Skip to main content
Log in

Fluid–Structure Interaction Model of a Percutaneous Aortic Valve: Comparison with an In Vitro Test and Feasibility Study in a Patient-Specific Case

  • Medical Stents: State of the Art and Future Directions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Transcatheter aortic valve replacement (TAVR) represents an established recent technology in a high risk patient base. To better understand TAVR performance, a fluid–structure interaction (FSI) model of a self-expandable transcatheter aortic valve was proposed. After an in vitro durability experiment was done to test the valve, the FSI model was built to reproduce the experimental test. Lastly, the FSI model was used to simulate the virtual implant and performance in a patient-specific case. Results showed that the leaflet opening area during the cycle was similar to that of the in vitro test and the difference of the maximum leaflet opening between the two methodologies was of 0.42%. Furthermore, the FSI simulation quantified the pressure and velocity fields. The computed strain amplitudes in the stent frame showed that this distribution in the patient-specific case is highly affected by the aortic root anatomy, suggesting that the in vitro tests that follow standards might not be representative of the real behavior of the percutaneous valve. The patient-specific case also compared in vivo literature data on fast opening and closing characteristics of the aortic valve during systolic ejection. FSI simulations represent useful tools in determining design errors or optimization potentials before the fabrication of aortic valve prototypes and the performance of tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Astorino, M., J.-F. Gerbeau, O. Pantz, and K.-F. Traore. Fluid-structure interaction and multi-body contact: application to aortic valves. Comput. Methods Appl. Mech. Eng. 198:3603–3612, 2009.

    Article  Google Scholar 

  2. Azadani, A. N., N. Jaussaud, P. B. Matthews, L. Ge, T. S. Guy, T. A. M. Chuter, and E. E. Tseng. Energy loss due to paravalvular leak with transcatheter aortic valve implantation. Ann. Thorac. Surg. 88:1857–1863, 2009.

    Article  PubMed  Google Scholar 

  3. Bianchi M., R. Ghosh, D. Das, G. Marom, T. Claiborne, M. Slepian, and D. Bluenstein. Transcatheter aortic valve replacement model: crimping and deploying in patient-pathology specific roots. In: Summer Biomechanics, Bioengineering and Biotransport Conference. Utah: Snowbird Resort, 2015.

  4. Bonhoeffer, P., Y. Boudjemline, Z. Saliba, J. Merckx, Y. Aggoun, D. Bonnet, P. Acar, J. Le Bidois, D. Sidi, and J. Kachaner. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356:1403–1405, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Bosi, G. M., C. Capelli, S. Khambadkone, A. M. Taylor, and S. Schievano. Patient-specific finite element models to support clinical decisions: a lesson learnt from a case study of percutaneous pulmonary valve implantation. Catheter. Cardiovasc. Interv. 2015. doi:10.1002/ccd.25944.

    PubMed  Google Scholar 

  6. Capelli, C., G. M. Bosi, E. Cerri, J. Nordmeyer, T. Odenwald, P. Bonhoeffer, F. Migliavacca, A. M. Taylor, and S. Schievano. Patient-specific simulations of transcatheter aortic valve stent implantation. Med. Biol. Eng. Comput. 50:183–192, 2012.

    Article  CAS  PubMed  Google Scholar 

  7. Carmody, C. J., G. Burriesci, I. C. Howard, and E. A. Patterson. An approach to the simulation of fluid–structure interaction in the aortic valve. J. Biomech. 39:158–169, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. Chandra, S., N. M. Rajamannan, and P. Sucosky. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech. Model. Mechanobiol. 11:1085–1096, 2012.

    Article  PubMed  Google Scholar 

  9. Cho, Y.-I., and D. J. Cho. Hemorheology and microvascular disorders. Korean Circ. J. 41:287–295, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Cosentino, D., M. A. Quail, G. Pennati, C. Capelli, P. Bonhoeffer, V. Diaz-Zuccarini, A. M. Taylor, and S. Schievano. Geometrical and stress analysis of factors associated with stent fracture after melody percutaneous pulmonary valve implantation. Circ. Cardiovasc. Interv. 7:510–517, 2014.

    Article  PubMed  Google Scholar 

  11. Cribier, A., H. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, F. Anselme, F. Laborde, and M. B. Leon. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis—first human case description. Circulation 106:3006–3008, 2002.

    Article  PubMed  Google Scholar 

  12. De Hart, J., F. P. T. Baaijens, G. W. M. Peters, and P. J. G. Schreurs. A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36:699–712, 2003.

    Article  PubMed  Google Scholar 

  13. Dwyer, H. A., P. B. Matthews, A. Azadani, N. Jaussaud, L. Ge, T. S. Guy, and E. E. Tseng. Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Interact. Cardiovasc. Thorac. Surg. 9:301–308, 2009.

    Article  PubMed  Google Scholar 

  14. Esterhuyse, A., K. Van Der Westhuizen, A. Doubell, H. Weich, C. Scheffer, and K. Dellimore. Application of the finite element method in the fatigue life prediction of a stent for a percutaneous heart valve. J. Mech. Med. Biol. 12:1250007, 2012. doi:10.1142/S021951941200448X.

    Article  Google Scholar 

  15. Griffith, B. E. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28:317–345, 2012.

    Article  Google Scholar 

  16. Grube, E., J. C. Laborde, U. Gerckens, T. Felderhoff, B. Sauren, L. Buellesfeld, R. Mueller, M. Menichelli, T. Schmidt, B. Zickmann, S. Iversen, and G. W. Stone. Percutaneous implantation of the CoreValve self-expanding valve prosthesis in high-risk patients with aortic valve disease—the Siegburg first-in-man study. Circulation 114:1616–1624, 2006.

    Article  PubMed  Google Scholar 

  17. Gunning, P. S., T. J. Vaughan, and L. M. McNamara. Simulation of self expanding transcatheter aortic valve in a realistic aortic root: implications of deployment geometry on leaflet deformation. Ann. Biomed. Eng. 42:1989–2001, 2014.

    Article  PubMed  Google Scholar 

  18. Hsu, M.-C., D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes. Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput. Mech. 54:1055–1071, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Laflamme, J., R. Puri, M. Urena, L. Laflamme, H. DeLarochelliere, O. A.-J. Altisent, M. del Trigo, F. Campelo-Parada, R. DeLarochelliere, J.-M. Paradis, E. Dumont, D. Doyle, S. Mohammadi, M. Cote, P. Pibarot, V. Laroche, and J. Rodes-Cabau. Incidence and risk factors of hemolysis after transcatheter aortic valve implantation with a balloon-expandable valve. Am. J. Cardiol. 115:1574–1579, 2015.

    Article  PubMed  Google Scholar 

  20. Lau, K. D., V. Diaz, P. Scambler, and G. Burriesci. Mitral valve dynamics in structural and fluid–structure interaction models. Med. Eng. Phys. 32:1057–1064, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Leyh, R. G., C. Schmidtke, H. H. Sievers, and M. H. Yacoub. Opening and closing characteristics of the aortic valve after different types of valve-preserving surgery. Circulation 100:2153–2160, 1999.

    Article  CAS  PubMed  Google Scholar 

  22. Marom, G., R. Haj-Ali, E. Raanani, H.-J. Schaefers, and M. Rosenfeld. A fluid–structure interaction model of the aortic valve with coaptation and compliant aortic root. Med. Biol. Eng. Comput. 50:173–182, 2012.

    Article  PubMed  Google Scholar 

  23. Morganti, S., M. Conti, M. Aiello, A. Valentini, A. Mazzola, A. Reali, and F. Auricchio. Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases. J. Biomech. 47:2547–2555, 2014.

    Article  CAS  PubMed  Google Scholar 

  24. Nobari, S., R. Mongrain, E. Gaillard, R. Leask, and R. Cartier. Therapeutic vascular compliance change may cause significant variation in coronary perfusion: a numerical study. Comput. Math. Methods Med. 2012:791686, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pelton, A. R., V. Schroeder, M. R. Mitchell, X.-Y. Gong, M. Barney, and S. W. Robertson. Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1:153–164, 2008.

    Article  CAS  PubMed  Google Scholar 

  26. Petrini, L., W. Wu, E. Dordoni, A. Meoli, F. Migliavacca, and G. Pennati. Fatigue behavior characterization of nitinol for peripheral stents. Funct. Mater. Lett. 5:1250012, 2012.

    Article  Google Scholar 

  27. Pibarot, P., D. Garcia, and J. G. Dumesnil. Energy loss index in aortic stenosis from fluid mechanics concept to clinical application. Circulation 127:1101–1104, 2013.

    Article  PubMed  Google Scholar 

  28. Puso, M. A., J. Sanders, R. Settgast, and B. Liu. An embedded mesh method in a multiple material ALE. Comput. Methods Appl. Mech. Eng. 245:273–289, 2012.

    Article  Google Scholar 

  29. Ranga, A., O. Bouchot, R. Mongrain, P. Ugolini, and R. Cartier. Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact. Cardiovasc. Thorac. Surg. 5:373–378, 2006.

    Article  PubMed  Google Scholar 

  30. Schievano, S., A. M. Taylor, C. Capelli, P. Lurz, J. Nordmeyer, F. Migliavacca, and P. Bonhoeffer. Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. J. Biomech. 43:687–693, 2010.

    Article  PubMed  Google Scholar 

  31. Sirois, E., Q. Wang, and W. Sun. Fluid simulation of a transcatheter aortic valve deployment into a patient-specific aortic root. Cardiovasc. Eng. Technol. 2:186–195, 2011.

    Article  Google Scholar 

  32. Smuts, A. N., D. C. Blaine, C. Scheffer, H. Weich, A. F. Doubell, and K. H. Dellimore. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. J. Mech. Behav. Biomed. Mater. 4:85–98, 2011.

    Article  CAS  PubMed  Google Scholar 

  33. Sonntag, S. J., T. A. S. Kaufmann, M. R. Buesen, M. Laumen, T. Linde, T. Schmitz-Rode, and U. Steinseifer. Simulation of a pulsatile total artificial heart: development of a partitioned fluid structure interaction model. J. Fluids Struct. 38:187–204, 2013.

    Article  Google Scholar 

  34. Stahli, B. E., W. Maier, R. Corti, T. F. Luscher, R. Jenni, and F. C. Tanner. Aortic regurgitation after transcatheter aortic valve implantation: mechanisms and implications. Cardiovasc. Diagn. Ther. 3:15–22, 2013.

    PubMed Central  PubMed  Google Scholar 

  35. Stühle, S., D. Wendt, G. Houl, H. Wendt, M. Schlamann, M. Thielmann, H. Jakob, and W. Kowalczyk. In-vitro investigation of the hemodynamics of the Edwards Sapien (TM) transcatheter heart valve. J. Heart Valve Dis. 20:53–63, 2011.

    PubMed  Google Scholar 

  36. Sturla, F., E. Votta, M. Stevanella, C. A. Conti, and A. Redaelli. Impact of modeling fluid–structure interaction in the computational analysis of aortic root biomechanics. Med. Eng. Phys. 35:1721–1730, 2013.

    Article  PubMed  Google Scholar 

  37. Sun, W., K. Li, and E. Sirois. Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J. Biomech. 43:3085–3090, 2010.

    Article  PubMed  Google Scholar 

  38. Toggweiler, S., K. H. Humphries, M. Lee, R. K. Binder, R. R. Moss, M. Freeman, J. Ye, A. Cheung, D. A. Wood, and J. G. Webb. 5-Year outcome after transcatheter aortic valve implantation. J. Am. Coll. Cardiol. 61:413–419, 2013.

    Article  PubMed  Google Scholar 

  39. Wang, Q., S. Kodali, C. Primiano, and W. Sun. Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomech. Model. Mechanobiol. 14:29–38, 2015.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Webb, J. G., and D. A. Wood. Current status of transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 60:483–492, 2012.

    Article  PubMed  Google Scholar 

  41. Weinberg, E. J., and M. R. K. Mofrad. Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc. Eng. 7:140–155, 2007.

    Article  PubMed  Google Scholar 

  42. Weinberg, E. J., and M. R. K. Mofrad. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41:3482–3487, 2008.

    Article  PubMed  Google Scholar 

  43. Weinberg, E. J., P. J. Mack, F. J. Schoen, G. Garcia-Cardena, and M. R. K. Mofrad. Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro. Cardiovasc. Eng. 10:5–11, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Wei Wu is supported by the Politecnico di Milano International Fellowships Program (PIF). Claudio Chiastra is partially supported by the ERC starting Grant (310457, BioCCora). Desiree Pott is supported by the Deutsche Forschungsgemeinschaft (DFG) Grant STE1680/5-1.

Conflict of interests

There is no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Migliavacca.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Pott, D., Mazza, B. et al. Fluid–Structure Interaction Model of a Percutaneous Aortic Valve: Comparison with an In Vitro Test and Feasibility Study in a Patient-Specific Case. Ann Biomed Eng 44, 590–603 (2016). https://doi.org/10.1007/s10439-015-1429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1429-x

Keywords

Navigation