Skip to main content
Log in

Multiscale Methods for Composites: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Various multiscale methods are reviewed in the context of modelling mechanical and thermomechanical responses of composites. They are developed both at the material level and at the structural analysis level, considering sequential or integrated kinds of approaches. More specifically, such schemes like periodic homogenization or mean field approaches are compared and discussed, especially in the context of non linear behaviour. Some recent developments are considered, both in terms of numerical methods (like FE2) and for more analytical approaches based on Transformation Field Analysis, considering both the homogenization and relocalisation steps in the multiscale methodology. Several examples are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboudi J (1982) A continuum theory for fiber-reinforced elasto-viscoplastic compoites. Int J Eng Sci 20:605–621

    MATH  Google Scholar 

  2. Aboudi J (1988) Constitutive equations for elastoplastic composites with imperfect bonding. Int J Plast 4:103–125

    MATH  Google Scholar 

  3. Aboudi J (1992) Mechanics of composite materials—a unified micromechanical approach. Elsevier, Amsterdam

    Google Scholar 

  4. Aboudi J (1996) Micromechanical analysis of composites by the method of cells-update. Appl Mech Rev 49(10):S83–S91

    Google Scholar 

  5. Aboudi J, Pindera M-J, Arnold SM (2003) Higher-order theory for periodic multiphase materials with inelastic phases. Int J Plast 19:805–847

    MATH  Google Scholar 

  6. Allen D, Jones R, Boyd J (1994) Micromechanical analysis of a continuous fiber metal matrix composite including the effects of matrix viscoplasticity and evolving damage. J Mech Phys Solids 42(3):505–529

    Google Scholar 

  7. Arnold SM, Pindera M-J, Wilt TE (1996) Influence of fiber architecture on the inelastic response of metal matrix composites. Int J Plast 12(4):507–545

    MATH  Google Scholar 

  8. Arnold S, Wilt T (1992) Influence of engineered interfaces on residual stresses and mechanical response in metal matrix composites. NASA Technical Memorandum 105438, Cleveland, Ohio

  9. Babuska I, Strouboulis S, Upadhyay CS, Gangaraj SK (1995) A posteriori estimation and adpatative control of the pollution error in the h-version of the finite element method. Technical Note BN 1175, Institute for Physical Science and Technology, University of Maryland, College Park, MD

  10. Bensoussan A, Lions JL, Papanicolau G (1976) Asymptotic analysis for periodic structures. North-Holland, Amsterdam

    Google Scholar 

  11. Berveiller M, Zaoui A (1979) An extension of the self-consistent scheme to plastically flowing polycristals. J Mech Phys Solids 26:325–344

    Google Scholar 

  12. Bishop JFW, Hill R (1951) A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Philos Mag 42:414–427

    MATH  MathSciNet  Google Scholar 

  13. Bishop JFW, Hill R (1951) A theoretical derivation of the plastic properties of a polycrystalline face-center metal. Philos Mag 42:1298–1307

    MATH  MathSciNet  Google Scholar 

  14. Böhm H (1993) Numerical investigation of microplasticity effects in unidirectional long-fiber reinforced metal matrix composites. Modell Simul Mater Sci Eng 1:649–671

    Google Scholar 

  15. Böhm HJ, Eckschlager A, Han W (2002) Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput Mater Sci 25(1):42–53

    Google Scholar 

  16. Böhm HJ, Han W (2001) Comparisons between three-dimensional and two-dimensional multi-particle unit cell models for particle reinforced metal matrix composites. Model Simul Mater Sci Eng 9:47–65

    Google Scholar 

  17. Bornert M (2001) Homogénéisation des milieux aléatoires; bornes et estimations. In: Bornert M, Bretheau T, Gilormini P (eds) Homogénéisation en mécanique des matériaux, vol 1. Hermès, Paris, pp 133–221

    Google Scholar 

  18. Boso DP, Lefik M, Schrefler BA (2005) A multilevel homogenised model for superconducting strands thermomechanics. Cryogenics 45(4):259–271

    Google Scholar 

  19. Boso DP, Lefik M, Schrefler BA (2006) Homogenisation methods for the thermo-mechanical analysis of Nb3Sn strand. Cryogenics 46(7–8):569–580

    Google Scholar 

  20. Boso DP, Lefik M, Schrefler BA (2006) Thermal and bending strain on Nb3Sn strands. IEEE Trans Appl Supercond 16(2):1823–1827

    Google Scholar 

  21. Boutin C (1995) Heat conduction with microstructural effects. In: Dembicki E, Auriault J-L, Sikora Z (eds) Homogenization, theory of migration and granular bodies. University of Gdansk, Gdansk, pp 53–63

    Google Scholar 

  22. Brenner R, Castelnau O, Gilormini P (2001) A modified affine theory for the overall properties of nonlinear composites. C R Acad Sci, Paris, Sér IIB 329(9):649–654

    MATH  Google Scholar 

  23. Brockenbrough J-R, Suresh S, Wienecke H-A (1991) Deformation of metal-matrix composites with continuous fibers: geometrical effect of fiber distribution and shape. Acta Metall Mater 39(5):735–752

    Google Scholar 

  24. Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeitn der Mischkörper aus isotropen Substanzen. Ann Phys 24:636–679

    Google Scholar 

  25. Buannic N, Cartraud P (2001) Higher-order effective modeling pf periodic heterogeneous beams. Part II: Derivation of the proper boundary conditions for the interior asymptotic solution. Int J Solids Struct 38:7163–7180

    MathSciNet  Google Scholar 

  26. Budiansky B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13:223–227

    Google Scholar 

  27. Budiansky B, Hashin Z, Sanders JL (1960) The stress field of a slipped crystal and the early plastic behavior of polycrystalline materials. In: Plasticity, proc 2nd symp naval struct mech. Pergamon, Oxford, p 239

    Google Scholar 

  28. Buryachenko V (1996) The overall elastoplastic behavior of multiphase materials with isotropic components. Acta Mech 119:93–117

    MATH  Google Scholar 

  29. Cailletaud G (1987) Une approche micromécanique phénoménologique du comportement inélastique des métaux. PhD, Université Pierre et Marie Curie, Paris 6

  30. Cailletaud G (1992) Micromechanical approach to inelastic behaviour of metals. Int J Plast 8:55–73

    MATH  Google Scholar 

  31. Cailletaud G, Pilvin P (1994) Utilisation de modèles polycristallins pour le calcul par éléments finis. Rev Eur Elém Finis 3(4):515–541

    MATH  Google Scholar 

  32. Cambou B, Dubujet P, Emeriault F, Sidoroff F (1995) Homogenisation of granular materials. Eur J Mech A/Solids 14:255–276

    MATH  MathSciNet  Google Scholar 

  33. Carrère N (2001) Sur l’analyse multiéchelle des matériaux composites à matrice métallique: application au calcul de structure. PhD, Ecole Polytechnique, Palaiseau

  34. Carrère N, Kruch S, Vassel A, Chaboche J-L (2002) Damage mechanisms in unidirectional SiC/Ti composites under transverse creep loading: experiments and modelling. Int J Damage Mech 11:41–63

    Google Scholar 

  35. Carrère N, Féyel F, Kanoute P (2004) A comparison between and embedded FE2 approach and a TFA-like model. Int J Multi Comput Eng 2–4:20–38

    Google Scholar 

  36. Carrère N, Maire J-F, Kruch S, Chaboche J-L (2004) Multiscale analysis of SiC/Ti composites. Mater Sci Eng A 365:275–281

    Google Scholar 

  37. Chaboche J-L, Kanouté P (2003) Sur les approximations isotrope et anisotrope de l’opérateur tangent pour les méthodes tangentes incrémentale et affine. C R Acad Sci Paris 331:857–854

    Google Scholar 

  38. Chaboche J-L, Kruch S, El Mayas N (1994) Lois de comportement thermoelastoviscopastique des composites à matrice métallique. C R Acad Sci Paris Sér II 319:971–977

    Google Scholar 

  39. Chaboche J-L, Kruch S, Maire J-F, Pottier T (2001) Towards a micromechanics based inelastic and damage modelling of composites. Int J Plast 17:411–439

    MATH  Google Scholar 

  40. Chaboche J-L, Kanouté P, Roos A (2005) On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. Int J Plast 21:1409–1434

    MATH  Google Scholar 

  41. Chang CS, Liao CL (1990) Constitutive relation for a particulate medium with the effect of particle rotation. Int J Solids Struct 26:437–453

    MATH  Google Scholar 

  42. Chen W, Fish J (2001) A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales. J Appl Mech (ASME) 68:153–161

    MATH  Google Scholar 

  43. Christensen R (1990) A critical evaluation for a class of micromechanics models. J Mech Phys Solids 38(3):379–404

    Google Scholar 

  44. Christman T, Needleman A, Suresh S (1989) Experimental and numerical study of deformation in metal-ceramic composites. Acta Metall Mater 37(11):3029–3050

    Google Scholar 

  45. Cioranescu D, Paulin JSJ (1979) Homogenization in open sets with holes. J Math Anal Appl 71:590–607

    MATH  MathSciNet  Google Scholar 

  46. Conductor database, Appendix C, Annex II. Thermal, electrical and mechanical properties of materials at cryogenic temperatures, 24 Aug 2000

  47. Doghri I, Ouaar A (2003) Homogenization of two-phase elasto-plastic composite materials and structures study of tangent operators, cyclic plasticity and numerical algorithms. Int J Solids Struct 40:1681–1712

    MATH  Google Scholar 

  48. Dumontet H (1990) Homogénéisation et effets de bords dans les matériaux composites. Thèse de doctorat d’état, Université Pierre et Marie Curie Paris 6, Paris

  49. Dvorak GJ (1992) Transformation field analysis of inelastic composite materials. Proc R Soc Lond A 431:89–110

    MathSciNet  Google Scholar 

  50. Dvorak G, Bahei-El-Din Y (1987) A bimodal plasticity theory of fibrous composite materials. Acta Mech 69:219–241

    MATH  Google Scholar 

  51. Dvorak G, Benveniste Y (1992) On transformation strains and uniform fields in multiphase elastic media. Proc R Soc Lond A 437:291–310

    MATH  MathSciNet  Google Scholar 

  52. Dvorak G, Rao M (1976) Axisymmetric plasticity theory of fibrous composites. Int J Eng Sci 14:361–373

    MATH  Google Scholar 

  53. Dvorak G, Zhang J (2001) Transformation field analysis of damage evolution in composite materials. J Mech Phys Solids 49:2517–2541

    MATH  Google Scholar 

  54. Dvorak G, Bahei-El-Din Y, Macheret Y, Liu C (1988) An experimental study of elastic-plastic behavior of a fibrous boron-aluminium composite. J Mech Phys Solids 36:655–687

    Google Scholar 

  55. Dvorak G, Bahei-El-Din Y, Wafa A (1994) Implementation of the transformation field analysis for inelastic composite materials. Comput Mech 68(5):201–228

    Google Scholar 

  56. E W, Engquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Commun Comput Phys 2:367–450

    MATH  MathSciNet  Google Scholar 

  57. Eshelby JD (1957) The elastic field of an ellipsoidal inclusion and related problems. Proc R Soc A 241:376–396

    MATH  MathSciNet  Google Scholar 

  58. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problem. Proc R Soc Lond A 421:376–396

    MathSciNet  Google Scholar 

  59. Eyre DJ, Milton GW (1999) A fast numerical scheme for computing the response of composites using grid refinement. J Phys III 6:41

    Google Scholar 

  60. Feyel F (1998) Application du calcul parallèle aux modèles à grand nombre de variables internes. Thèse de doctorat, Ecole Nationale Supérieure des Mines de Paris

  61. Feyel F (1999) Multiscale FE2 elastovisplastic analysis of composite structures. Comput Mater Sci 16:344–354

    Google Scholar 

  62. Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330

    MATH  Google Scholar 

  63. Feyel F, Chaboche JL (2001) Multi-scale non linear FE2 analysis of composite structures: damage and fiber size effects. In: Saanouni, K. (ed) Numerical modelling in damage mechanics—NUMEDAM’00. Revue Europèenne des Elèments Finis, vol 10, pp 449–472

  64. Feyel F, Chaboche JL (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192:3233–3244

    MATH  Google Scholar 

  65. Feyel F, Cchaboche JL, Kruch S (1998) Multiscale elastoplastic and damage analysis of composites structures. In: IWCCM8, Stuttgart, October 8–9, 1998

  66. Fish J (1992) The s-version of the finite element method: SCOREC report 90-18. Comput Struct 43:539–547

    MATH  Google Scholar 

  67. Fish J, Markolefas S (1994) Adaptive global-local refinement strategy based on the interior error estimates of the h-method. Int J Numer Methods Eng 37:827–838

    MATH  MathSciNet  Google Scholar 

  68. Fish J, Yu Q (2001) Multiscale damage modelling for composite materials: theory and computational framework. Int J Numer Methods Eng 52:161–191

    Google Scholar 

  69. Fish J, Yu Q (2002) Computational mechanics of fatigue and life predictions for composite materials and structures. Comput Methods Appl Mech Eng 191:4827–4849

    MATH  Google Scholar 

  70. Fish J, Shek K, Pandheeradi M, Shepard M (1997) Computational plasticity for composite structures based on mathematical homogenisation: theory and practice. Comput Methods Appl Mech Eng 148:53–73

    MATH  Google Scholar 

  71. Fish J, Yu Q, Shek K (1999) Computational damage mechanics for composite materials based on mathematical homogenization. Int J Numer Methods Eng 45:1657–1679

    MATH  Google Scholar 

  72. Fotiu PA, Nemat-Nasser S (1996) Overall properties of elastic-viscoplastic periodic composites. Int J Plast 12(2):163–190

    MATH  Google Scholar 

  73. Francfort GA (1984) Homogenisation and fast oscillations in linear thermoelasticity. In: Lewis R, Hinton E, Betess P, Schrefler B (eds) Numerical methods for transient and coupled problems. Pineridge Press, Swansea, pp 382–392

    Google Scholar 

  74. Galvanetto U, Pellegrino C, Schrefler BA (1998) Three-dimensional stress recovery procedure for composite materials. Comput Struct 69:567–575

    MATH  Google Scholar 

  75. Ghosh S, Liu Y (1995) Voronoi cell finite element method for micropolar thermoelastic heterogeneous materials. Int J Numer Methods Eng 38:1361–1398

    MATH  Google Scholar 

  76. Ghosh S, Moorthy S (1995) Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method. Comput Methods Appl Mech Eng 1(1–4):373–409

    Google Scholar 

  77. Ghosh S, Mukhopadhyay SN (1991) A two-dimensional automatic mesh generator for finite element analysis of randomly dispersed composites. Comput Struct 41:245–256

    MATH  Google Scholar 

  78. Ghosh S, Lee K, Moorthy S (1995) Multiple scale analysis of heterogeneous elastic structures using homogenisation theory and Voronoï cell finite element method. Int J Solids Struct 32:27–62

    MATH  MathSciNet  Google Scholar 

  79. Gilormini P (1996) A critical evaluation of various nonlinear extensions of the self-consistent model. In: Pineau A, Zaoui A (eds) Micromechanics of plasticity and damage of multiphase materials. Kluwer Academic, Dordrecht, pp 67–74

    Google Scholar 

  80. González C, LLorca J (2000) A self-consistent approach to the elasto-plastic behaviour of two-phase materials including damage. J Mech Phys Solids 48:675–692

    MATH  Google Scholar 

  81. González C, LLorca J (2001) Micromechanical modelling of deformation and failure in Ti-6Al-4V/SiC composites. Acta Mater 49:3505–3519

    Google Scholar 

  82. González C, LLorca J (2003). An analysis of the effect of hydrostatic pressure on the tensile deformation of aluminium-matrix composites. Mater Sci Eng A 341(1–2):256–263

    Google Scholar 

  83. Gonzalez C, Segurado J, Llorca J (2004) Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenized models. J Mech Phys Solids 52(7):1573–1593

    MATH  Google Scholar 

  84. Gunawardena S, Jansson S, Leckie F (1993) Modelling of anisotropic behavior of weakly bonded reinforced MMC’s. Acta Metall Mater 41(11):3147–3156

    Google Scholar 

  85. Hain M, Wriggers P (2008) Numerical homogenization of hardened cement paste. Comput Mech 42:197–212

    MATH  Google Scholar 

  86. Halphen B, Nguyen QS (1975) Sur les matériaux standard généralisé. J Méc 14(1):39–63

    MATH  Google Scholar 

  87. Hashin Z (1983) Analysis of composite materials: a survey. ASME J Appl Mech 50:481–505

    Article  MATH  Google Scholar 

  88. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343–352

    MathSciNet  Google Scholar 

  89. Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10:335–342

    MathSciNet  Google Scholar 

  90. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140

    MATH  MathSciNet  Google Scholar 

  91. Hershey AV (1954) The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME J Appl Mech 21:236–240

    MATH  Google Scholar 

  92. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc A 65:349–354

    Google Scholar 

  93. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222

    Google Scholar 

  94. Hill R (1965) Continuum micromechanics of elastoplastic polycrystals. J Mech Phys Solids 13:89–101

    MATH  Google Scholar 

  95. Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15:79–95

    Google Scholar 

  96. Hinton E, Campbell JS (1974) Local and global smoothing of discontinuous finite element functions using a least squares method. Int J Numer Methods Eng 8:461–480

    MATH  MathSciNet  Google Scholar 

  97. Hu G (1996) A method of plasticity for general aligned spherical void of fiber-reinforced composites. Int J Plast 12:439–449

    MATH  Google Scholar 

  98. Hu-Whashizu K (1982) Variational methods in elasticity and plasticity, 3rd edn. Pergamon, Oxford

    Google Scholar 

  99. Hutchinson JW (1976) Bounds and self-consistent estimates for creep and polycrystalline materials. Proc R Soc Lond A 348:101–127

    MATH  Google Scholar 

  100. Kattan P, Voyiadjiis G (1993) Overall damage and elastoplastic deformation in fibrous metal matrix composites. Int J Plast 9:931–949

    MATH  Google Scholar 

  101. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multiscale second order computational homogenisation of multi-phase materials: a nested finite element strategy. Comput Methods Appl Mech Eng 193:5525–5550

    MATH  Google Scholar 

  102. Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z Phys 151:504–518

    Google Scholar 

  103. Kruch S (2007) Homogenized and relocalized mechanical fields. J Strain Anal 42:215–226

    Google Scholar 

  104. Kruyt NP, Rothenburg L (1997) Statistical theories for the elastic moduli of two-dimensional assemblies of granular materials. Int J Eng Sci 36:1127–1142

    Google Scholar 

  105. Lavèdeze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenisation for structural mechanics. Comput Methods Appl Mech Eng 192:3061–3087

    Google Scholar 

  106. Lavèdeze P, Loiseau O, Dureisseix D (2001) A micro-macro and parallel computational strategy for highly heterogeneous structures. Int J Numer Methods Eng 52:121–138

    Google Scholar 

  107. Lavèdeze P, Nouy A, Loiseau O (2002) A multiscale computational approach for contact problems. Comput Methods Appl Mech Eng 191:4869–4891

    Google Scholar 

  108. Lebensohn R, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41:2611–2624

    Google Scholar 

  109. Lefik M, Schrefler BA (1994) Application of the homogenization method to the analysis of superconducting coils. Fusion Eng Des 24:231–255

    Google Scholar 

  110. Lefik M, Schrefler BA (1996) FE modelling of a boundary layer correctors for composites using the homogenisation theory. Eng Comput 13(6):31–42

    MATH  Google Scholar 

  111. Lefik M, Schrefler BA (2000) Modelling of non-stationary heat conduction problems in micro-periodic composites using homogenisation theory with corrective terms. Arch Mech 52(2):203–223

    MATH  MathSciNet  Google Scholar 

  112. Leroy Y, Ponte Casteñada P (2001) Bounds of the self-consistent approximation for nonlinear media and implications for the second order method. C R Acad Sci Paris IIB 329(8):1203–1227

    Google Scholar 

  113. Lin TH (1957) Analysis of elastic and plastic strains of a fcc crystal. J Mech Phys Solids 5:143

    MATH  MathSciNet  Google Scholar 

  114. Llorca J (1994) A numerical study of the mechanism of cyclic strain hardening in metal-ceramic composites. Acta Metall Mater 42:151–162

    Google Scholar 

  115. Llorca J (2000) Void formation in metal matrix composites. In: Clyne TW (ed) Comprehensive composite materials. Metal matrix composites, vol 3. Pergamon, Amsterdam, pp 91–115

    Google Scholar 

  116. Llorca J, González C (1998) Microstructural factors controlling the strength and ductility of particle-reinforced metal-matrix composites. J Mech Phys Solids 46:1–28

    MATH  Google Scholar 

  117. Marcellini P (1978) Periodic solutions and homogenisation of nonlinear variational problems. Ann Mat Pura Appl 4:139–152

    MathSciNet  Google Scholar 

  118. Markovic D, Ibrahimbegovic A (2004) On micro-macro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials. Comput Methods Appl Mech Eng 193:5503–5523

    MATH  Google Scholar 

  119. Masson R (1998) Estimation non linéaires du comportement global de matériaux hétérogènes en formulation affine. Thèse de l’Ecole Polytechnique, Palaiseau

  120. Masson R, Bornert M, Suquet P, Zaoui A (2000) An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J Mech Phys Solids 48:1203–1227

    MATH  MathSciNet  Google Scholar 

  121. Mehradi MM, Loret B, Nemat Nasser S (1993) Incremental constitutive relations for granular materials based on micromechanics. Proc R Soc Lond 441:433–463

    Google Scholar 

  122. Michel JC, Suquet P (1993) On the strength of composite materials: variational bounds and numerical aspects. In: Bendsoe MP, Mota-Soares C (eds) Topology design of structures. Kluwer Academic, Dordrecht, pp 365–374

    Google Scholar 

  123. Michel JC, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40:6937–6955

    MATH  MathSciNet  Google Scholar 

  124. Michel JC, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193:5477–5502

    MATH  MathSciNet  Google Scholar 

  125. Michel JC, Moulinec H, Suquet P (2000) A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast. Comput Model Eng Sci 1(2):79

    MathSciNet  Google Scholar 

  126. Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:317–418

    Google Scholar 

  127. Miehe C, Schotte J, Lambrecht M (2002) Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J Mech Solids 50:2123–2167

    MATH  MathSciNet  Google Scholar 

  128. Mital S, Murthy P, Chamis C (1993) Interfacial microfracture in high temperature metal matrix composites, J Compos Mater 27(17):1678–1694

    Google Scholar 

  129. Molinari A, Canova GR, Ahzi S (1987) A self-consistent approach of the large deformation polycristal viscoplasticity. Acta Metall 35:2983–2994

    Google Scholar 

  130. Moorthy S, Ghosh S, Liu Y (1994) Voronoi cell finite element method for thermo-elastoplastic deformation in random heterogeneous media. Appl Mech Rev 47(1):S207–S220

    Article  Google Scholar 

  131. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall Mater 21:597–629

    Google Scholar 

  132. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of non-linear composites with complex microstructure. Comput Methods Appl Mech Eng 157:69–94

    MATH  MathSciNet  Google Scholar 

  133. Mura T (1993) Micromechanics of defects in solids, 2nd edn. Kluwer Academic, Dordrecht

    Google Scholar 

  134. Nakamura T, Suresh S (1993) Effect of thermal residual stress and fiber packing on deformation of metal-matrix composites. Acta Metall Mater 41(6):1665–1681

    Google Scholar 

  135. Nebozhyn MV, Ponte Castañeda P (1998) Second order estimates for the effective behavior of nonlinear porous materials. In: Bahei-El-Din Y, Dvorak GJ (eds) IUTAM symposium on transformation problems in composite and active materials. Kluwer Academic, New York, pp 73–88

    Google Scholar 

  136. Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous solids, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  137. Oleinik OA (1984) On homogenisation problems. In: Trends and application of pure mathematics in mechanics. Springer, Berlin

    Google Scholar 

  138. Olson T (1994) Improvements on a Taylor’s upper bound for rigid-plastic composites. Mater Sci Eng A 175:15–19

    Google Scholar 

  139. Paley M, Aboudi J (1992) Micromechanical analysis of composites by the generalized cells model. Mech Mater 14:127–139

    Google Scholar 

  140. Paul B (1960) Prediction of elastic constants of multiphase materials. Trans ASME 218:36–41

    Google Scholar 

  141. Ponte Castañeda P (1991) The effective mechanical properties of nonlinear isotropic composites. J Mech Phys Solids 39:45–71

    MATH  MathSciNet  Google Scholar 

  142. Ponte Castañeda P (1992) New variational principles in plasticity and their application to composite materials. J Mech Phys Solids 40:1757–1788

    MATH  MathSciNet  Google Scholar 

  143. Ponte Castañeda P (1996) Exact second-order estimates for the effective mechanical properties of non linear composite materials. J Mech Phys Solids 44:827–862

    MATH  MathSciNet  Google Scholar 

  144. Ponte Castañeda P (1997) Non linear composite materials: effective constitutive behaviour and microstructure evolution. In: Suquet P (ed) Continuum micromechanics. CISM courses and lectures, vol 377. Springer, New York, pp 131–195

    Google Scholar 

  145. Ponte Castañeda P (2002) Second-order homogenisation estimates for nonlinear composites incorporating field fluctuations: I—theory. J Mech Phys Solids 50(4):737–757 (21)

    MATH  MathSciNet  Google Scholar 

  146. Ponte Castañeda P (2002) Second-order homogenisation estimates for nonlinear composites incorporating field fluctuations: II—applications. J Mech Phys Solids 50(4):759–782 (24)

    MATH  MathSciNet  Google Scholar 

  147. Ponte Castañeda P, Suquet P (1998) Nonlinear composites. Adv Appl Mech 34:171–302

    Google Scholar 

  148. Pottier T (1998) Modélisation multiéchelle du comportement et de l’endommagement de composites à matrice métallique. Thèse de Doctorat des Ponts et Chaussées

  149. Poza P, Llorca J (1999) Mechanical behaviour of Al-Li/SiC composites. Part III: Micromechanical modelling. Metall Mater Trans A 30:869–878

    Google Scholar 

  150. Renard J, Marmonier MF (1987) Etude de l’initiation de l’endommagement dans la matrice d’un matériau composite par une méthode d’homogénisation. Aerosp Sci Technol 6:37–51

    Google Scholar 

  151. Reuss A (1929) Berechnung del Fliessgrenze von Mischkristallen auf Grund der Plastizitätbedingung für Einkristalle. Z Angew Math Mech 9:49–58

    MATH  Google Scholar 

  152. Sachs G (1928) Zur Ableitung einer Fliessdedingung. Z Ver Deu Ing 72:734–736

    Google Scholar 

  153. Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Springer, Berlin

    MATH  Google Scholar 

  154. Schrefler BA (2005) Multiscale modelling. In: Zienkiewicz OC, Taylor RL (eds) The finite element method for solid and structural mechanics. Elsevier, Amsterdam

    Google Scholar 

  155. Schrefler BA, Lefik M, Galvanetto U (1997) Correctors in a beam model for unidirectional composites. Mech Compos Mater Struct 4:159–190

    Google Scholar 

  156. Segurado J, Llorca J (2002) A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids 50

  157. Segurado J, Llorca J, González C (2002) On the accuracy of meanfield approaches to simulate the plastic deformation of composites. J Mech Phys Solids 50

  158. Smit RJM (1998) Tougness of heterogeneous polymeric systems. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands

  159. Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of non-linear heterogeneous systems by multi-level finite element modelling. Comput Methods Appl Mech Eng 155:181–192

    MATH  Google Scholar 

  160. Sorensen B, Talreja R (1993) Effects of nonuniformity fiber distribution on thermal-induced residual stresses and cracking in ceramic matrix composites. Mech Mater 16:351–363

    Google Scholar 

  161. Suquet P (1983) Analyse limite et homogénéisation. C R Acad Sci Paris II 295:1335–1358

    Google Scholar 

  162. Suquet P (1987) Elements of homogenisation for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media. Lecture notes in physics, vol 272. Springer, New York, pp 193–278

    Google Scholar 

  163. Suquet P (1993) Overall potentials and extremal surfaces of power law or ideally plastic composites. J Mech Phys Solids 41:981–1002

    MATH  MathSciNet  Google Scholar 

  164. Suquet P (1995) Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castañeda’s non linear variational procedure. C R Acad Sci Paris, Sér II 320:563–571

    MATH  Google Scholar 

  165. Suquet P, Ponte Castañeda P (1993) Small-contrast perturbation expansions for the effective properties of nonlinear composites. C R Acad Sci Paris, Sér II 317:1515–1522

    MATH  Google Scholar 

  166. Talbot DRS, Willis JR (1985) Variational principles for inhomogeneous non-linear media. J Appl Math 35:39–54

    MATH  MathSciNet  Google Scholar 

  167. Talbot DRS, Willis JR (1992) Some explicit bounds for the overall behaviour of nonlinear composites. Int J Solids Struct 29:1981–1987

    MATH  MathSciNet  Google Scholar 

  168. Tandon GP, Weng GJ (1990) The overall elastoplastic stress-strain relations of dual phase metals. J Mech Phys Solids 38:419–441

    Google Scholar 

  169. Taylor GI (1938) Plastic strain in metals. J Inst Metals 62:307–324

    Google Scholar 

  170. Teply J, Dvorak G (1988) Bounds on overall instantaneous properties of elastic-plastic composites. J Mech Phys Solids 36:29–58

    MATH  Google Scholar 

  171. Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analysis of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464

    MATH  MathSciNet  Google Scholar 

  172. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    MATH  Google Scholar 

  173. Tvergaard V (1990) Analysis of tensile properties for wisker-reinforced metal-matrix composites. Acta Metall Mater 38:185–194

    Google Scholar 

  174. Van der Sluis O (2001) Homogenisation of structured elastovisplastic solids. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands

  175. Voigt W (1889) Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper. Wied Ann 38:573–587

    Google Scholar 

  176. Voyiadjiis G, Kattan P (1993) Damage of fiber-reinforced composite materials with micromechanical characterization. Int J Solids Struct 30(20):2757–2778

    Google Scholar 

  177. Voyiadjis GZ, Deliktas B (1997) Damage in MMCs using the GMC theoretical formulation. Composites B 28:597–611

    Google Scholar 

  178. Voyiadjis GZ, Park T (1995) Local and interfacial analysis damage of metal matrix composites. Int J Eng Sci 33:1595–1613

    MATH  Google Scholar 

  179. Walker KP, Freed AD, Jordan EH (1994) Thermoviscoplastic analysis of fibrous periodic composites by the use of triangular subvolumes. Compos Sci Technol 50(1):71–84

    Google Scholar 

  180. Weiss KP (2006) Cryogenic laboratory test for V-I characterisation of subcable samples, Association FZK-Euratom. Karlsruhe, Germany. Progress report 3 (Contract FU06-CT-2003-00335), January 25, 2006

  181. Willis JR (1986) Variational estimates for the overall response of an inhomogeneous nonlinear dielectric. In: Ericksen JL et al. (eds) Homogeneization and effective moduli of materials and media. Springer, New York, pp 247–263

    Google Scholar 

  182. Wisniewski K, Schrefler BA (1993) On recovery of stresses for a multi-layered beam element. Eng Comput 10:563–569

    Google Scholar 

  183. Zhang HW, Zhang S, Bi JY, Schrefler BA (2007) Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. Int J Numer Methods Eng 69(1):87–113

    MATH  MathSciNet  Google Scholar 

  184. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  185. Zohdi TI (2004) Homogenization methods and multiscale modeling. In: Encyclopedia of computational mechanics. Solids and structures, vol 2. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Boso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanouté, P., Boso, D.P., Chaboche, J.L. et al. Multiscale Methods for Composites: A Review. Arch Computat Methods Eng 16, 31–75 (2009). https://doi.org/10.1007/s11831-008-9028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-008-9028-8

Keywords

Navigation