Skip to main content

Advertisement

Log in

Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate the process of bone remodelling. As whole bone simulation, including the 3D reconstruction of trabecular level bone, is time consuming, finite element calculation is only performed at the macroscopic level, whilst trained neural networks are employed as numerical substitutes for the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at the macroscopic scale depending on the morphological and mechanical adaptation at the mesoscopic scale computed by the trained neural network. The digital image-based modelling technique using μ-CT and voxel finite element analysis is used to capture volume elements representativeof 2 mm3 at the mesoscale level of the femoral head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied stress. The output data are the updated bone properties and some trabecular bone factors. The current approach is the first model, to our knowledge, that incorporates both finite element analysis and neural network computation to rapidly simulate multilevel bone adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi T, Tomita Y, Tanaka M (1998) Computational simulation of deformation behavior of 2D-lattice continuum. Int J Mech Solids 40: 857–866

    Article  MATH  Google Scholar 

  • Adachi T, Tomita Y, Tanaka M (1999) Three-dimensional lattice continuum model of cancellous cone for structural and remodeling simulation. JSME Int J Ser C 42: 470–480

    Google Scholar 

  • Bagge M (2000) A model of bone adaptation as an optimization process. J Biomech 33: 1349–1357

    Article  Google Scholar 

  • Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40: 1745–1753

    Article  Google Scholar 

  • Chaboche JL (1981) Continuum damage mechanics-a tool to describe phenomena before crack initiation. Nucl Eng Des 64: 233–247

    Article  Google Scholar 

  • Cowin (2002) Mechanosensation and fluid transport in living bone. J Musculoskelet Neuronal Interact 2(3): 256–260

    Google Scholar 

  • Doblare M, Garcia JM (2002) Anisotropic bone remodelling model based on a continuum damage-repair theory. J Biomech 35(1): 1–17

    Article  Google Scholar 

  • Faulkner KG, Cummings SR, Black D, Palermo L, Gluer CC, Genant HK (1993) Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 8: 1211–1217, 21:101–108

    Article  Google Scholar 

  • Fernandes P, Rodrigues H, Jacobs C (1999) A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff. Comput Methods Biomech Biomed Eng 2(2): 125–138

    Article  Google Scholar 

  • Ghanbari J, Naghdabadi R (2009) Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure. J Biomech 42: 1560–1565

    Article  Google Scholar 

  • Hambli R (2009) Statistical damage analysis of extrusion processes using finite element method and neural networks simulation. Finite Elem Anal Des 45(10): 640–649

    Article  Google Scholar 

  • Hambli R, Chamekh A, BelHadj Salah H (2006) Real-time deformation of structure using finite element and neural networks in virtual reality applications. Finite Elem Anal Des 42(11): 985–991

    Article  Google Scholar 

  • Hambli R, Soulat D, Gasser A, Benhamou CL (2009) Strain-damage coupled algorithm for cancellous bone mechano-regulation with spatial function influence. Comput Methods Appl Mech Eng 198(33–36,1): 2673–2682

    Article  Google Scholar 

  • Hart RT, Fritton SP (1997) Introduction to finite element based simulation of functional adaptation of cancellous bone. Forma 12: 277–299

    Google Scholar 

  • Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405: 704–706

    Article  Google Scholar 

  • Jacobs CR (2000) The mechanobiology of cancellous bone structural adaptation. J Rehabil Res Dev 37(2): 209–216

    MathSciNet  Google Scholar 

  • Jacobs CR, Simo JC, Beaupre GS, Carter DR (1997) Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. J Biomech 30(6): 603–613

    Article  Google Scholar 

  • Jang IG, Kim IY (2010) Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling. J Biomech 43: 294–301

    Article  Google Scholar 

  • Jenkins WM (1997) An introduction to neural computing for the structural engineer. Struct Eng 75(3): 38–41

    Google Scholar 

  • Keyak JH, Rossi SA, Jones KA, Les CM, Skinner HB (2001) Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys 23: 657–664

    Article  Google Scholar 

  • Leardini A, Belvedere C, Astolfi L, Fantozzi S, Viceconti M, Taddei F et al (2006) A new software tool for 3D motion analyses of the musculo-skeletal system. Clin Biomech 21: 870–879

    Article  Google Scholar 

  • Martin RB, Burr DR, Sharkey NA (1998) Skeletal tissue mechanics. Springer, New York

    Google Scholar 

  • Martínez-Reina J, García-Aznar JM, Domínguez J, Doblaré M (2009) A bone remodelling model including the directional activity of BMUs. Biomech Model Mechanobiol 8: 111–127

    Article  Google Scholar 

  • McNamara LM, Prendergast JP (2007) Bone remodeling algorithms incorporating both strain and microdamage stimuli. J Biomech 40(6): 1381–1391

    Article  Google Scholar 

  • McNamara L, Vander Linden J, Weinans H, Prendergast P (2006) Stress-concentrating effect of resorption lacunae in trabecular bone. J Biomech 39(4): 734–741

    Article  Google Scholar 

  • Mullender MG, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13(4): 503–512

    Article  Google Scholar 

  • O’Brien FJ, Taylor D, Clive Lee T (2003) Microcrack accumulation at different intervals during fatigue testing of compact bone. J Biomech 36: 973–980

    Article  Google Scholar 

  • Rafiq MY, Bugmann G, Easterbrook DJ (2001) Neural network design for engineering applications. Comput Struct 79(17): 1541–1552

    Article  Google Scholar 

  • Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20: 92–102

    Article  Google Scholar 

  • Sansalone V, Lemaire T, Naili S (2007) Multiscale modelling of mechanical properties of bone: study at the fibrillar scale. C R Mec 335(8): 436–442

    Google Scholar 

  • Stulpner MA, Reddy BD, Starke GR, Spirakist A (1997) A three-dimensional finite analysis of adaptive remodelling in the proximal femur. J Biomech 30(10): 1063–1066

    Article  Google Scholar 

  • Taylor M, Cotton J, Zioupos P (2002) Finite element simulation of the fatigue behaviour of cancellous bone. Meccanica 37: 419–429

    Article  MATH  Google Scholar 

  • Topping BHV, Bahreininejad A (1992) Neural computing for structural mechanics. Saxe Coburg, UK

    Google Scholar 

  • Tovar A (2004) Bone remodeling as a hybrid cellular automaton optimisation process. PhD dissertation, University of Notre Dame, Indiana

  • Unger JF, Konke C (2008) Coupling of scales in multiscale simulation using neural networks. Comput Struct 86(21–22): 1994–2003

    Article  Google Scholar 

  • Viceconti M, Taddei F, Petrone M, Galizia S, Van Sint Jan S, Clapworthy GJ (2006) Towards the virtual physiological human: the living human project. In: Middleton J (ed) 7th International symposium on computer methods in biomechanics and biomedical engineering (CMBBE2006). FIRST Numerics Ltd, Antibes

  • Viceconti M, Zannoni C, Testi D, Petrone M, Perticoni S, Quadrani P et al (2007) The multimode application framework: a rapid application development tool for computer aided medicine. Comput Meth Prog Biomed 85: 138–151

    Article  Google Scholar 

  • Viceconti M, Taddei F, Jan SVS, Leardini A, Cristofolini A, Stea S, Baruffaldi F, Baleani M (2008) Multiscale modelling of the skeleton for the prediction of the risk of fracture. Clin Biomech 23: 845–852

    Article  Google Scholar 

  • Weiner S, Traub W (1992) Bone structure: from ångstroms to microns. FASEB J 6: 879–885

    Google Scholar 

  • Yoo A, Jasiuk I (2006) Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network. J Biomech 39: 2241–2252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Hambli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hambli, R., Katerchi, H. & Benhamou, CL. Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech Model Mechanobiol 10, 133–145 (2011). https://doi.org/10.1007/s10237-010-0222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0222-x

Keywords

Navigation