Skip to main content

Advertisement

Log in

Finite Element Investigation of Stentless Pericardial Aortic Valves: Relevance of Leaflet Geometry

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent developments in aortic valve replacement include the truly stentless pericardial bioprostheses with single point attached commissures (SPAC) implantation technique. The leaflet geometry available for the SPAC valves can either be a simple tubular or a complex three-dimensional structure molded using specially designed molds. Our main objective was to compare these two leaflet designs, the tubular vs. the molded, by dynamic finite element simulation. Time-varying physiological pressure loadings over a full cardiac cycle were simulated using ABAQUS. Dynamic leaflet behavior, leaflet coaptation parameters, and stress distribution were compared. The maximum effective valve orifice area during systole is 633.5 mm2 in the molded valve vs. 400.6 mm2 in the tubular valve, and the leaflet coaptation height during diastole is 4.5 mm in the former, in contrast to 1.6 mm in the latter. Computed compressive stress indicates high magnitudes at the commissures and inter-leaflet margins of the tubular valve, the highest being 3.83 MPa, more than twice greater than 1.80 MPa in the molded valve. The molded leaflet design which resembles the native valve exerts a positive influence on the mechanical performance of the SPAC pericardial valves compared with the simple tubular design. This may suggest enhanced valve efficacy and durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8

Similar content being viewed by others

References

  1. Akar, A. R., A. Szafranek, C. Alexious, R. Janas, M. J. Jasinski, J. Swanevelder, and A. W. Sosnowski. Use of stentless xenografts in the aortic position: determinants of early and late outcome. Ann. Thorac. Surg. 74:1450–1457, 2002.

    Article  PubMed  Google Scholar 

  2. Arcidiacono, G., A. Corvi, and T. Severi. Functional analysis of bioprosthetic heart valves. J. Biomech. 38:1483–1490, 2005.

    Article  CAS  PubMed  Google Scholar 

  3. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part I. Experimental results. ASME J. Biomech. Eng. 122:23–30, 2000.

    Article  CAS  Google Scholar 

  4. Brewer, R. J., J. D. Deck, B. Capati, and S. P. Nolan. The dynamic aortic root—its role in aortic valve function. J. Thorac. Cardiovasc. Surg. 72:413–417, 1976.

    CAS  PubMed  Google Scholar 

  5. Cacciola, G., G. W. M. Peters, and P. J. G. Schreurs. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J. Biomech. 33:521–530, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Carmody, C. J., G. Burriesci, I. C. Howard, and E. A. Patterson. An approach to the simulation of fluid–structure interaction in the aortic valve. J. Biomech. 39:158–169, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Courtney, T., M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27(19):3631–3638, 2006.

    CAS  PubMed  Google Scholar 

  8. Cox, J. L., N. Ad, K. Myers, M. Gharib, and R. C. Quijano. Tubular heart valves: a new tissue prosthesis design—preclinical evaluation of the 3F aortic bioprosthesis. J. Thorac. Cardiovasc. Surg. 130(2):520–527, 2005.

    Article  PubMed  Google Scholar 

  9. Dasi, L. P., H. A. Simon, P. Sucosky, and A. P. Yoganathan. Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36(2):225–237, 2009.

    Article  CAS  PubMed  Google Scholar 

  10. De Hart, J., G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J. Biomech. 36:103–112, 2003.

    Article  PubMed  Google Scholar 

  11. Deiwick, M., B. Glasmacher, H. A. Baba, N. Roeder, H. Reul, G. von Bally, and H. H. Scheld. In vitro testing of bioprostheses: influence of mechanical stresses and lipids on calcification. Ann. Thorac. Surg. 66(6 Suppl):S206–S211, 1998.

    Article  CAS  PubMed  Google Scholar 

  12. Doss, M., S. Martens, J. P. Wood, A. Miskovic, T. Christodoulou, G. Wimmer-Greinecker, and A. Moritz. Aortic leaflet replacement with the new 3F stentless aortic bioprosthesis. Ann. Thorac. Surg. 79(2):682–685, 2005.

    Article  PubMed  Google Scholar 

  13. Gnyaneshwar, R., R. K. Kumar, and K. R. Balakrishnan. Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73:1122–1129, 2002.

    Article  PubMed  Google Scholar 

  14. Goetz, W. A., K. H. Lim, R. Ibled, N. Grousson, S. Salgues, and J. H. Yeo. Forces at single point attached commissures (SPAC) in pericardial aortic valve prosthesis. Eur. J. Cardiothorac. Surg. 29:150–155, 2006.

    Article  PubMed  Google Scholar 

  15. Goetz, W. A., T. E. Tan, K. H. Lim, S. Salgues, N. Grousson, F. Xiong, Y. L. Chua, and J. H. Yeo. Truly stentless molded autologous pericardial aortic valve prosthesis with single point attached commissures in a sheep model. Eur. J. Cardiothorac. Surg. 33:548–553, 2008.

    Article  PubMed  Google Scholar 

  16. Grubitzsch, H., J. Linneweber, C. Kossagk, E. Sanli, S. Beholz, and W. Konertz. Aortic valve replacement with new-generation stentless pericardial valves: short-term clinical and hemodynamic results. J. Heart Valve Dis. 14(5):623–629, 2005.

    PubMed  Google Scholar 

  17. Haj-Ali, R., L. P. Dasi, H. Kim, J. Choi, H. W. Leo, and A. P. Yoganathan. Structural simulations of prosthetic tri-leaflet aortic heart valves. J. Biomech. 41:1510–1519, 2008.

    Article  PubMed  Google Scholar 

  18. Hanlon, J. G., R. W. Suggit, and J. W. Love. Preuse intraoperative testing of autologous tissue for valvular surgery: a proof of concept study. J. Heart Valve Dis. 8:614–624, 1999.

    CAS  PubMed  Google Scholar 

  19. Kim, H., K. B. Chandran, M. S. Sacks, and J. Lu. An experimentally derived stress resultant shell model for heart valve dynamic simulations. Ann. Biomed. Eng. 35(1):30–44, 2007.

    Article  PubMed  Google Scholar 

  20. Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann. Biomed. Eng. 36(2):262–275, 2008.

    Article  PubMed  Google Scholar 

  21. Lee, J. M., S. A. Haberer, and D. R. Boughner. The bovine pericardial xenograft: I. Effect of fixation in aldehydes without constraint on the tensile viscoelastic properties of bovine pericardium. J. Biomed. Mater. Res. 23:457–475, 1989.

    Article  CAS  PubMed  Google Scholar 

  22. Li, J., X. Y. Luo, and Z. B. Kuang. A nonlinear anisotropic model for porcine aortic heart valves. J. Biomech. 34:1279–1289, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. Lim, K. H., J. Candra, J. H. Yeo, and C. M. Duran. Flat or curved pericardial aortic valve cusps: a finite element study. J. Heart Valve Dis. 13(5):792–797, 2004.

    PubMed  Google Scholar 

  24. Mirnajafi, A., J. Raymer, M. J. Scott, and M. S. Sacks. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials 26:795–804, 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Mueller, X., and L. K. von Segesser. A new equine pericardial stentless valve. J. Thorac. Cardiovasc. Surg. 125(6):1405–1411, 2003.

    Article  PubMed  Google Scholar 

  26. O’Brien valve, M. F. The Cryolife-O’Brien composite aortic stentless xenograft: surgical technique of implantation. Ann. Thorac. Surg. 60(2 Suppl):S410–S413, 1995.

    Article  Google Scholar 

  27. Patterson, E. A., I. C. Howard, and M. A. Thornton. A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle. J. Med. Eng. Technol. 20:95–108, 1996.

    Article  CAS  PubMed  Google Scholar 

  28. Rao, V., G. T. Christakis, J. Sever, S. E. Fremes, G. Bhatnagar, G. Cohen, M. A. Borger, L. Abouzahr, B. S. Goldman, and C. F. Sintek. A novel comparison of stentless versus stented valves in the small aortic root. J. Thorac. Cardiovasc. Surg. 117:431–438, 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Sodian, R., S. P. Hoerstrup, J. S. Sperling, S. H. Daebritz, D. P. Martin, F. J. Schoen, J. P. Vacanti, and J. E. Mayer. Tissue engineering of heart valves: in vitro experiences. Ann. Thorac. Surg. 70:140–144, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Sripathi, V. C., R. K. Kumar, and K. R. Balakrishnan. Further insights into normal aortic valve function: role of a compliant aortic root on leaflet opening and valve orifice area. Ann. Thorac. Surg. 77:844–851, 2004.

    Article  PubMed  Google Scholar 

  31. Thubrikar, M. J. The Aortic Valve. Boca Raton, FL: CRC Press, 1990.

    Google Scholar 

  32. Thubrikar, M. J., J. D. Deck, J. Aouad, and S. P. Nolan. Role of mechanical stress in calcification of aortic bioprosthetic valves. J. Thorac. Cardiovasc. Surg. 86(1):115–125, 1983.

    CAS  PubMed  Google Scholar 

  33. Yoganathan, A. P., and B. R. Travis. Fluid dynamics of prosthetic valves. In: The Practice of Clinical Echocardiography, edited by C. M. Otto. Philedelphia, PA: WB Saunders, 2000.

    Google Scholar 

  34. Zioupos, P., J. C. Barbenel, and J. Fisher. Anisotropic elasticity and strength of glutaraldehyde fixed bovine pericardium for use in pericardial bioprosthetic valves. J. Biomed. Mater. Res. 28:49–57, 1994.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support of a grant from the Academic Research Fund (AcRF) Tier 2 Project by the Ministry of Education Singapore for this study (T207B3203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Hock Yeo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video 1

Dynamic behavior of the SPAC molded valve: finite element results (MOV 4444 kb)

Video 2

Dynamic behavior of the SPAC tubular valve: finite element results (MOV 4417 kb)

Dynamic behavior of the SPAC molded valve: in vitro results (WMV 2051 kb)

Dynamic behavior of the SPAC tubular valve: in vitro results (WMV 3630 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, F.L., Goetz, W.A., Chong, C.K. et al. Finite Element Investigation of Stentless Pericardial Aortic Valves: Relevance of Leaflet Geometry. Ann Biomed Eng 38, 1908–1918 (2010). https://doi.org/10.1007/s10439-010-9940-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9940-6

Keywords

Navigation