Skip to main content

Advertisement

Log in

Modeling Deformation-Induced Fluid Flow in Cortical Bone’s Canalicular–Lacunar System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To explore the potential role that load-induced fluid flow plays as a mechano–transduction mechanism in bone adaptation, a lacunar–canalicular scale bone poroelasticity model is developed and implemented. The model uses micromechanics to homogenize the pericanalicular bone matrix, a system of straight circular cylinders in the bone matrix through which bone fluids can flow, as a locally anisotropic poroelastic medium. In this work, a simplified two-dimensional model of a periodic array of lacunae and their surrounding systems of canaliculi is used to quantify local fluid flow characteristics in the vicinity of a single lacuna. When the cortical bone model is loaded, microscale stress, and strain concentrations occur in the vicinity of individual lacunae and give rise to microscale spatial variations in the pore fluid pressure field. Furthermore, loading of the bone matrix containing canaliculi generates fluid pressures in the contained fluids. Consequently, loading of cortical bone induces fluid flow in the canaliculi and exchange of fluid between canaliculi and lacunae. For realistic bone morphology parameters, and a range of loading frequencies, fluid pressures and fluid–solid drag forces in the canalicular bone are computed and the associated energy dissipation in the models compared to that measured in physical in vitro experiments on human cortical bone. The proposed model indicates that deformation-induced fluid pressures in the lacunar–canalicular system have relaxation times on the order of milliseconds as opposed to the much shorter times (hundredths of milliseconds) associated with deformation-induced pressures in the Haversian system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot, M. A. General theory of three-dimensional consolidation. J. Appl. Phys. 12:155–164, 1941.

    Article  Google Scholar 

  2. Biot, M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Amer. 28:2179–191, 1956.

    MathSciNet  Google Scholar 

  3. Biot, M. A., and D. G. Willis. The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24:594–601, 1957.

    MathSciNet  Google Scholar 

  4. Brankov, G., and R. Blagoeva. An anatomical model for streaming potentials in osteons. J. Biomech. 17:8627–636, 1984.

    Article  Google Scholar 

  5. Buechner, P. M., R. S. Lakes, C. Swan, and R. A. Brand. A broadband viscoelastic spectroscopic study of bovine bone: Implications for fluid flow. Ann. Biomed. Eng. 29:719–728, 2001.

    Article  Google Scholar 

  6. Burger, E. H., J. Klein-Nulend, A. van der Plas, and P. J. Nijweide . Function of osteocytes in bone—their role in mechanotransduction. J. Nutr. 125:2020S--2023S, 1995.

    Google Scholar 

  7. Cooper, R. R., J. W. Milgram, and R. A. Robinson. Morphology of the osteons. An electron microscopic study. J. Bone Jt. Surg. Am. 48:1239–1271, 1966.

    Google Scholar 

  8. Cowin, S. C. Bone stress adaptation models. J. Biomech. Eng. 115:528–533, 1993.

    Google Scholar 

  9. Cowin, S. C. Survey article: Bone poroelasticity. J. Biomech. 32:217–238, 1999.

    Article  Google Scholar 

  10. Cowin, S. C., L. Moss-Salentijn, and M. L. Moss. Candidates for the mechanosensory system in bone. J. Biomech. Eng. 113:191–197, 1991.

    Google Scholar 

  11. Cowin, S. C., S. Weinbaum, and Y. Zeng. A case for bone canaliculi as the anatomical site of strain generated potentials. J. Biomech. 28:1281–1297, 1995.

    Article  Google Scholar 

  12. Currey, J. The Mechanical Adaptations of Bones. Princeton: Princeton University Press, 1984.

    Google Scholar 

  13. Djerad, S. E., F. du Burck, S. Naili, and C. Oddou. Analyse du comportement rhéologique instationnaire d’un échantillon de muscle cardiaque. C. R. Acad. Sci. Paris, série II 315:1615–1621, 1992.

    Google Scholar 

  14. Ferry, J. D. Viscoelastic Properties of Polymers. New York: Wiley, 1980.

    Google Scholar 

  15. Garner, E., R. Lakes, T. Lee, C. Swan, and R. Brand. Viscoelastic dissipation in compact bone: Implications for stress-induced fluid flow in bone. J Biomech. Eng. 122:166–172, 2000.

    Article  Google Scholar 

  16. Glücksman, A. Studies on bone mechanics in vitro: II. The role of tension and pressure in chondrogenesis. J. Anat. 73:39–55, 1939.

    Article  Google Scholar 

  17. Hancox, N. M. Biology of Bone. Cambridge University Press, 1972.

  18. Iannacone, W., E. Korostoff, and S. R. Pollack. Microelectrode study of stress-generated potentials obtained from uniform and nonuniform compression of human bone. J. Biomed. Mater. Res. 13:753–763, 1979.

    Article  Google Scholar 

  19. Jacobs, C. R., C. E. Yellowley, B. R. Davis, Z. Zhou, J. M. Cimbala, and H. J. Donahue. Differential effect of steady versus oscillating flow on bone cells. J. Biomech. 31:969–976, 1998.

    Article  Google Scholar 

  20. Katz, J. L. Anisotropy of Young’s modulus of bone. Nature 283:106–107, 1980.

    Article  Google Scholar 

  21. Katz, J. L. Hard tissue as a composite material. I. Bounds on the elastic behavior. J. Biomech. 4:455–473, 1971.

    Article  Google Scholar 

  22. Knothe Tate, M. L. Whither flows the fluid in bone? An osteocyte’s perspective. J. Biomech. 36:1409–1424, 2003.

    Article  Google Scholar 

  23. Lakes, R. S. Materials with structural hierarchy. Nature 361:511–515, 1993.

    Article  Google Scholar 

  24. Lakes, R. S. Viscoelastic properties of cortical bone. In: Bone Mechanics Handbook, 2nd ed., edited by S. C. Cowin. Boca Raton, FL: CRC Press, 2001.

    Google Scholar 

  25. Lakes, R. S. Viscoelastic Solids. Boca Raton, FL: CRC Press, 1998.

    Google Scholar 

  26. Martin, R. B., and D. B. Burr. Structure,Function and Adaptation of Compact Bone. Raven Press, 1989.

    Google Scholar 

  27. McCreadie, B. R., and S. J. Hollister. Strain concentrations surrounding an ellipsoid model of lacunae and osteocytes. CMBBE 1:61–68, 1997.

    Google Scholar 

  28. McLean, F. C., and M. R. Urist. Bone: Fundamentals of the Physiology of Skeletal Tissue, 3rd ed. Chicago, IL: The University of Chicago Press, 1968.

    Google Scholar 

  29. Murdoch, P., S. Benzley, T. Blacker, and S. A. Mitchell. The spatial twist continuum: A connectivity based method for representing all-hexahedral finite element meshes. Finite Elem Anal. Des. 28:137–149, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  30. Petrov, N., S. Pollack, and R. Blagoeva. A discrete model for streaming potentials in a single osteon. J. Biomech. 22(6–7):517–521, 1989.

    Article  Google Scholar 

  31. Piekarski, K., and M. Munro. Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269:80–82, 1977.

    CAS  PubMed  Google Scholar 

  32. Qin, Y. X., K. J. McLeod, F. Guilak, F. P. Chiang, and C. T. Rubin. Correlation of bony ingrowth to the distribution of stress and strain parameters surrounding a porous-coated implant. J. Orthop. Res. 14:862–870, 1996.

    Google Scholar 

  33. Rubin, C. T., and K. J. McLeod. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin. Orthop. 298:165–174, 1994.

    Google Scholar 

  34. Rubin, C. T., and L. E. Lanyon. Limb mechanics as a function of speed and gait: A study of functional strains in the radius and tibia of horse and dog. J. Exp. Biol. 110:187–211, 1982.

    Google Scholar 

  35. Rubin, C. T., and L. E. Lanyon. Regulation of bone formation by applied dynamic loads. J. Bone Jt. Surg. Am. 66:397–402, 1984.

    Google Scholar 

  36. Salzstein, R. A., and S. R. Pollack. Electromechanical potentials in cortical bone. II. Experimental analysis. J. Biomech. 20:1271–280, 1987.

    Article  Google Scholar 

  37. Salzstein, R. A., S. R. Pollack, A. F. T. Mak, and N. Petrov. Electromechanical potentials in cortical bone. I. A continuum approach. J. Biomech. 20:1261–270, 1987.

    Article  Google Scholar 

  38. Scheidegger, A. E. The Physics of Flow Through Porous Media. New York: MacMillan, 1957.

    MATH  Google Scholar 

  39. Starkebaum, W., S. R. Pollack, and E. Korostoff. Microelectrode studies of stress-generated potentials in four-point bending of bone. J. Biomed. Mater. Res. 13:729–751, 1979.

    Article  Google Scholar 

  40. Swan, C. C. http://www.engineering.uiowa.edu/∼swan/software/ fendac.pdf. FENDAC User’s Manual. 2003.

  41. Swan, C. C. Techniques for stress- and strain-controlled homogenization of inelastic periodic composites. Comput. Meth. Appl. Mfech. Eng. 117:249–267, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  42. Swan, C. C., R. S. Lakes, R. A. Brand, and K. J. Stewart. Micromechanically based poroelastic modeling of fluid flow in Haversian bone. J. Biomech. Eng. 125:25–37, 2003.

    Article  Google Scholar 

  43. Tsay, R.-Y., and S. Weinbaum. Viscous flow in a channel with periodic crossbridging fibers: Exact solutions and Brinkman approximation. J. Fluid Mech. 226:125–148, 1991.

    MATH  Google Scholar 

  44. Wang, L., S. C. Cowin, S. Weinbaum, and S. P. Fritton. Modeling tracer transport in an osteons under cyclic loading. Ann. Biomed. Eng. 28:1200–1208, 2000.

    Article  Google Scholar 

  45. Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:339–360, 1994.

    Article  Google Scholar 

  46. You, L., S. C. Cowin, M. B. Schaffler, and S. Weinbaum. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on the pericellular matrix. J. Biomech. 34:1375–1386, 2001.

    Article  Google Scholar 

  47. Zhang, D., S. Weinbaum, and S. C. Cowin. Estimates of the peak pressures in bone pore water. J. Biomech. Eng. 120:697–703, 1998.

    Google Scholar 

  48. Zhang, D., S. Weinbaum, and S. C. Cowin. On the calculation of bone pore water pressure due to mechanical loading. Int. J. Solids Struct. 35:4981–4997, 1998.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Swan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gururaja, S., Kim, H.J., Swan, C.C. et al. Modeling Deformation-Induced Fluid Flow in Cortical Bone’s Canalicular–Lacunar System. Ann Biomed Eng 33, 7–25 (2005). https://doi.org/10.1007/s10439-005-8959-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8959-6

Navigation