Skip to main content

Multiscale Modeling of Ligaments and Tendons

  • Chapter
  • First Online:
Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Abstract

Ligaments and tendons are composed primarily of water and fibrillar type I collagen, which is hierarchically organized into complex structures that span multiple physical scales. Forces at the macroscopic joint level are transmitted via interactions at the mesoscale, microscale and nanoscale. Tissue repair and growth is mediated by fibroblasts and tenocytes, which are subjected to a unique microscale mechanical environment. The burgeoning field of multiscale modeling holds promise in filling the gaps in our understanding of structure–function relationships and mechanotransduction in these tissues, and these questions are difficult or impossible to address using experimental techniques alone. This article reviews the state of the art in multiscale modeling of ligaments and tendons, while providing sufficient background on the structure and function of these tissues to allow a reader who is new to the area to proceed without substantial outside reading. The multiscale structure of ligaments and tendons is described in detail. The available data on material characterization at different physical scales is reviewed as well. The final section of the chapter summarizes the efforts at developing and validating multiscale models that are relevant to ligament and tendon mechanics, and identifies future directions for research. Multiscale modeling of tendon and ligament holds considerable promise in advancing our understanding regarding the complex mechanisms of multiscale force transfer within these tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel-Rahman, E.: Three-dimensional dynamic anatomically based model of the human tibio-femoral joint. Ph.D., University of Toledo, Toledo (1995)

    Google Scholar 

  2. Abramowitch, S.D., Clineff, T.D., Withrow, J.D., Papageorgiou, C.D., Woo, S.L.: The quasilinear viscoelastic properties of the healing goat medial collateral ligament: an experimental & analytical approach. In: 23rd Annual Meeting of the American Society of Biomechanics (1999)

    Google Scholar 

  3. Abramowitch, S.D., Papageorgiou, C.D., Debski, R.E., Clineff, T.D., Woo, S.L.: A biomechanical and histological evaluation of the structure and function of the healing medial collateral ligament in a goat model. Knee Surg. Sports Traumatol. Arthrosc. 11(3), 155–162 (2003)

    Google Scholar 

  4. Agoram, B., Barocas, V.H.: Coupled macroscopic and microscopic scale modeling of fibrillar tissues and tissue equivalents. J. Biomech. Eng. 123(4), 362–369 (2001)

    Article  Google Scholar 

  5. Ahmed, A.M., Burke, D.L., Duncan, N.A., Chan, K.H.: Ligament tension pattern in the flexed knee in combined passive anterior translation and axial rotation. J. Orthop. Res. 10(6), 854–867 (1992)

    Article  Google Scholar 

  6. Ahmed, A.M., Hyder, A., Burke, D.L., Chan, K.H.: In vitro ligament tension pattern in the flexed knee in passive loading. J. Orthop. Res. 5(2), 217–230 (1987)

    Article  Google Scholar 

  7. Amiel, D., Frank, C., Harwood, F., Fronek, J., Akeson, W.: Tendons and ligaments: a morphological and biochemical comparison. J. Orthop. Res. 1(3), 257–265 (1984)

    Article  Google Scholar 

  8. Andarawis-Puri, N., Kuntz, A.F., Ramsey, M.L., Soslowsky, L.J.: Effect of supraspinatus tendon repair technique on the infraspinatus tendon. J. Biomech. Eng. 133(3), 031008 (2011)

    Article  Google Scholar 

  9. Anderson, A.E., Ellis, B.J., Weiss, J.A.: Verification, validation and sensitivity studies in computational biomechanics. Comput. Methods Biomech. Biomed. Eng. 10(3), 171–184 (2007)

    Article  Google Scholar 

  10. Anderson, D.R., Weiss, J.A., Takai, S., Ohland, K.J., Woo, S.L.-Y.: Healing of the medial collateral ligament following a triad injury: a biomechanical and histological study of the knee in rabbits. J. Orthop. Res. 10, 485–495 (1992)

    Article  Google Scholar 

  11. Anderson, D.R., Weiss, J.A., Takai, S., Ohland, K.J., Woo, S.L.: Healing of the medial collateral ligament following a triad injury: a biomechanical and histological study of the knee in rabbits. J. Orthop. Res. 10(4), 485–495 (1992)

    Article  Google Scholar 

  12. Annovazzi, L., Genna, F.: An engineering, multiscale constitutive model for fiber-forming collagen in tension. J. Biomed. Mater. Res. A 92(1), 254–266 (2010)

    Google Scholar 

  13. Armstrong, C.G., Lai, W.M., Mow, V.C.: An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106(2), 165–173 (1984)

    Article  Google Scholar 

  14. Ateshian, G.A., Rajan, V., Chahine, N.O., Canal, C.E., Hung, C.T.: Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J. Biomech. Eng. 131(6), 061003 (2009)

    Article  Google Scholar 

  15. Ateshian, G.A., Warden, W.H., Kim, J.J., Grelsamer, R.P., Mow, V.C.: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J. Biomech. 30(11–12), 1157–1164 (1997)

    Article  Google Scholar 

  16. Atkinson, T.S., Ewers, B.J., Haut, R.C.: The tensile and stress relaxation responses of human patellar tendon varies with specimen cross-sectional area. J. Biomech. 32(9), 907–914 (1999)

    Article  Google Scholar 

  17. Ault, H.K., Hoffman, A.H.: A composite micromechanical model for connective tissues: Part I—Theory. J. Biomech. Eng. 114(1), 137–141 (1992)

    Article  Google Scholar 

  18. Ault, H.K., Hoffman, A.H.: A composite micromechanical model for connective tissues: Part II—Application to rat tail tendon and joint capsule. J. Biomech. Eng. 114(1), 142–146 (1992)

    Article  Google Scholar 

  19. Babuska, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bach, J.M., Hull, M.L., Patterson, H.A.: Direct measurement of strain in the posterolateral bundle of the anterior cruciate ligament. J. Biomech. 30(3), 281–283 (1997)

    Article  Google Scholar 

  21. Banos, C.C., Thomas, A.H., Kuo, C.K.: Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly. Birth Defects Res. C Embryo Today 84(3), 228–244 (2008)

    Article  Google Scholar 

  22. Barton, E.R., Gimbel, J.A., Williams, G.R., Soslowsky, L.J.: Rat supraspinatus muscle atrophy after tendon detachment. J. Orthop. Res. 23(2), 259–265 (2005)

    Article  Google Scholar 

  23. Batson, E.L., Paramour, R.J., Smith, T.J., Birch, H.L., Patterson-Kane, J.C., Goodship, A.E.: Are the material properties and matrix composition of equine flexor and extensor tendons determined by their functions? Equine Vet. J. 35(3), 314–318 (2003)

    Article  Google Scholar 

  24. Battlehner, C.N., Carneiro Filho, M., Ferreira Junior, J.M., Saldiva, P.H., Montes, G.S.: Histochemical and ultrastructural study of the extracellular matrix fibers in patellar tendon donor site scars and normal controls. J. Submicrosc. Cytol. Pathol. 28(2), 175–186 (1996)

    Google Scholar 

  25. Beatty, M.F., Stalnaker, D.O.: The Poisson function of finite elasticity. J. Appl. Mech. 53(4), 807–813 (1986)

    Article  MATH  Google Scholar 

  26. Benjamin, M., Evans, E.J., Copp, L.: The histology of tendon attachments to bone in man. J. Anat. 149, 89–100 (1986)

    Google Scholar 

  27. Benjamin, M., Kaiser, E., Milz, S.: Structure-function relationships in tendons: a review. J. Anat. 212(3), 211–228 (2008)

    Article  Google Scholar 

  28. Benjamin, M., Ralphs, J.R.: Tendons and ligaments—an overview. Histol. Histopathol. 12(4), 1135–1144 (1997)

    Google Scholar 

  29. Berns, G.S., Hull, M.L., Patterson, H.A.: Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J. Orthop. Res. 10(2), 167–176 (1992)

    Article  Google Scholar 

  30. Birch, H.L.: Tendon matrix composition and turnover in relation to functional requirements. Int. J. Exp. Pathol. 88(4), 241–248 (2007)

    Article  Google Scholar 

  31. Birk, D.E., Zycband, E.I., Woodruff, S., Winkelmann, D.A., Trelstad, R.L.: Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures. Dev. Dyn. 208(3), 291–298 (1997)

    Article  Google Scholar 

  32. Black, L.D., Brewer, K.K., Morris, S.M., Schreiber, B.M., Toselli, P., Nugent, M.A., Suki, B., Stone, P.J.: Effects of elastase on the mechanical and failure properties of engineered elastin-rich matrices. J. Appl. Physiol. 98(4), 1434–1441 (2005)

    Article  Google Scholar 

  33. Blankevoort, L., Kuiper, J.H., Huiskes, R., Grootenboer, H.J.: Articular contact in a three-dimensional model of the knee. J. Biomech. 24(11), 1019–1031 (1991)

    Article  Google Scholar 

  34. Bonifasi-Lista, C., Lake, S.P., Small, M.S., Weiss, J.A.: Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. J. Orthop. Res. 23(1), 67–76 (2005)

    Article  Google Scholar 

  35. Bozec, L., Horton, M.: Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy. Biophys. J. 88(6), 4223–4231 (2005)

    Article  Google Scholar 

  36. Bredrup, C., Stang, E., Bruland, O., Palka, B.P., Young, R.D., Haavik, J., Knappskog, P.M., Rodahl, E.: Decorin accumulation contributes to the stromal opacities found in congenital stromal corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 51(11), 5578–5582 (2010)

    Article  Google Scholar 

  37. Breuls, R.G., Sengers, B.G., Oomens, C.W., Bouten, C.V., Baaijens, F.P.: Predicting local cell deformations in engineered tissue constructs: a multilevel finite element approach. J. Biomech. Eng. 124(2), 198–207 (2002)

    Article  Google Scholar 

  38. Brinson, L.C., Lin, W.: Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites. Compos. Struct. 41(3–4), 353–367 (1998)

    Article  Google Scholar 

  39. Buechner, P.M., Lakes, R.S.: Size effects in the elasticity and viscoelasticity of bone. Biomech. Model. Mechanobiol. 1(4), 295–301 (2003)

    Article  Google Scholar 

  40. Butler, D.L., Kay, M.D., Stouffer, D.C.: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J. Biomech. 19(6), 425–432 (1986)

    Article  Google Scholar 

  41. Butler, D.L., Noyes, F.R., Grood, E.S.: Ligamentous restraints to anterior-posterior drawer in the human knee. J. Bone Joint Surg. (Am) 62, 259–270 (1980)

    Google Scholar 

  42. Cetinkaya, M., Xiao, S., Markert, B., Stacklies, W., Grater, F.: Silk fiber mechanics from multiscale force distribution analysis. Biophys. J. 100(5), 1298–1305 (2011)

    Article  Google Scholar 

  43. Chandran, P.L., Barocas, V.H.: Deterministic material-based averaging theory model of collagen gel micromechanics. J. Biomech. Eng. 129(2), 137–147 (2007)

    Article  Google Scholar 

  44. Cherraf-Schweyer, C., Maurice, G., Taghite, M., Taous, K.: An experimental and theoretical approach of elasticity and viscoelasticity of compact and spongy bone with periodic homogenization. Comput. Methods Biomech. Biomed. Eng. 10(3), 195–207 (2007)

    Article  MathSciNet  Google Scholar 

  45. Ciccone, W.J., Bratton, D.R., Weinstein, D.M., Elias, J.J.: Viscoelasticity and temperature variations decrease tension and stiffness of hamstring tendon grafts following anterior cruciate ligament reconstruction. J. Bone Joint Surg. (American volume) 88(5), 1071–1078 (2006)

    Article  Google Scholar 

  46. Cohen, B., Lai, W.M., Mow, V.C.: A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J. Biomech. Eng. 120(4), 491–496 (1998)

    Article  Google Scholar 

  47. Cooper, R.R., Misol, S.: Tendon and ligament insertion. A light and electron microscopic study. J. Bone Joint Surg. (Am) 52, 1–20 (1970)

    Google Scholar 

  48. Cui, L., Maas, H., Perreault, E.J., Sandercock, T.G.: In situ estimation of tendon material properties: differences between muscles of the feline hindlimb. J. Biomech. 42(6), 679–685 (2009)

    Article  Google Scholar 

  49. Daniel, D.M., Akeson, W.H., O’Connor, J.J.: Knee Ligaments: Structure, Function, Injury and Repair. Raven Press, New York (1990)

    Google Scholar 

  50. Danylchuk, K.D., Finlay, J.B., Krcek, J.P.: Microstructural organization of human and bovine cruciate ligaments. Clin. Orthop. Relat. Res. 131, 294–298 (1978)

    Google Scholar 

  51. Debski, R.E., Weiss, J.A., Newman, W.J., Moore, S.M., McMahon, P.J.: Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical examination. J. Shoulder Elbow Surg./Am. Shoulder Elbow Surg. [et al.], 14(1 Suppl S), 24S–31S (2005)

    Google Scholar 

  52. Debski, R.E., Wong, E.K., Woo, S.L., Sakane, M., Fu, F.H., Warner, J.J.: In situ force distribution in the glenohumeral joint capsule during anterior-posterior loading. J. Orthop. Res. 17(5), 769–776 (1999)

    Article  Google Scholar 

  53. Defrate, L.E., van der Ven, A., Boyer, P.J., Gill, T.J., Li, G.: The measurement of the variation in the surface strains of Achilles tendon grafts using imaging techniques. J. Biomech. 39(3), 399–405 (2006)

    Article  Google Scholar 

  54. deVente, J.E., Lester, G.E., Trotter, J.A., Dahners, L.E.: Isolation of intact collagen fibrils from healing ligament. J. Electron Microsc. 46(4), 353–356 (1997)

    Article  Google Scholar 

  55. Doehring, T.C., Kahelin, M., Vesely, I.: Direct measurement of nonuniform large deformations in soft tissues during uniaxial extension. J. Biomech. Eng. 131(6), 061001 (2009)

    Article  Google Scholar 

  56. Drury, N.J., Ellis, B.J., Weiss, J.A., McMahon, P.J., Debski, R.E.: Finding consistent strain distributions in the glenohumeral capsule between two subjects: implications for development of physical examinations. J. Biomech. 44(4), 607–613 (2011)

    Article  Google Scholar 

  57. Drury, N.J., Ellis, B.J., Weiss, J.A., McMahon, P.J., Debski, R.E.: The impact of glenoid labrum thickness and modulus on labrum and glenohumeral capsule function. J. Biomech. Eng. 132(12), 121003 (2010)

    Article  Google Scholar 

  58. Duenwald-Kuehl, S., Kondratko, J., Lakes, R.S., Vanderby Jr, R.: Damage mechanics of porcine flexor tendon: mechanical evaluation and modeling. Ann. Biomed. Eng. 40(8), 1692–1707 (2012)

    Article  Google Scholar 

  59. Duenwald, S.E., Vanderby Jr, R.: Lakes RS: viscoelastic relaxation and recovery of tendon. Ann. Biomed. Eng. 37(6), 1131–1140 (2009)

    Article  Google Scholar 

  60. Edelstein, L., Thomas, S.J., Soslowsky, L.J.: Rotator cuff tears: what have we learned from animal models? J. Musculoskelet. Neuronal Interact. 11(2), 150–162 (2011)

    Google Scholar 

  61. Einat, R., Yoram, L.: Recruitment viscoelasticity of the tendon. J. Biomech. Eng. 131(11), 111008 (2009)

    Article  Google Scholar 

  62. Elliott, D.M., Robinson, P.S., Gimbel, J.A., Sarver, J.J., Abboud, J.A., Iozzo, R.V., Soslowsky, L.J.: Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann. Biomed. Eng. 31(5), 599–605 (2003)

    Article  Google Scholar 

  63. Ellis, B.J., Debski, R.E., Moore, S.M., McMahon, P.J., Weiss, J.A.: Methodology and sensitivity studies for finite element modeling of the inferior glenohumeral ligament complex. J. Biomech. 40(3), 603–612 (2007)

    Article  Google Scholar 

  64. Ellis, B.J., Drury, N.J., Moore, S.M., McMahon, P.J., Weiss, J.A., Debski, R.E.: Finite element modelling of the glenohumeral capsule can help assess the tested region during a clinical exam. Comput. Methods Biomech. Biomed. Eng. 13(3), 413–418 (2010)

    Article  Google Scholar 

  65. Ellis, B.J., Lujan, T.J., Dalton, M.S., Weiss, J.A.: Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. J. Orthop. Res. 24(4), 800–810 (2006)

    Article  Google Scholar 

  66. Feyel, F.: A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput. Methods Appl. Mech. Eng. 192(28–30), 3233–3244 (2003)

    Article  MATH  Google Scholar 

  67. Franchi, M., Fini, M., Quaranta, M., De Pasquale, V., Raspanti, M., Giavaresi, G., Ottani, V., Ruggeri, A.: Crimp morphology in relaxed and stretched rat Achilles tendon. J. Anat. 210(1), 1–7 (2007)

    Article  Google Scholar 

  68. Frank, C., McDonald, D., Bray, D., Bray, R., Rangayyan, R., Chimich, D., Shrive, N.: Collagen fibril diameters in the healing adult rabbit medial collateral ligament. Connect. Tissue Res. 27(4), 251–263 (1992)

    Article  Google Scholar 

  69. Frank, C., Woo, S.L., Amiel, D., Harwood, F., Gomez, M., Akeson, W.: Medial collateral ligament healing. A multidisciplinary assessment in rabbits. Am. J. Sports Med. 11(6), 379–389 (1983)

    Article  Google Scholar 

  70. Freed, A.D., Doehring, T.C.: Elastic model for crimped collagen fibrils. J. Biomech. Eng. 127(4), 587–593 (2005)

    Article  Google Scholar 

  71. Fukunaga, T., Kubo, K., Kawakami, Y., Fukashiro, S., Kanehisa, H., Maganaris, C.N.: In vivo behaviour of human muscle tendon during walking. Proc. R. Soc. Biol. Sci. 268(1464), 229–233 (2001)

    Article  Google Scholar 

  72. Fung, D.T., Sereysky, J.B., Basta-Pljakic, J., Laudier, D.M., Huq, R., Jepsen, K.J., Schaffler, M.B., Flatow, E.L.: Second harmonic generation imaging and Fourier transform spectral analysis reveal damage in fatigue-loaded tendons. Ann. Biomed. Eng. 38(5), 1741–1751 (2010)

    Article  Google Scholar 

  73. Fung, D.T., Wang, V.M., Laudier, D.M., Shine, J.H., Basta-Pljakic, J., Jepsen, K.J., Schaffler, M.B., Flatow, E.L.: Subrupture tendon fatigue damage. J. Orthop. Res. 27(2), 264–273 (2009)

    Article  Google Scholar 

  74. Funk, J.R., Hall, G.W., Crandall, J.R., Pilkey, W.D.: Linear and quasi-linear viscoelastic characterization of ankle ligaments. J. Biomech. Eng. 122(1), 15–22 (2000)

    Article  Google Scholar 

  75. Gardiner, J.C., Weiss, J.A.: Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J. Orthop. Res. 21, 1098–1106 (2003)

    Article  Google Scholar 

  76. Gardiner, J.C., Weiss, J.A., Rosenberg, T.D.: Strain in the human medial collateral ligament during valgus loading of the knee. Clin. Orthop. 391, 266–274 (2001)

    Article  Google Scholar 

  77. Garnich, M.R., Karami, G.: Finite element micromechanics for stiffness and strength of wavy fiber composites. J. Compos. Mater. 38(4), 273 (2004)

    Article  Google Scholar 

  78. Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale computational homogenization: trends and challenges. J. Comp. Appl. Math. 234, 2175–2182 (2010)

    Article  MATH  Google Scholar 

  79. Gimbel, J.A., Mehta, S., Van Kleunen, J.P., Williams, G.R., Soslowsky, L.J.: The tension required at repair to reappose the supraspinatus tendon to bone rapidly increases after injury. Clin. Orthop. Relat. Res. 426, 258–265 (2004)

    Article  Google Scholar 

  80. Gimbel, J.A., Van Kleunen, J.P., Lake, S.P., Williams, G.R., Soslowsky, L.J.: The role of repair tension on tendon to bone healing in an animal model of chronic rotator cuff tears. J. Biomech. 40(3), 561–568 (2007)

    Article  Google Scholar 

  81. Gimbel, J.A., Van Kleunen, J.P., Williams, G.R., Thomopoulos, S., Soslowsky, L.J.: Long durations of immobilization in the rat result in enhanced mechanical properties of the healing supraspinatus tendon insertion site. J. Biomech. Eng. 129(3), 400–404 (2007)

    Article  Google Scholar 

  82. Gitman, I.M., Askes, H., Sluys, L.J.: Representative volume: existence and size determination. Eng. Fract. Mech. 74(16), 2518–2534 (2007)

    Article  Google Scholar 

  83. Goh, K.L., Meakin, J.R., Aspden, R.M., Hukins, D.W.: Influence of fibril taper on the function of collagen to reinforce extracellular matrix. Proc. R. Soc. Biol. Sci. 272(1575), 1979–1983 (2005)

    Article  Google Scholar 

  84. Goh, K.L., Meakin, J.R., Aspden, R.M., Hukins, D.W.: Stress transfer in collagen fibrils reinforcing connective tissues: effects of collagen fibril slenderness and relative stiffness. J. Theor. Biol. 245(2), 305–311 (2007)

    Article  Google Scholar 

  85. Gotoh, T., Murashige, N., Yamashita, K.: Ultrastructural observations on the tendon sheath of the rat tail. J. Electron. Microsc. (Tokyo) 46(3), 247–252 (1997)

    Article  Google Scholar 

  86. Graham, J.M., Ayati, B.P., Ramakrishnan, P.S., Martin, J.A.: Towards a new spatial representation of bone remodeling. Math. Biosci. Eng. 9(2), 281–295 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  87. Grood, E.S., Noyes, F.R., Butler, D.L., Suntay, W.J.: Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J. Bone Joint Surg. (Am) 63, 1257–1269 (1981)

    Google Scholar 

  88. Grytz, R., Meschke, G.: Constitutive modeling of crimped collagen fibrils in soft tissues. J. Mech. Behav. Biomed. Mater. 2(5), 522–533 (2009)

    Article  Google Scholar 

  89. Gupta, H.S., Seto, J., Krauss, S., Boesecke, P., Screen, H.R.: In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen. J. Struct. Biol. 169(2), 183–191 (2010)

    Article  Google Scholar 

  90. Gururaja, S., Kim, H.J., Swan, C.C., Brand, R.A., Lakes, R.S.: Modeling deformation-induced fluid flow in cortical bone’s canalicular-lacunar system. Ann. Biomed. Eng. 33(1), 7–25 (2005)

    Article  Google Scholar 

  91. Gusev, A.A.: Representative volume element size for elastic composites: a numerical study. J. Mech. Phys. Solids 45(9), 1449–1459 (1997)

    Article  MATH  Google Scholar 

  92. Hakkinen, L., Strassburger, S., Kahari, V.M., Scott, P.G., Eichstetter, I., Lozzo, R.V., Larjava, H.: A role for decorin in the structural organization of periodontal ligament. Lab. Invest. 80(12), 1869–1880 (2000)

    Article  Google Scholar 

  93. Hambli, R., Katerchi, H., Benhamou, C.L.: Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech. Model. Mechanobiol. 10(1), 133–145 (2011)

    Article  Google Scholar 

  94. Hannafin, J.A., Arnoczky, S.P.: Effect of cyclic and static tensile loading on water content and solute diffusion in canine flexor tendons: an in vitro study. J. Orthop. Res. 12, 350–356 (1994)

    Article  Google Scholar 

  95. Hansen, K.A., Weiss, J.A., Barton, J.K.: Recruitment of tendon crimp with applied tensile strain. ASME 124, 72 (2002)

    Google Scholar 

  96. Haraldsson, B.T., Aagaard, P., Qvortrup, K., Bojsen-Moller, J., Krogsgaard, M., Koskinen, S., Kjaer, M., Magnusson, S.P.: Lateral force transmission between human tendon fascicles. Matrix Biol. 27(2), 86–95 (2008)

    Article  Google Scholar 

  97. Hartmann, D.: A multiscale model for red blood cell mechanics. Biomech. Model. Mechanobiol. 9(1), 1–17 (2010)

    Article  MathSciNet  Google Scholar 

  98. Hazanov, S.: Hill condition and overall properties of composites. Arch. Appl. Mech. 68, 385–394 (1998)

    Article  MATH  Google Scholar 

  99. Hazanov, S.: On apparent properties of nonlinear heterogeneous bodies smaller than the representative volume. Acta Mech. 134(3–4), 1619–6937 (1998)

    MathSciNet  Google Scholar 

  100. Heinemeier, K.M., Kjaer, M.: In vivo investigation of tendon responses to mechanical loading. J. Musculoskelet. Neuronal Interact. 11(2), 115–123 (2011)

    Google Scholar 

  101. Helmer, K.G., Nair, G., Cannella, M., Grigg, P.: Water movement in tendon in response to a repeated static tensile load using one-dimensional magnetic resonance imaging. J. Biomech. Eng. 128(5), 733–741 (2006)

    Article  Google Scholar 

  102. Henninger, H.B., Maas, S.A., Shepherd, J.H., Joshi, S., Weiss, J.A.: Transversely isotropic distribution of sulfated glycosaminoglycans in human medial collateral ligament: a quantitative analysis. J. Struct. Biol. 165(3), 176–183 (2009)

    Article  Google Scholar 

  103. Henninger, H.B., Reese, S.P., Anderson, A.E., Weiss, J.A.: Validation of computational models in biomechanics. Proc. Inst. Mech. Eng. H 224(7), 801–812 (2010)

    Article  Google Scholar 

  104. Henninger, H.B., Underwood, C.J., Ateshian, G.A., Weiss, J.A.: Effect of sulfated glycosaminoglycan digestion on the transverse permeability of medial collateral ligament. J. Biomech. 43(13), 2567–2573 (2010)

    Article  Google Scholar 

  105. Hewitt, J., Guilak, F., Glisson, R., Vail, T.P.: Regional material properties of the human hip joint capsule ligaments. J. Orthop. Res. 19(3), 359–364 (2001)

    Article  Google Scholar 

  106. Hildebrand, K.A., Frank, C.B.: Scar formation and ligament healing. Can. J. Surg. Journal Canadien de Chirurgie 41(6), 425–429 (1998)

    Google Scholar 

  107. Hirokawa, S.: An experimental study of the microstructures and mechanical properties of swine cruciate ligaments. JSME Int. J. 46(4), 1417–1425 (2003)

    Article  Google Scholar 

  108. Holzapfel, G.A.: Nonlinear Solid Mechanics. Wiley, Chichester (2000)

    MATH  Google Scholar 

  109. Huang, C.Y., Mow, V.C., Ateshian, G.A.: The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J. Biomech. Eng. 123(5), 410–417 (2001)

    Article  Google Scholar 

  110. Huang, C.Y., Soltz, M.A., Kopacz, M., Mow, V.C., Ateshian, G.A.: Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. J. Biomech. Eng. 125(1), 84–93 (2003)

    Article  Google Scholar 

  111. Hurschler, C., Loitz-Ramage, B., Vanderby Jr, R.: A structurally based stress-stretch relationship for tendon and ligament. J. Biomech. Eng. 119(4), 392–399 (1997)

    Article  Google Scholar 

  112. Hurschler, C., Provenzano, P.P., Vanderby Jr, R.: Scanning electron microscopic characterization of healing and normal rat ligament microstructure under slack and loaded conditions. Connect. Tissue Res. 44(2), 59–68 (2003)

    Google Scholar 

  113. Ichiba, A., Nakajima, M., Fujita, A., Abe, M.: The effect of medial collateral ligament insufficiency on the reconstructed anterior cruciate ligament: a study in the rabbit. Acta Orthop. Scand. 74(2), 196–200 (2003)

    Article  Google Scholar 

  114. Ilic, M.Z., Carter, P., Tyndall, A., Dudhia, J., Handley, C.J.: Proteoglycans and catabolic products of proteoglycans present in ligament. Biochem. J. 385(Pt 2), 381–388 (2005)

    Google Scholar 

  115. Inoue, M., McGurk-Burleson, E., Hollis, J.M., Woo, S.L.: Treatment of the medial collateral ligament injury. I: The importance of anterior cruciate ligament on the varus-valgus knee laxity. Am. J. Sports Med. 15(1), 15–21 (1987)

    Article  Google Scholar 

  116. Ishikawa, M., Komi, P.V., Grey, M.J., Lepola, V., Bruggemann, G.P.: Muscle-tendon interaction and elastic energy usage in human walking. J. Appl. Physiol. 99(2), 603–608 (2005)

    Article  Google Scholar 

  117. Jarvinen, T., Jarvinen, T.L., Kannus, P., Jozsa, L., Jarvinen, M.: Collagen fibres of the spontaneously ruptured human tendons display decreased thickness and crimp angle. J. Orthop. Res. 22(6), 1303–1309 (2004)

    Article  Google Scholar 

  118. Johnson, G.A., Tramaglini, D.M., Levine, R.E., Ohno, K., Choi, N.Y., Woo, S.L.: Tensile and viscoelastic properties of human patellar tendon. J. Orthop. Res. 12(6), 796–803 (1994)

    Article  Google Scholar 

  119. Jung, H.J., Fisher, M.B., Woo, S.L.: Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons. Sports Med. Arthroscopy Rehabil. Therapy Technol. (SMARTT) 1(1), 9 (2009)

    Article  Google Scholar 

  120. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)

    Article  MATH  Google Scholar 

  121. Kannus, P.: Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports 10(6), 312–320 (2000)

    Article  Google Scholar 

  122. Kanouté, P., Boso, D., Chaboche, J., Schrefler, B.: Multiscale methods for composites: a review. Arch. Comput. Methods Eng. 16(1), 31–75 (2009)

    Article  MATH  Google Scholar 

  123. Karas, V., Cole, B.J., Wang, V.M.: Role of biomechanics in rotator cuff pathology: North American perspective. Med. Sport Sci. 57, 18–26 (2012)

    Article  Google Scholar 

  124. Kastelic, J., Galeski, A., Baer, E.: The multicomposite structure of tendon. Connect. Tissue Res. 6(1), 11–23 (1978)

    Article  Google Scholar 

  125. Kjaer, M.: Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 84(2), 649–698 (2004)

    Article  Google Scholar 

  126. Komolafe, O.A., Doehring, T.C.: Fascicle-scale loading and failure behavior of the Achilles tendon. J. Biomech. Eng. 132(2), 021004 (2010)

    Article  Google Scholar 

  127. Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 27(1), 37–48 (2001)

    Article  MATH  Google Scholar 

  128. Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Meth. Eng. 54(8), 1235–1260 (2002)

    Article  MATH  Google Scholar 

  129. Kouznetsova, V.G., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193(48–51), 5525–5550 (2004)

    Article  MATH  Google Scholar 

  130. Labed, N., Turbe, N.: Computation of homogenized coefficients for a viscoelastic composite reinforced with spherical inclusions. J. Compos. Mater. 32(14), 1297–1310 (1998)

    Article  Google Scholar 

  131. Lafortune, M.A., Cavanagh, P.R., Sommer III, H.J., Kalenak, A.: Three-dimensional kinematics of the human knee during walking. J. Biomech. 25, 347–357 (1992)

    Article  Google Scholar 

  132. Lake, S.P., Barocas, V.H.: Mechanical and structural contribution of non-fibrillar matrix in uniaxial tension: a collagen-agarose Co-Gel model. Ann. Biomed. Eng. 39, 1891–1903 (2011)

    Article  Google Scholar 

  133. Lake, S.P., Miller, K.S., Elliott, D.M., Soslowsky, L.J.: Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J. Orthop. Res. 27(12), 1596–1602 (2009)

    Article  Google Scholar 

  134. Lakes, R.S.: Viscoelastic Materials. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  135. Lakes, R.S., Vanderby, R.: Interrelation of creep and relaxation: a modeling approach for ligament. J. Biomech. Eng. 121(6), 612–615 (1999)

    Article  Google Scholar 

  136. Lanir, Y.: Structure-strength relationships in mammalian tendon. Biophys. J. 24, 541–554 (1978)

    Article  Google Scholar 

  137. Lavagnino, M., Arnoczky, S.P., Kepich, E., Caballero, O., Haut, R.C.: A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading. Biomech. Model. Mechanobiol. 7(5), 405–416 (2008)

    Article  Google Scholar 

  138. Li, J., Li, H., Shi, L., Fok, A.S., Ucer, C., Devlin, H., Horner, K., Silikas, N.: A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent. Mater. 23(9), 1073–1078 (2007)

    Article  Google Scholar 

  139. Lichtwark, G.A., Wilson, A.M.: In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J. Exp. Biol. 208(Pt 24), 4715–4725 (2005)

    Article  Google Scholar 

  140. Linder, L.H., Sukin, D.L., Burks, R.T., Haut, R.C.: Biomechanical and histological properties of the canine patellar tendon after removal of its medial third. Am. J. Sports Med. 22(1), 136–142 (1994)

    Article  Google Scholar 

  141. Liu, S.H., Panossian, V., al-Shaikh, R., Tomin, E., Shepherd, E., Finerman, G.A., Lane, J.M.: Morphology and matrix composition during early tendon to bone healing. Clin. Orthop. Relat. Res. 339, 253–260 (1997)

    Article  Google Scholar 

  142. Loitz-Ramage, B.J., Frank, C.B., Shrive, N.G.: Injury size affects long-term strength of the rabbit medial collateral ligament. Clin. Orthop. Relat. Res. 337, 272–280 (1997)

    Article  Google Scholar 

  143. Lujan, T.J., Dalton, M.S., Thompson, B.M., Ellis, B.J., Weiss, J.A.: Effect of ACL deficiency on MCL strains and joint kinematics. J. Biomech. Eng. 129(3), 386–392 (2007)

    Article  Google Scholar 

  144. Lujan, T.J., Underwood, C.J., Henninger, H.B., Thompson, B.M., Weiss, J.A.: Effect of dermatan sulfate glycosaminoglycans on the quasi-static material properties of the human medial collateral ligament. J. Orthop. Res. 25(7), 894–903 (2007)

    Article  Google Scholar 

  145. Lujan, T.J., Underwood, C.J., Jacobs, N.T., Weiss, J.A.: Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament. J. Appl. Physiol. 106(2), 423–431 (2009)

    Article  Google Scholar 

  146. Lumens, J., Delhaas, T., Kirn, B., Arts, T.: Modeling ventricular interaction: a multiscale approach from sarcomere mechanics to cardiovascular system hemodynamics. Pac. Symp. Biocomput. 13, 378–389 (2008)

    Google Scholar 

  147. Lynch, H.A., Johannessen, W., Wu, J.P., Jawa, A., Elliott, D.M.: Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. J. Biomech. Eng. 125(5), 726–731 (2003)

    Article  Google Scholar 

  148. Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: FEBio: finite elements for biomechanics. J. Biomech. Eng. 134(1), 011005 (2012)

    Article  Google Scholar 

  149. Maceri, F., Marino, M., Vairo, G.: A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J. Biomech. 43(2), 355–363 (2010)

    Article  Google Scholar 

  150. Maganaris, C.N., Narici, M.V., Almekinders, L.C., Maffulli, N.: Biomechanics and pathophysiology of overuse tendon injuries: ideas on insertional tendinopathy. Sports Med. 34(14), 1005–1017 (2004)

    Article  Google Scholar 

  151. Maganaris, C.N., Narici, M.V., Maffulli, N.: Biomechanics of the Achilles tendon. Disabil. Rehabil. 30(20–22), 1542–1547 (2008)

    Article  Google Scholar 

  152. Maganaris, C.N., Paul, J.P.: Tensile properties of the in vivo human gastrocnemius tendon. J. Biomech. 35(12), 1639–1646 (2002)

    Article  Google Scholar 

  153. Magnusson, S.P., Narici, M.V., Maganaris, C.N., Kjaer, M.: Human tendon behaviour and adaptation, in vivo. J. Physiol. 586(1), 71–81 (2008)

    Article  Google Scholar 

  154. Mak, A.F.: Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis. Biorheology 23(4), 371–383 (1986)

    Google Scholar 

  155. Malvankar, S., Khan, W.S.: Evolution of the Achilles tendon: the athlete’s Achilles heel? Foot 21(4), 193–197 (2011)

    Article  Google Scholar 

  156. Marino M, Vairo G: Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach. Comput. Methods Biomech. Biomed. Eng. 2012. doi:10.1080/10255842.2012.658043

  157. Markolf, K.L., Mensch, J.S., Amstutz, H.C.: Stiffness and laxity of the knee—the contributions of the supporting structures. A quantitative in vitro study. J. Bone Joint Surg. (Am) 58, 583–594 (1976)

    Google Scholar 

  158. Matsumoto, H., Suda, Y., Otani, T., Niki, Y., Seedhom, B.B., Fujikawa, K.: Roles of the anterior cruciate ligament and the medial collateral ligament in preventing valgus instability. J. Orthop. Sci. 6(1), 28–32 (2001)

    Article  Google Scholar 

  159. May-Newman, K., McCulloch, A.D.: Homogenization modeling for the mechanics of perfused myocardium. Prog. Biophys. Mol. Biol. 69(2–3), 463–481 (1998)

    Article  Google Scholar 

  160. Mazzocca, A.D., Nissen, C.W., Geary, M., Adams, D.J.: Valgus medial collateral ligament rupture causes concomitant loading and damage of the anterior cruciate ligament. J. Knee Surg. 16(3), 148–151 (2003)

    Google Scholar 

  161. McKusick, V.A.: The defect in Marfan syndrome. Nature 352(6333), 279–281 (1991)

    Article  Google Scholar 

  162. Miyazaki, H., Kozaburo, H.: Tensile tests of collagen fibers obtained from the rabbit patellar tendon. Biomed. Microdevices 2(2), 151–157 (1999)

    Article  Google Scholar 

  163. Mommersteeg, T.J., Blankevoort, L., Kooloos, J.G., Hendriks, J.C., Kauer, J.M., Huiskes, R.: Nonuniform distribution of collagen density in human knee ligaments. J. Orthop. Res. 12(2), 238–245 (1994)

    Article  Google Scholar 

  164. Moore, S.M., Ellis, B., Weiss, J.A., McMahon, P.J., Debski, R.E.: The glenohumeral capsule should be evaluated as a sheet of fibrous tissue: a validated finite element model. Ann. Biomed. Eng. 38(1), 66–76 (2010)

    Article  Google Scholar 

  165. Müller, R., Rüegsegger, P.: Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med. Eng. Phys. 17(2), 126–133 (1995)

    Article  Google Scholar 

  166. Nakagawa, H., Mikawa, Y., Watanabe, R.: Elastin in the human posterior longitudinal ligament and spinal dura. A histologic and biochemical study. Spine 19(19), 2164–2169 (1994)

    Google Scholar 

  167. Neame, P.J., Kay, C.J., McQuillan, D.J., Beales, M.P., Hassell, J.R.: Independent modulation of collagen fibrillogenesis by decorin and lumican. Cell. Mol. Life Sci. 57(5), 859–863 (2000)

    Article  Google Scholar 

  168. Niven, H., Baer, E., Hiltner, A.: Organization of collagen fibers in rat tail tendon at the optical microscope level. Coll. Relat. Res. 2(2), 131–142 (1982)

    Article  Google Scholar 

  169. Okada, J-i, Washio, T., Hisada, T.: Study of efficient homogenization algorithms for nonlinear problems. Comput. Mech. 46(2), 247–258 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  170. Ottani, V., Martini, D., Franchi, M., Ruggeri, A., Raspanti, M.: Hierarchical structures in fibrillar collagens. Micron 33(7–8), 587–596 (2002)

    Article  Google Scholar 

  171. Ottani, V., Raspanti, M., Ruggeri, A.: Collagen structure and functional implications. Micron 32(3), 251–260 (2001)

    Article  Google Scholar 

  172. Pahr, D.H., Zysset, P.K.: Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomech. Model. Mechanobiol. 7(6), 463–476 (2008)

    Article  Google Scholar 

  173. Payne, R.C., Crompton, R.H., Isler, K., Savage, R., Vereecke, E.E., Gunther, M.M., Thorpe, S.K., D’Aout, K.: Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture. J. Anat. 208(6), 709–724 (2006)

    Google Scholar 

  174. Pena, E., Pena, J.A., Doblare, M.: On modelling nonlinear viscoelastic effects in ligaments. J. Biomech. 41(12), 2659–2666 (2008)

    Article  Google Scholar 

  175. Pins, G.D., Christiansen, D.L., Patel, R., Silver, F.H.: Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys. J. 73(4), 2164–2172 (1997)

    Article  Google Scholar 

  176. Podshivalov, L., Fischer, A., Bar-Yoseph, P.Z.: 3D hierarchical geometric modeling and multiscale FE analysis as a base for individualized medical diagnosis of bone structure. Bone 48(4), 693–703 (2011)

    Article  Google Scholar 

  177. Pollock, C.M., Shadwick, R.E.: Allometry of muscle, tendon, and elastic energy storage capacity in mammals. Am. J. Physiol. 266(3 Pt 2), R1022–R1031 (1994)

    Google Scholar 

  178. Pollock, C.M., Shadwick, R.E.: Relationship between body mass and biomechanical properties of limb tendons in adult mammals. Am. J. Physiol. 266(3 Pt 2), R1016–R1021 (1994)

    Google Scholar 

  179. Provenzano, P., Lakes, R., Keenan, T., Vanderby Jr, R.: Nonlinear ligament viscoelasticity. Ann. Biomed. Eng. 29(10), 908–914 (2001)

    Article  Google Scholar 

  180. Provenzano, P.P., Lakes, R.S., Corr, D.T., Vanderby Jr, R.: Application of nonlinear viscoelastic models to describe ligament behavior. Biomech. Model. Mechanobiol. 1(1), 45–57 (2002)

    Article  Google Scholar 

  181. Puso, M.A., Weiss, J.A.: Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J. Biomech. Eng. 120(1), 62–70 (1998)

    Article  Google Scholar 

  182. Puso, M.A., Weiss, J.A.: Finite element implementation of anisotropic quasi-linear viscoelasticity. J. Biomech. Eng. 120(1), 62–70 (1998)

    Article  Google Scholar 

  183. Quapp, K.M., Weiss, J.A.: Material characterization of human medial collateral ligament. J. Biomech. Eng. 120, 757–763 (1998)

    Article  Google Scholar 

  184. Race, A., Amis, A.A.: The mechanical properties of the two bundles of the human posterior cruciate ligament. J. Biomech. 27(1), 13–24 (1994)

    Article  Google Scholar 

  185. Rausch, M.K., Reese, S., Maas, S., Weiss, J.A.: Can poroelasticity predict the cyclic tensile viscoelastic behavior of ligament? In: Proceedings of the 55th Annual Meeting of the Orthopaedic Research Society (2009)

    Google Scholar 

  186. Reese, S., Weiss, J.: Measurement of Poisson’s ratio and transverse strain in rat tail tendon during stress relaxation. In: Proceedings of the 56th Annual Meeting of the Orthopaedic Research Society, New Orleans, LA (2010)

    Google Scholar 

  187. Reese, S.P., Maas, S.A., Weiss, J.A.: Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson’s ratios. J. Biomech. 43(7), 1394–1400 (2010)

    Article  Google Scholar 

  188. Reese, S.P., Maas, S.A., Weiss, J.A.: A bottom-up approach to construction and validation of multiscale models for aligned collagenous tissues. In: Workshop on Microscale Modeling in Biomechanics and Mechanobiology (2011)

    Google Scholar 

  189. Reese, S.P., Weiss, J.A.: Multiscale micromechanical model of a collagen-based composite: development and validation. In: Multiscale Methods and Validation in Medicine and Biology (2012)

    Google Scholar 

  190. Rigozzi, S., Stemmer, A., Muller, R., Snedeker, J.G.: Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy. J. Struct. Biol. 176(1), 9–15 (2011)

    Article  Google Scholar 

  191. Robinson, P.S., Huang, T.F., Kazam, E., Iozzo, R.V., Birk, D.E., Soslowsky, L.J.: Influence of decorin and biglycan on mechanical properties of multiple tendons in knockout mice. J. Biomech. Eng. 127(1), 181–185 (2005)

    Article  Google Scholar 

  192. Rosenbloom, J.: Elastin: biosynthesis, structure, degradation, and role in disease processes. Connect. Tissue Res. 10, 73–91 (1982)

    Article  Google Scholar 

  193. Royce, P.M., Steinmann, B.: Connective Tissue and its Heritable Disorders: Molecular, Genetic, and Medical Aspects. Wiley, New York (2002)

    Book  Google Scholar 

  194. Rumian, A.P., Wallace, A.L., Birch, H.L.: Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features—a comparative study in an ovine model. J. Orthop. Res. 25(4), 458–464 (2007)

    Article  Google Scholar 

  195. Sander, E.A., Stylianopoulos, T., Tranquillo, R.T., Barocas, V.H.: Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc. Natl. Acad. Sci. U.S.A. 106(42), 17675–17680 (2009)

    Article  Google Scholar 

  196. Sander, E.A., Tranquillo, R.T., Barocas, V.H.: Image-based multiscale structural models of fibrous engineered tissues. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2009, pp. 4270–4272 (2009)

    Google Scholar 

  197. Sanz-Herrera, J.A., Garcia-Aznar, J.M., Doblare, M.: On scaffold designing for bone regeneration: a computational multiscale approach. Acta Biomater. 5(1), 219–229 (2009)

    Article  Google Scholar 

  198. Screen, H.R., Chhaya, V.H., Greenwald, S.E., Bader, D.L., Lee, D.A., Shelton, J.C.: The influence of swelling and matrix degradation on the microstructural integrity of tendon. Acta Biomater. 2(5), 505–513 (2006)

    Article  Google Scholar 

  199. Screen, H.R., Lee, D.A., Bader, D.L., Shelton, J.C.: An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc. Inst. Mech. Eng. [H] 218(2), 109–119 (2004)

    Google Scholar 

  200. Screen, H.R., Shelton, J.C., Chhaya, V.H., Kayser, M.V., Bader, D.L., Lee, D.A.: The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles. Ann. Biomed. Eng. 33(8), 1090–1099 (2005)

    Article  Google Scholar 

  201. Screen, H.R.C., Bader, D.L., Lee, D.A., Shelton, J.C.: Local strain measurement within tendon. Strain 40, 157–163 (2004)

    Article  Google Scholar 

  202. Screen, H.R.C., Cheng, V.W.T.: The micro-structural strain response of tendon. J. Mater. Sci. 19, 1–2 (2007)

    Google Scholar 

  203. Sengers, B.G., Van Donkelaar, C.C., Oomens, C.W., Baaijens, F.P.: The local matrix distribution and the functional development of tissue engineered cartilage, a finite element study. Ann. Biomed. Eng. 32(12), 1718–1727 (2004)

    Article  Google Scholar 

  204. Shadwick, R.E.: Elastic energy storage in tendons: mechanical differences related to function and age. J. Appl. Physiol. 68(3), 1033–1040 (1990)

    Article  Google Scholar 

  205. Sharafi, B., Ames, E.G., Holmes, J.W., Blemker, S.S.: Strains at the myotendinous junction predicted by a micromechanical model. J. Biomech. 44(16), 2795–2801 (2011)

    Article  Google Scholar 

  206. Smith, K.D., Vaughan-Thomas, A., Spiller, D.G., Innes, J.F., Clegg, P.D., Comerford, E.J.: The organisation of elastin and fibrillins 1 and 2 in the cruciate ligament complex. J. Anat. 218(6), 600–607 (2011)

    Article  Google Scholar 

  207. Speirs, D.C., de Souza Neto, E.A., Peric, D.: An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. J. Biomech. 41(12), 2673–2680 (2008)

    Article  Google Scholar 

  208. Spencer, A.J.M.: Continuum Mechanics. Dover Publications, New York (1980)

    MATH  Google Scholar 

  209. Starborg, T., Lu, Y., Huffman, A., Holmes, D.F., Kadler, K.E.: Electron microscope 3D reconstruction of branched collagen fibrils in vivo. Scand. J. Med. Sci. Sports 19(4), 547–552 (2009)

    Article  Google Scholar 

  210. Sun, Y.L., Luo, Z.P., Fertala, A., An, K.N.: Direct quantification of the flexibility of type I collagen monomer. Biochem. Biophys. Res. Commun. 295(2), 382–386 (2002)

    Article  Google Scholar 

  211. Suquet, P.M.: Elements of homogenization theory for inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (eds.) Homogenization Techniques for Composite Media. Springer, Berlin (1985)

    Google Scholar 

  212. Svensson, R.B., Hassenkam, T., Hansen, P., Peter Magnusson, S.: Viscoelastic behavior of discrete human collagen fibrils. J. Mech. Behav. Biomed. Mater. 3(1), 112–115 (2010)

    Article  Google Scholar 

  213. Tawhai, M., Bischoff, J., Einstein, D., Erdemir, A., Guess, T., Reinbolt, J.: Multiscale modeling in computational biomechanics. IEEE Eng. Med. Biol. Mag. 28(3), 41–49 (2009)

    Article  Google Scholar 

  214. Thomopoulos, S., Hattersley, G., Rosen, V., Mertens, M., Galatz, L., Williams, G.R., Soslowsky, L.J.: The localized expression of extracellular matrix components in healing tendon insertion sites: an in situ hybridization study. J. Orthop. Res. 20(3), 454–463 (2002)

    Article  Google Scholar 

  215. Thomopoulos, S., Williams, G.R., Gimbel, J.A., Favata, M., Soslowsky, L.J.: Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21(3), 413–419 (2003)

    Article  Google Scholar 

  216. Thomopoulos, S., Williams, G.R., Soslowsky, L.J.: Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. J. Biomech. Eng. 125(1), 106–113 (2003)

    Article  Google Scholar 

  217. Thornton, G.M., Oliynyk, A., Frank, C.B., Shrive, N.G.: Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. J. Orthop. Res. 15(5), 652–656 (1997)

    Article  Google Scholar 

  218. Thornton, G.M., Oliynyk, A., Frank, C.B., Shrive, N.G.: Ligament creep cannot be predicted from stress relaxation at low stresses: a biomechanical study of the rabbit medial collateral ligament. J. Orthop. Res. 15, 652–656 (1997)

    Article  Google Scholar 

  219. Tsipouras, P., Ramirez, F.: Genetic disorders of collagen. J. Med. Genet. 24(1), 2–8 (1987)

    Article  Google Scholar 

  220. Uitto, J.: Biochemistry of the elastic fibers in normal connective tissues and its alterations in diseases. J Invest Dermatol 72(1), 1–10 (1979)

    Article  Google Scholar 

  221. Upton, M.L., Gilchrist, C.L., Guilak, F., Setton, L.A.: Transfer of macroscale tissue strain to microscale cell regions in the deformed meniscus. Biophys. J. 95(4), 2116–2124 (2008)

    Article  Google Scholar 

  222. van der Rijt, J.A., van der Werf, K.O., Bennink, M.L., Dijkstra, P.J., Feijen, J.: Micromechanical testing of individual collagen fibrils. Macromol. Biosci. 6(9), 697–702 (2006)

    Article  Google Scholar 

  223. Varga, P., Dall’ara, E., Pahr, D.H., Pretterklieber, M., Zysset, P.K.: Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections. Biomech. Model. Mechanobiol. 10, 431–444 (2010)

    Article  Google Scholar 

  224. Venturoni, M., Gutsmann, T., Fantner, G.E., Kindt, J.H., Hansma, P.K.: Investigations into the polymorphism of rat tail tendon fibrils using atomic force microscopy. Biochem. Biophys. Res. Commun. 303(2), 508–513 (2003)

    Article  Google Scholar 

  225. Vernerey, F.J., Kabiri, M.: An adaptive concurrent multiscale method for microstructured elastic solids. Comput. Methods Appl. Mech. Eng. 241–244, 52–64 (2012)

    Article  MathSciNet  Google Scholar 

  226. Vidal, B.C.: Crimp as part of a helical structure. C R Acad. Sci. III 318(2), 173–178 (1995)

    Google Scholar 

  227. Vidal, D.C.: Image analysis of tendon helical superstructure using interference and polarized light microscopy. Micron 34(8), 423–432 (2003)

    Article  Google Scholar 

  228. Waggett, A.D., Ralphs, J.R., Kwan, A.P., Woodnutt, D., Benjamin, M.: Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol. 16(8), 457–470 (1998)

    Article  Google Scholar 

  229. Wang, C.J., Walker, P.S., Wolf, B.: The effects of flexion and rotation on the length patterns of the ligaments of the knee. J. Biomech. 6, 587–596 (1973)

    Article  Google Scholar 

  230. Wang, J.H.: Mechanobiology of tendon. J. Biomech. 39(9), 1563–1582 (2006)

    Article  Google Scholar 

  231. Weiss, J.A.: Behavior of human medial collateral ligament in unconfined compression. In: Othopaedic Research Society 46th Annual Meeting, ORS, Orlando, FL (2000)

    Google Scholar 

  232. Weiss, J.A.: A constitutive model and finite element representation for transversely isotropic soft tissues. Ph.D., University of Utah, Salt Lake City (1994)

    Google Scholar 

  233. Weiss, J.A., Gardiner, J.C.: Computational modeling of ligament mechanics. Crit. Rev. Biomed. Eng. 29(3), 303–371 (2001)

    Article  Google Scholar 

  234. Weiss, J.A., Gardiner, J.C., Bonifasi-Lista, C.: Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J. Biomech. 35, 943–950 (2002)

    Article  Google Scholar 

  235. Weiss, J.A., Gardiner, J.C., Ellis, B.J., Lujan, T.J., Phatak, N.S.: Three-dimensional finite element modeling of ligaments: technical aspects. Med. Eng. Phys. 27(10), 845–861 (2005)

    Article  Google Scholar 

  236. Weiss, J.A., Maakestad, B.J.: Permeability of human medial collateral ligament in compression transverse to the collagen fiber direction. J. Biomech. 39(2), 276–283 (2006)

    Article  Google Scholar 

  237. Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comp. Meth. Appl. Mech. Eng. 135, 107–128 (1996)

    Article  MATH  Google Scholar 

  238. Weiss, J.A., Woo, S.L.-Y., Ohland, K.J., Horibe, S., Newton, P.O.: Evaluation of a new injury model to study medial collateral ligament healing: Primary repair versus nonoperative treatment. J. Orthop. Res. 9, 516–528 (1991)

    Article  Google Scholar 

  239. Wenger, M.P., Bozec, L., Horton, M.A., Mesquida, P.: Mechanical properties of collagen fibrils. Biophys. J. 93(4), 1255–1263 (2007)

    Article  Google Scholar 

  240. Woo, S.L.-Y.: Biomechanics of tendons and ligaments. In: Schmid-Schonbein, G.W., Woo, S.L.-Y., Zweifach, B.W. (eds.) Frontiers in Biomechanics, pp. 180–195. Springer, New York (1986)

    Chapter  Google Scholar 

  241. Woo, S.L.-Y.: Mechanical properties of tendons and ligaments I. Quasi-static and nonlinear viscoelastic properties. Biorheology 19, 385–396 (1982)

    Google Scholar 

  242. Woo, S.L-Y., An, K.-N., Arnoczky, S.P., Wayne, J.S., Fithian, D.C., Myers, B.S.: Anatomy, biology, and biomechanics of tendon, ligament and meniscus. In: Simon, S. (ed.) Orthopaedic Basic Science. American Academy of Orthopaedic Surgeons, pp. 47–74 (1994)

    Google Scholar 

  243. Woo, S.L.-Y., Hollis, J.M., Adams, D.J., Lyon, R.M., Takai, S.: Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am. J. Sports Med. 19, 217–225 (1991)

    Article  Google Scholar 

  244. Woo, S.L.-Y., Weiss, J.A., Gomez, M.A., Hawkins, D.A.: Measurement of changes in ligament tension with knee motion and skeletal maturation. J. Biomech. Eng. 112(1), 46–51 (1990)

    Article  Google Scholar 

  245. Woo SL-Y, Weiss JA, MacKenna DA, 1990, “Biomechanics and morphology of the medial collateral and anterior cruciate ligaments,” Biomechanics of Diarthrodial Joints, Volume 1, V. a. R. Mow, A and Woo, SL-Y, ed., pp. 63-103

    Google Scholar 

  246. Wurgler-Hauri CC, Dourte LM, Baradet TC, Williams GR, Soslowsky LJ: Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J. Shoulder Elbow Surg./Am. Shoulder Elbow Surg. [et al.], 16(5 Suppl), S198–203 (2007)

    Google Scholar 

  247. Xia, Z., Zhou, C., Yong, Q., Wang, X.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 43(2), 266–278 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  248. Yahia, L.H., Drouin, G.: Microscopical investigation of canine anterior cruciate ligament and patellar tendon: collagen fascicle morphology and architecture. J. Orthop. Res. 7(2), 243–251 (1989)

    Article  Google Scholar 

  249. Yamamoto, E., Hayashi, K., Yamamoto, N.: Effects of stress shielding on the transverse mechanical properties of rabbit patellar tendons. J. Biomech. Eng. 122(6), 608–614 (2000)

    Article  Google Scholar 

  250. Yamamoto, E., Hayashi, K., Yamamoto, N.: Mechanical properties of collagen fascicles from the rabbit patellar tendon. J. Biomech. Eng. 121(1), 124–131 (1999)

    Article  Google Scholar 

  251. Yang, L., van der Werf, K.O., Fitie, C.F., Bennink, M.L., Dijkstra, P.J., Feijen, J.: Mechanical properties of native and cross-linked type I collagen fibrils. Biophys. J. 94(6), 2204–2211 (2008)

    Article  Google Scholar 

  252. Yang, L., van der Werf, K.O., Koopman, B.F., Subramaniam, V., Bennink, M.L., Dijkstra, P.J., Feijen, J.: Micromechanical bending of single collagen fibrils using atomic force microscopy. J. Biomed. Mater. Res. A 82(1), 160–168 (2007)

    Google Scholar 

  253. Yin, L., Elliott, D.M.: A biphasic and transversely isotropic mechanical model for tendon: application to mouse tail fascicles in uniaxial tension. J. Biomech. 37(6), 907–916 (2004)

    Article  Google Scholar 

  254. Yin, L., Elliott, D.M.: A homogenization model of the annulus fibrosus. J. Biomech. 38(8), 1674–1684 (2005)

    Article  Google Scholar 

  255. Yokota A, Gimbel JA, Williams GR, Soslowsky LJ: Supraspinatus tendon composition remains altered long after tendon detachment. J. Shoulder Elbow Surg./American Shoulder Elbow Surg. [et al.] 14(1 Suppl S), 72S–78S (2005)

    Google Scholar 

  256. Yuan, Z., Fish, J.: Toward realization of computational homogenization in practice. Int. J. Numer. Meth. Eng. 73(3), 361–380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  257. Yvonnet, J., Gonzalez, D., He, Q.C.: Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput. Methods Appl. Mech. Eng. 198(33–36), 2723–2737 (2009)

    Article  MATH  Google Scholar 

  258. Zajac, F.E.: How musculotendon architecture and joint geometry affect the capacity of muscles to move and exert force on objects: a review with application to arm and forearm tendon transfer design. J. Hand Surg. 17(5), 799–804 (1992)

    Article  Google Scholar 

  259. Zhang, G., Ezura, Y., Chervoneva, I., Robinson, P.S., Beason, D.P., Carine, E.T., Soslowsky, L.J., Iozzo, R.V., Birk, D.E.: Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell. Biochem. 98(6), 1436–1449 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reese, S.P., Ellis, B.J., Weiss, J.A. (2013). Multiscale Modeling of Ligaments and Tendons. In: Gefen, A. (eds) Multiscale Computer Modeling in Biomechanics and Biomedical Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_157

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_157

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36481-5

  • Online ISBN: 978-3-642-36482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics