J.: Heart disease and stroke statistics—2011 update. Circulation 123(4):e18–e209 (2011). doi:10.1161/CIR.0b013e3182009701

    Google Scholar 

  94. Rousseau, E., van Steenhoven, A., Janssen, J., Huysmans, H.: A mechanical analysis of the closed hancock heart valve prosthesis. J. Biomech. 21, 545–562 (1988)

    Article  Google Scholar 

  95. Sabbah, H., Hamid, M., Stein, P.: Estimation of mechanical stresses on closed cusps of porcine bioprosthetic valves: effects of stiffening, focal calcium and focal thinning. Am. J. Cardiol. 55, 1091–1096 (1985)

    Article  Google Scholar 

  96. Sabbah, H., Hamid, M., Stein, P.: Mechanical stresses on closed cusps of porcine bioprosthetic valves: correlation with sites of calcification. Ann. Thorac. Surg. 42, 93–96 (1986)

    Article  Google Scholar 

  97. Saremi, F., Achenbach, S., Arbustini, E., Narula, J.: Revisiting Cardiac Anatomy: A Computed-Tomography Based Atlas and Reference. Wiley-Blackwell, New York (2011)

    Google Scholar 

  98. Sarsam, M., Yacoub, M.: Remodeling of the aortic valve anulus. J. Thorac. Cardiovasc. Surg. 105, 435–438 (1993)

    Google Scholar 

  99. Sauren, A.: The mechanical behavior of the aortic valve. Ph.D. Thesis, Technische hogeschool Eindhoven (1983)

    Google Scholar 

  100. Schievano, S., Taylor, A., Capelli, C., Lurz, P., Nordmeyer, J., Migliavacca, F., Bonhoeffer, P.: Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. J. Biomech. 43(4), 687–693 (2010)

    Article  Google Scholar 

  101. Sedrakyan, A., Hebert, P., Vaccarino, V., Paltiel, A., Elefteriades, J., Mattera, J., Lin, Z., Roumanis, S., Krumholz, H.: Quality of life after aortic valve replacement with tissue and mechanical implants. J. Thorac. Cardiovasc. Surg. 128, 266–272 (2004)

    Article  Google Scholar 

  102. Smuts, A., Blaine, D., Scheffer, C., Weich, H., Doubell, A., Dellimore, K.: Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. J. Mech. Behav. Biomed. Mater. 4, 85–98 (2011)

    Article  Google Scholar 

  103. Stassano, P., Di Tommaso, L., Monaco, M., Iorio, F., Pepino, P., Spampinato, N., Vosa, C.: Aortic valve replacement: a prospective randomized evaluation of mechanical versus biological valves in patients ages 55 to 70 years. J. Am. Coll. Cardiol. 54, 1862–1868 (2009)

    Article  Google Scholar 

  104. Stein, P., Munter, W.: New functional concept of valvular mechanics in normal and diseased aortic valves. Circulation 44, 101–108 (1971)

    Article  Google Scholar 

  105. Stewart, B., Siscovick, D., Lind, B., Gardin, J., Gottdiener, J., Smith, V., Kitzman, D., Otto, C.: Clinical factors associated with calcific aortic valve disease. J. Am. Coll. Cardiol. 29, 630–634 (1997)

    Article  Google Scholar 

  106. Stradins, P., Lacis, R., Ozolanta, I., Purina, B., Ose, V., Feldmane, L.: Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur. J. Cardio-Thorac. Surg. 26, 634–639 (2004)

    Article  Google Scholar 

  107. Sun, W., Sacks, M.: Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4, 190–199 (2005)

    Article  Google Scholar 

  108. Sun, W., Li, K., Sirois, E.: Simulated elliptical bioprosthetic valve deformation: implications for a symmetric transcatheter valve deployment. J. Biomech. 43, 3085–3090 (2010)

    Article  Google Scholar 

  109. Sung, H.W., Chen, W.Y., Chiu, C.T., Chen, C.N., Liang, H.C.: Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J. Biomed. Mater. Res. 47, 116–126 (1999)

    Article  Google Scholar 

  110. Sutton, J., Ho, S., Anderson, R.: The forgotten interleaflet triangles: a review of the surgical anatomy of the aortic valve. Ann. Thorac. Surg. 59, 419–427 (1995)

    Article  Google Scholar 

  111. AHA Committee: Heart disease and stroke statistics 2010 update: a report from the American heart association. Circulation 121, e46–e215 (2010)

    Google Scholar 

  112. Thubrikar, M.: The Aortic Valve. CRC Press, Boca Raton (1990)

    Google Scholar 

  113. Thubrikar, M., Nolan, S., Aouad, J., Deck, J.: Stress sharing between the sinus and leaflets of canine aortic valves. Ann. Thorac. Surg. 42, 434–440 (1986)

    Article  Google Scholar 

  114. Thubrikar, M.J., Labrosse, M.R., Zehr, K.J., Robicsek, F., Gong, G.G., Fowler, B.L.: Aortic root dilatation may alter the dimensions of the valve leaflets. Eur. J. Cardio-Thorac. Surg. 28, 850–856 (2005)

    Article  Google Scholar 

  115. Totaro, P., Degno, N., Zaidi, A., Youhana, A., Argano, V.: Carpentier-Edwards PERIMOUNT Magna bioprosthesis: a stented valve with stentless performance?. J. Thorac. Cardiovasc. Surg. 130, 1668–1674 (2005)

    Article  Google Scholar 

  116. Totaro, P., Morganti, S., Auricchio, F., Vigano, M.: Computer-based analysis to optimize prosthesis sizing during aortic valve surgery. Int. J. Cardiol. 151(2), 253–254 (2011). doi:10.1016/j.ijcard.2011.06.079

    Google Scholar 

  117. Totaro, P., Morganti, S., Ngo~Yon, C.L., Dore, R., Conti, M., Auricchio, F., Vigano, M.: Computational finite element analyses to optimize graft sizing during aortic valve-sparing procedure. J. Heart Valve Dis. 21(2), 141–147 (2012)

    Google Scholar 

  118. Trowbridge, E.A., Black, M.M., Daniel, C.L.: The mechanical response of glutaraldehyde fixed bovine pericardium to uniaxial load. J. Mater. Sci. 20, 114–140 (1985)

    Article  Google Scholar 

  119. Tzamtzis, S., Viquerat, J., Yapc, J., Mullenc, M., Burriesci, G.: Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-Sapien after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 35, 125–130 (2012) doi:10.1016/j.medengphy.2012.04.009

    Google Scholar 

  120. Vesely, I.: The role of elastin in aortic valve mechanics. J. Biomech. 31, 115–123 (1998)

    Article  Google Scholar 

  121. Wang, Q., Sirois, E., Sun, W.: Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment. J. Biomech. 45(11), 1965–1971 (2012)

    Article  Google Scholar 

  122. Webb, J., Chandavimol, M., Thompson, C., Ricci, D., Carere, R., Munt, B., Buller, C., Pasupati, S., Lichtenstein, S.: Percutaneous aortic valve implantation retrograde from the femoral artery. Circulation 113, 842–850 (2006)

    Article  Google Scholar 

  123. Weinberg, E., Shahmirzadi, D., Mofrad, M.: On the multiscale modeling of heart valve biomechanics in health and disease. Biomech. Model. Mechanobiol. 9, 373–387 (2010)

    Article  Google Scholar 

  124. Xiong, F., Goetz, W., Chong, C., Chua, Y., Pfeifer, S., Wintermantel, E., Yeo, J.: Finite element investigation of stentless pericardial aortic valves: relevance of leaflet geometry. Ann. Biomed. Eng. 38, 1908–1918 (2010)

    Article  Google Scholar 

  125. Yap, C.H., Yii, M.: Allograft aortic valve replacement in the adult: a review. Heart Lung Circul. 13, 41–51 (2004)

    Article  Google Scholar 

  126. Yushkevich, P., Piven, J., Hazlett, H., Smith, R., Ho, S., Gee, J., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The work presented within this book chapter reflects a research activity which has been partially funded by Cariplo Foundation through the Project no. 2009.2822, partially by the European Research Council through the Project no. 259229 entitled ‘ISOBIO: Isogeometric Methods for Biomechanics’ and partially by the Ministero dell’Istruzione, dell’Università à e della Ricerca through the project n. 2010BFXRHS.

The authors would acknowledge also Dr. M. Aiello of IRCCS Policlinico San Matteo, Pavia, Italy, and Prof. S. Petronio of Ospedale di Cisanello, Pisa, Italy, for their support on medical aspects related to the present work, and Dr. A. Valentini of IRCCS Policlinico San Matteo, Pavia, Italy, for support to the imaging aspects of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Morganti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Auricchio, F., Conti, M., Morganti, S. (2013). Aortic Biological Prosthetic Valve for Open-Surgery and Percutaneous Implant: Procedure Simulation and Performance Assessment. In: Franz, T. (eds) Cardiovascular and Cardiac Therapeutic Devices. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2013_161

Download citation

  • DOI: https://doi.org/10.1007/8415_2013_161

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53835-3

  • Online ISBN: 978-3-642-53836-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics