Skip to main content

Multiscale Computational Modeling in Vascular Biology: From Molecular Mechanisms to Tissue-Level Structure and Function

  • Chapter
  • First Online:
Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Abstract

Blood vessels exhibit a remarkable ability to adapt in response to sustained alterations in hemodynamic loads and diverse disease processes. Although such adaptations typically manifest at the tissue level, underlying mechanisms exist at cellular and molecular levels. Dramatic technological advances in recent years, including sophisticated theoretical and computational modeling, have enabled significantly increased understanding at tissue, cellular, and molecular levels, yet there has been little attempt to integrate the associated models across these length and time scales. In this chapter, we suggest a new paradigm for identifying strengths and weaknesses of models at different scales and for establishing congruent models that more completely predict vascular adaptations. Specifically, we show the importance of linking intracellular with cellular models and cellular models with tissue level models. In this way, we propose a new approach for incorporating events across these three levels, thus providing a means to predict phenomena that can only emerge from a system of integrated interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif. Life 12, 617 (2006)

    Article  Google Scholar 

  2. Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450 (2007)

    Article  Google Scholar 

  3. An, G.: Concepts for developing a collaborative in silico model of the acute inflammatory response using agent-based modeling. J. Crit. Care 21, 105 (2006)

    Article  Google Scholar 

  4. An, G.: In silico experiments of existing and hypothetical cytokine-directed clinical trials using agent-based modeling. Crit. Care Med. 32, 2050 (2004)

    Article  Google Scholar 

  5. An, G.: Mathematical modeling in medicine: a means, not an end. Crit. Care Med. 33, 253 (2005)

    Article  Google Scholar 

  6. Baek, S., Rajagopal, K.R., Humphrey, J.D.: A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128, 142 (2006)

    Article  Google Scholar 

  7. Bailey, A.M., Thorne, B.C., Peirce, S.M.: Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann. Biomed. Eng. 35, 916 (2007)

    Article  Google Scholar 

  8. Bauer, A.L., Jackson, T.L., Jiang, Y.: A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92, 3105 (2007)

    Article  Google Scholar 

  9. Bauer, A.L., Jackson, T.L., Jiang, Y., Rohlf, T.: Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, Boolean signaling network model. J. Theor. Biol. 264, 838 (2010)

    Article  Google Scholar 

  10. Benest, A.V., Stone, O.A., Miller, W.H., Glover, C.P., Uney, J.B., Baker, A.H., Harper, S.J., Bates, D.O.: Arteriolar genesis and angiogenesis induced by endothelial nitric oxide synthase overexpression results in a mature vasculature. Arterioscler. Thromb. Vasc. Biol. 28, 1462 (2008)

    Article  Google Scholar 

  11. Bhalla, U.S., Iyengar, R.: Emergent properties of networks of biological signaling pathways. Science 283, 381 (1999)

    Article  Google Scholar 

  12. Bian, K., Doursout, M.F., Murad, F.: Vascular system: role of nitric oxide in cardiovascular diseases. J. Clin. Hypertens (Greenwich) 10, 304 (2008)

    Google Scholar 

  13. Bouvet, C., Moreau, S., Blanchette, J., de Blois, D., Moreau, P.: Sequential activation of matrix metalloproteinase 9 and transforming growth factor beta in arterial elastocalcinosis. Arterioscler. Thromb. Vasc. Biol. 28, 856 (2008)

    Article  Google Scholar 

  14. Casal, A., Sumen, C., Reddy, T.E., Alber, M.S., Lee, P.P.: Agent-based modeling of the context dependency in T cell recognition. J. Theor. Biol. 236, 376 (2005)

    Article  Google Scholar 

  15. Castro, M.M., Tanus-Santos, J.E., Gerlach, R.F.: Matrix metalloproteinases: targets for doxycycline to prevent the vascular alterations of hypertension. Pharmacol. Res. 64, 567 (2011)

    Article  Google Scholar 

  16. Chaturvedi, R., et al.: On multiscale approaches to three-dimensional modelling of morphogenesis. J. R. Soc. Interface 2, 237 (2005)

    Article  Google Scholar 

  17. Chen, N., Glazier, J.A., Izaguirre, J.A., Alber, M.S.: A parallel implementation of the cellular potts model for simulation of cell-based morphogenesis. Comput. Phys. Commun. 176, 670 (2007)

    Article  Google Scholar 

  18. Christ, G.J., Spray, D.C., el-Sabban, M., Moore, L.K., Brink, P.R.: Gap junctions in vascular tissues. Evaluating the role of intercellular communication in the modulation of vasomotor tone. Circ. Res. 79, 631 (1996)

    Google Scholar 

  19. Davies, P.F.: Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519 (1995)

    Google Scholar 

  20. DiCorleto, P.E., Bowen-Pope, D.F.: Cultured endothelial cells produce a platelet-derived growth factor-like protein. Proc. Natl. Acad. Sci. USA. 80, 1919 (1983)

    Article  Google Scholar 

  21. Drasdo, D., Forgacs, G.: Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation. Dev. Dyn. 219, 182 (2000)

    Article  Google Scholar 

  22. Duran, W.N., Breslin, J.W., Sanchez, F.A.: The NO cascade, eNOS location, and microvascular permeability. Cardiovasc. Res. 87, 254 (2010)

    Article  Google Scholar 

  23. Fameli, N., Kuo, K.H., van Breemen, C.: A model for the generation of localized transient [Na+] elevations in vascular smooth muscle. Biochem. Biophys. Res. Commun. 389, 461 (2009)

    Article  Google Scholar 

  24. Galkina, E., Ley, K.: Immune and inflammatory mechanisms of atherosclerosis (*). Annu. Rev. Immunol. 27, 165 (2009)

    Article  Google Scholar 

  25. Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two dimensional extended potts model. Phys. Rev. Lett. 69, 2013–2016 (1992)

    Google Scholar 

  26. Grant, M.R., Mostov, K.E., Tlsty, T.D., Hunt, C.A.: Simulating properties of in vitro epithelial cell morphogenesis. PLoS Comput. Biol. 2, e129 (2006)

    Google Scholar 

  27. Grimm, V., Railsback, S.F.: Individual-based modeling and ecology. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  28. Hastings, N.E., Simmers, M.B., McDonald, O.G., Wamhoff, B.R., Blackman, B.R.: Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am. J. Physiol. Cell Physiol. 293, C1824 (2007)

    Article  Google Scholar 

  29. Hayenga, H.N., Thorne, B.C., Peirce, S.M., Humphrey, J.D.: Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation. Ann. Biomed. Eng. 39, 2669 (2011)

    Article  Google Scholar 

  30. Humphrey, J.D.: Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York (2002)

    Google Scholar 

  31. Humphrey, J.D.: Stress, strain, and mechanotransduction in cells. J. Biomech. Eng. 123, 638 (2001)

    Article  Google Scholar 

  32. Humphrey, J.D.: Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50, 53 (2008)

    Article  Google Scholar 

  33. Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech. Model. Mechanobiol. 2, 109 (2003)

    Article  Google Scholar 

  34. Izaguirre, J.A., et al.: CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics 20, 1129 (2004)

    Article  Google Scholar 

  35. Kapela, A., Bezerianos, A., Tsoukias, N.M.: A mathematical model of vasoreactivity in rat mesenteric arterioles: I. Myoendothelial communication. Microcirculation 16, 694 (2009)

    Google Scholar 

  36. Kawai-Kowase, K., Owens, G.K.: Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 292, C59 (2007)

    Article  Google Scholar 

  37. Kohn-Luque, A., de Back, W., Starruss, J., Mattiotti, A., Deutsch, A., Perez-Pomares, J.M., Herrero, M.A.: Early embryonic vascular patterning by matrix-mediated paracrine signalling: a mathematical model study. PLoS One 6, e24175 (2011)

    Article  Google Scholar 

  38. Kuwai, T., et al.: Targeting the EGFR, VEGFR, and PDGFR on colon cancer cells and stromal cells is required for therapy. Clin. Exp. Metastasis 25, 477 (2008)

    Article  Google Scholar 

  39. Longo, D., Peirce, S.M., Skalak, T.C., Davidson, L., Marsden, M., Dzamba, B., DeSimone, D.W.: Multicellular computer simulation of morphogenesis: blastocoel roof thinning and matrix assembly in Xenopus laevis. Dev. Biol. 271, 210 (2004)

    Article  Google Scholar 

  40. Merks, R.M., Brodsky, S.V., Goligorksy, M.S., Newman, S.A., Glazier, J.A.: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289, 44 (2006)

    Article  Google Scholar 

  41. Nakagawa, T., Inoue, H., Sasahara, M.: Platelet-derived growth factor and renal disease. Curr. Opin. Nephrol. Hypertens 21, 80 (2012)

    Article  Google Scholar 

  42. Osol, G.: Mechanotransduction by vascular smooth muscle. J. Vasc. Res. 32, 275 (1995)

    Google Scholar 

  43. Peirce, S.M., Skalak, T.C., Papin, J.A.: Coupling intracellular networks with tissue-level physiology. IBM J. Res. 50, 1 (2006)

    Article  Google Scholar 

  44. Peirce, S.M., Van Gieson, E.J., Skalak, T.C.: Multicellular simulation predicts microvascular patterning and in silico tissue assembly. Faseb. J. 18, 731 (2004)

    Google Scholar 

  45. Pries, A.R., Reglin, B., Secomb, T.W.: Modeling of angioadaptation: insights for vascular development. Int. J. Dev. Biol. 55, 399 (2011)

    Article  Google Scholar 

  46. Raffetto, J.D., Khalil, R.A.: Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem. Pharmacol. 75, 346 (2008)

    Article  Google Scholar 

  47. Ramli, J., CalderonArtero, P., Block, R.C., Mousa, S.A.: Novel therapeutic targets for preserving a healthy endothelium: strategies for reducing the risk of vascular and cardiovascular disease. Cardiol. J. 18, 352 (2011)

    Google Scholar 

  48. Ridnour, L.A., Isenberg, J.S., Espey, M.G., Thomas, D.D., Roberts, D.D., Wink, D.A.: Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc. Natl. Acad. Sci. USA 102, 13147 (2005)

    Article  Google Scholar 

  49. Robertson, S.H. et al.: Multiscale computational analysis of Xenopus laevis morphogenesis reveals key insights of systems-level behavior. BMC Syst. Biol. 1, 46 (2008)

    Google Scholar 

  50. Rudic, R.D., Shesely, E.G., Maeda, N., Smithies, O., Segal, S.S., Sessa, W.C.: Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J. Clin. Invest. 101, 731 (1998)

    Article  Google Scholar 

  51. Schermuly, R.T., et al.: Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest. 115, 2811 (2005)

    Article  Google Scholar 

  52. Scianna, M., Munaron, L., Preziosi, L.: A multiscale hybrid approach for vasculogenesis and related potential blocking therapies. Prog. Biophys. Mol. Biol. 106, 450 (2011)

    Article  Google Scholar 

  53. Segovia-Juarez, J.L., Ganguli, S., Kirschner, D.: Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theor. Biol. 231, 357 (2004)

    Article  MathSciNet  Google Scholar 

  54. Sessa, W.C.: eNOS at a glance. J. Cell Sci. 117, 2427 (2004)

    Article  Google Scholar 

  55. Simpson, M.J., Merrifield, A., Landman, K.A., Hughes, B.D.: Simulating invasion with cellular automata: connecting cell-scale and population-scale properties. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 021918 (2007)

    Article  Google Scholar 

  56. Smith Jr., R.S., Lin, K.F., Agata, J., Chao, L., Chao, J.: Human endothelial nitric oxide synthase gene delivery promotes angiogenesis in a rat model of hindlimb ischemia. Arterioscler. Thromb. Vasc. Biol. 22, 1279 (2002)

    Article  Google Scholar 

  57. Thorne, B.C., Bailey, A.M., Peirce, S.M.: Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Br. Bioinf. 8, 245 (2007)

    Article  Google Scholar 

  58. Thorne, B.C., Hayenga, H.N., Humphrey, J.D., Peirce, S.M.: Toward a multi-scale computational model of arterial adaptation in hypertension: verification of a multi-cell agent based model. Front. Physiol. 2, 20 (2011)

    Article  Google Scholar 

  59. Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C., Brown, R.A.: Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349 (2002)

    Article  Google Scholar 

  60. Tsoukias, N.M.: Nitric oxide bioavailability in the microcirculation: insights from mathematical models. Microcirculation 15, 813 (2008)

    Article  Google Scholar 

  61. Valentin, A., Cardamone, L., Baek, S., Humphrey, J.D.: Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6, 293 (2009)

    Article  Google Scholar 

  62. Wagenseil, J.E., Mecham, R.P.: Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89, 957 (2009)

    Article  Google Scholar 

  63. Wilensky, U.: NetLogo—http://ccl.northwestern.edu/netlogo. Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston (1999)

  64. Yamamoto, K., Ikeda, U., Shimada, K.: Role of mechanical stress in monocytes/macrophages: implications for atherosclerosis. Curr. Vasc. Pharmacol. 1, 315 (2003)

    Article  Google Scholar 

  65. Yang, J., Clark, J.W., Bryan, R.M., Robertson, C.S.: Mathematical modeling of the nitric oxide/cGMP pathway in the vascular smooth muscle cell. Am. J. Physiol. Heart Circ. Physiol. 289, H886 (2005)

    Google Scholar 

  66. Yokota, T., Ma, R.C., Park, J.Y., Isshiki, K., Sotiropoulos, K.B., Rauniyar, R.K., Bornfeldt, K.E., King, G.L.: Role of protein kinase C on the expression of platelet-derived growth factor and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes. Diabetes 52, 838 (2003)

    Article  Google Scholar 

  67. Yoshida, T., Gan, Q., Shang, Y., Owens, G.K.: Platelet-derived growth factor-BB represses smooth muscle cell marker genes via changes in binding of MKL factors and histone deacetylases to their promoters. Am. J. Physiol. Cell Physiol. 292, C886 (2007)

    Article  Google Scholar 

  68. Yoshida, T., Owens, G.K.: Molecular determinants of vascular smooth muscle cell diversity. Circ. Res. 96, 280 (2005)

    Article  Google Scholar 

  69. Yu, J., Zhang, Y., Zhang, X., Rudic, R.D., Bauer, P.M., Altieri, D.C., Sessa, W.C.: Endothelium derived nitric oxide synthase negatively regulates the PDGF-survivin pathway during flow-dependent vascular remodeling. PLoS One 7, e31495 (2012)

    Article  Google Scholar 

  70. Zajac, M., Jones, G.L., Glazier, J.A.: Simulating convergent extension by way of anisotropic differential adhesion. J. Theor. Biol. 222, 247 (2003)

    Article  Google Scholar 

  71. Zhang, L., Strouthos, C.G., Wang, Z., Deisboeck, T.S.: Simulating brain tumor heterogeneity with a multiscale agent-based model: linking molecular signatures, phenotypes and expansion rate. Math. Comput. Model. 49, 307 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhang, R., Wang, L., Zhang, L., Chen, J., Zhu, Z., Zhang, Z., Chopp, M.: Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ. Res. 92, 308 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, via NIH grants HL-86418 to JDH and HL-82838 to SMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay D. Humphrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayenga, H.N., Thorne, B.C., Yen, P., Papin, J.A., Peirce, S.M., Humphrey, J.D. (2013). Multiscale Computational Modeling in Vascular Biology: From Molecular Mechanisms to Tissue-Level Structure and Function. In: Gefen, A. (eds) Multiscale Computer Modeling in Biomechanics and Biomedical Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_147

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_147

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36481-5

  • Online ISBN: 978-3-642-36482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics