Skip to main content
Log in

Multi-scale modeling of hemodynamics in the cardiovascular system

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The human cardiovascular system is a closed-loop and complex vascular network with multi-scaled heterogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling, with a focus on geometrical multi-scale modeling of the vascular network, micro-hemodynamic modeling of microcirculation, as well as blood cellular, subcellular, endothelial biomechanics, and their interaction with arterial vessel mechanics. We describe in detail the methodology of hemodynamic modeling and its potential applications in cardiovascular research and clinical practice. In addition, we present major topics for future study: recent progress of patient-specific hemodynamic modeling in clinical applications, micro-hemodynamic modeling in capillaries and blood cells, and the importance and potential of the multi-scale hemodynamic modeling.

Graphical Abstract

Here we give a selective review of recent progress in macro-hemodynamic modeling, with a focus on geometrical multi-scale modeling of the vascular network, micro-hemodynamic modeling of microcirculation, as well as blood cellular, subcellular, endothelial biomechanics, and their interaction with arterial vessel mechanics. We describe in detail the methodology of hemodynamic modeling and its potential applications in cardiovascular research and clinical practice. In addition, we present major topics for future study: recent progress of patient-specific hemodynamic modeling in clinical applications, micro-hemodynamic modeling in capillaries and blood cells, and the importance and potential of the multi-scale hemodynamic modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Taylor, C.A., Figueroa, C.A.: Patient-specific modeling of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 11, 109–134 (2009)

    Article  Google Scholar 

  2. van de Vosse, F., Stergiopulos, N.: Pulse wave propagation in the arterial tree. Annu. Rev. Fluid Mech. 43, 467–499 (2011)

    Article  Google Scholar 

  3. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of arteries. Proc. R. Soc. Lond. A 466, 1551–1597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Taelman, L., Degroote, J., Verdonck, P., et al.: Modeling hemodynamics in vascular networks using a geometrical multiscale approach: numerical aspects. Ann. Biomed. Eng. 41, 1445–1458 (2013)

    Article  Google Scholar 

  5. Popel, A.S., Johnson, P.C.: Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37, 43–69 (2005)

    Article  MathSciNet  Google Scholar 

  6. Perktold, K., Rappitsch, G.: Mathematical modeling of arterial blood flow and correlation to atherosclerosis. Technol. Health Care 3, 139–151 (1995)

    Google Scholar 

  7. Formaggia, L., Gerbeau, J.F., Nobile, F., et al.: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191, 561–582 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wolters, B.J.B.M., Ruttern, M.C.M., Schurink, G.W.H., et al.: A patient-specific computational model of fluid–structure interaction in abdominal aortic aneurysms. Med. Eng. Phys. 27, 871–883 (2005)

    Article  Google Scholar 

  9. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vigmond, E.J., Hughes, M., Plank, G., et al.: Computational tools for modeling electrical activity in cardiac tissue. J. Electrocardiol. 36, 69–74 (2003)

    Article  Google Scholar 

  11. Glowinski, R., Pan, T.W., Hesla, T.I., et al.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169, 363–426 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hart, J.D., Peters, G.W.M., Schreurs, P.J.G., et al.: A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J. Biomech. 36, 103–112 (2003)

    Article  Google Scholar 

  13. Figueroa, C.A., Vignon-Clementel, I.E., Jansen, K.E., et al.: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 194, 5685–5706 (2006)

    Article  MathSciNet  Google Scholar 

  14. Reymond, P., Crosetto, P., Deparis, S., et al.: Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med. Eng. Phys. 35, 784–791 (2013)

    Article  Google Scholar 

  15. Sughimoto, K., Takahara, Y., Mogi, K., et al.: Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms. Heart Vessels 29, 404–412 (2014)

    Article  Google Scholar 

  16. Sherwin, S.J., Formaggia, L., Peiro, J., et al.: Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Methods Fluids 43, 673–700 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Formaggia, L., Lamponi, D., Tuveri, M., et al.: Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput. Methods Biomech. Biomed. Eng. 9, 273–288 (2006)

    Article  Google Scholar 

  18. Liang, F.Y., Takagi, S., Himeno, R., et al.: Biomechanical characterization of ventricular–arterial coupling during aging: a multi-scale model study. J. Biomech. 42, 692–704 (2009)

    Article  Google Scholar 

  19. Liang, F.Y., Takagi, S., Himeno, R., et al.: Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenosis. Med. Biol. Eng. Comput. 47, 743–755 (2009)

    Article  Google Scholar 

  20. Devault, K., Gremaud, P.A., Novak, V., et al.: Blood flow in the circle of Willis: modeling and calibration. Multiscale Model. Simul. 7, 888–909 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bessems, D., Rutten, M., van de Vosse, F.: A wave propagation model of blood flow in large vessels using an approximate velocity profile function. J. Fluid Mech. 580, 145–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reymond, P., Merenda, F., Perren, F., et al.: Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. 297, 208–222 (2009)

    Google Scholar 

  23. Huo, Y., Kassab, G.S.: A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree. Am. J. Physiol. Heart Circ. Physiol. 292, H2623–H2633 (2007)

    Article  Google Scholar 

  24. Alastruey, J., Parker, K.H., Peiro, J., et al.: Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech. 40, 1794–1805 (2007)

    Article  Google Scholar 

  25. Müller, L.O., Toro, E.F.: A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int. J. Numer. Methods Biomed. Eng. 30, 681–725 (2014)

    Article  MathSciNet  Google Scholar 

  26. Liang, F.Y., Takagi, S., Himeno, R., et al.: A computational model of the cardiovascular system coupled with an upper-arm oscillometric cuff and its application to studying the suprasystolic cuff oscillation wave concerning its value in assessing arterial stiffness. Comput. Methods Biomech. Biomed. Eng. 16, 141–157 (2013)

    Article  Google Scholar 

  27. Pan, Q., Wang, R., Reglin, B., et al.: A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks. J. Biomech. Eng. 136, 011009 (2014)

    Article  Google Scholar 

  28. Frank, O.: Die grundform des arteriellen pulses. Z. Biol. 37, 483–526 (1899)

    Google Scholar 

  29. Westerhof, N., Lankhaar, J.W., Westerhof, B.E.: The arterial windkessel. Med. Biol. Eng. Comput. 47, 131–141 (2009)

    Article  Google Scholar 

  30. Westerhof, N., Bosman, F., De Vries, C.J., et al.: Analog studies of the human systemic arterial tree. J. Biomech. 2, 121–143 (1969)

    Article  Google Scholar 

  31. Stergiopulos, N., Westerhof, B.E., Westerhof, N.: Total arterial inertance as the fourth element of the windkessel model. Am. J. Physiol. 276, H81–H88 (1999)

    Google Scholar 

  32. Liang, F.Y., Liu, H.: Simulation of hemodynamic responses to the valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system. J. Physiol. Sci. 56, 45–65 (2006)

    Article  Google Scholar 

  33. Lu, K., Clark, J.W.J., Ghorbel, F.H., et al.: A human cardiopulmonary system model applied to the analysis of the valsalva maneuver. Am. J. Physiol. Heart Circ. Physiol. 281, H2661–H2679 (2001)

    Google Scholar 

  34. Stergiopulos, N., Young, D.F., Rogge, T.: Computer simulation of arterial flow with applications to arterial and aortic stenosis. J. Biomech. 25, 1477–1488 (1992)

    Article  Google Scholar 

  35. Olufsen, M.S., Peskin, C.S., Kim, W.Y., et al.: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28, 1281–1299 (2000)

    Article  Google Scholar 

  36. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods. Fluids. 22, 325–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Formaggia, L., Moura, A., Nobile, F.: On the stability of the coupling of 3D and 1D fluid–structure interaction models for blood flow simulations. ESAIM Math. Model. Numer. Anal. 41, 743–769 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Leiva, J.S., Blanco, P.J., Buscaglia, G.C.: Iterative strong coupling of dimensionally heterogeneous models. Int. J. Numer. Methods Eng. 81, 1558–1580 (2009)

    MathSciNet  Google Scholar 

  39. Leiva, J.S., Blanco, P.J., Buscaglia, G.C.: Partitioned analysis for dimensionally-heterogeneous hydraulic networks. Multiscale Model. Simul. 9, 872–903 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vignon-Clementel, I.E., Figueroa, C.A., Jansen, K.E., et al.: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195, 3776–3796 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Blanco, P.J., Pivello, M.R., Urquiza, S.A., et al.: On the potentialities of 3D–1D coupled models in hemodynamics simulations. J. Biomech. 42, 919–930 (2009)

    Article  Google Scholar 

  42. Hsia, T.Y., Cosentino, D., Corsini, C., et al.: Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation 124, S204–S210 (2011)

    Article  Google Scholar 

  43. Mahler, F., Muheim, M.H., Intaglietta, M., et al.: Blood pressure fluctuations in human nailfold capillaries. Am. J. Physiol. Heart Circ. Physiol. 236, H888–H893 (1979)

  44. Nakano, T., Tominaga, R., Nagano, I., et al.: Pulsatile flow enhances endothelium-derived nitric oxide release in the peripheral vasculature. Am. J. Physiol. Heart Circ. Physiol. 278, H1098–H1104 (2000)

  45. Li, Y., Zheng, J., Bird, I.M., et al.: Effects of pulsatile shear stress on nitric oxide production and endothelial cell nitric oxide synthase expression by ovine fetoplacental artery endothelial cells. Biol. Reprod. 69, 1053–1059 (2003)

  46. Uryash, A., Wu, H., Bassuk, J., et al.: Low-amplitude pulses to the circulation through periodic acceleration induces endothelial-dependent vasodilatation. J. Appl. Physiol. 106, 1840–1847 (2009)

  47. Sezai, A., Shiono, M., Orime, Y., et al.: Renal circulation and cellular metabolism during left ventricular assisted circulation: comparison study of pulsatile and nonpulsatile assists. Artif. Organs. 21, 830–835 (1997)

  48. Orime, Y., Shiono, M., Nakata, et al.: The role of pulsatility in end-organ microcirculation after cardiogenic shock. ASAIO J. 42, M724–728 (1996)

  49. O’Neil, M.P., Fleming, J.C., Badhwar, A., et al.: Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: microcirculatory and systemic effects. Ann. Thorac. Surg. 94, 2046–2053 (2012)

  50. Mittal, N., Zhou, Y., Linares, C., et al.: Analysis of blood flow in the entire coronary arterial tree. Am. J. Physiol. Heart Circ. Physiol. 289, H439–H446 (2005)

  51. Lipowsky, H.H., Zweifach, B.W.: Network analysis of microcirculation of cat mesentery. Microvasc. Res. 7, 73–83 (1974)

    Article  Google Scholar 

  52. Pries, A.R., Secomb, T.W., Gaehtgens, P., et al.: Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67, 826–834 (1990)

    Article  Google Scholar 

  53. Grinberg, L., Cheever, E., Anor, T., et al.: Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study. Ann. Biomed. Eng. 39, 297–309 (2011)

  54. Shi, Y., Lawford, P., Hose, R.: Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. Online 10, 33 (2011)

    Article  Google Scholar 

  55. Ganesan, P., He, S., Xu, H.: Modelling of pulsatile blood flow in arterial trees of retinal vasculature. Med. Eng. Phys. 33, 810–823 (2011)

    Article  Google Scholar 

  56. Lee, J., Smith, N.: Development and application of a one-dimensional blood flow model for microvascular networks. Proc. Inst. Mech. Eng. Part H 222, 487–511 (2008)

    Article  Google Scholar 

  57. Seki, J.: Flow pulsation and network structure in mesenteric microvasculature of rats. Am. J. Physiol. Heart Circ. Physiol. 266, H811–H821 (1994)

    Google Scholar 

  58. Pries, A.R., Ley, K., Gaehtgens, P.: Generalization of the Fahraeus principle for microvessel networks. Am. J. Physiol. Heart Circ. Physiol. 251, H1324–1332 (1986)

    Google Scholar 

  59. Nakano, A., Sugii, Y., Minamiyama, M., et al.: Measurement of red cell velocity in microvessels using particle image velocimetry (PIV). Clin. Hemorheol. Microcirc. 29, 445–455 (2003)

  60. Golub, A.S., Barker, M.C., Pittman, R.N.: Microvascular oxygen tension in the rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 294, H21–H28 (2008)

    Article  Google Scholar 

  61. Pries, A.R., Secomb, T.W.: Origins of heterogeneity in tissue perfusion and metabolism. Cardiovasc. Res. 81, 328–335 (2009)

    Article  Google Scholar 

  62. Tuma, R.F., Duran, W.N., Ley, K.: Microcirculation. Academic Press, New York (2008)

    Google Scholar 

  63. Fung, Y.C., Zweifach, B.W., Intaglietta, M.: Elastic environment of the capillary bed. Circ. Res. 19, 441–461 (1966)

    Article  Google Scholar 

  64. Pries, A.R., Secomb, T.W., Gaehtgens, P.: Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32, 654–667 (1996)

    Article  Google Scholar 

  65. Alastruey, J., Parker, K.H., Peiro, J., et al.: Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation. Commun. Comput. Phys. 4, 317–336 (2008)

  66. Dao, M., Lim, C.T., Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003)

    Article  Google Scholar 

  67. Tsubota, K., Wada, S.: Elastic force of red blood cell membrane during tank-treading motion: consideration of the membrane’s natural state. Int. J. Mech. Sci. 52, 356–364 (2010)

    Article  Google Scholar 

  68. Tsubota, K., Wada, S.: Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell. Phys. Rev. E. 81, 011910 (2010)

    Article  Google Scholar 

  69. Tsubota, K., Wada, S., Liu, H.: Elastic behavior of a red blood cell with the membrane’s nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Biomech. Model. Mechanobiol. 13, 735–746 (2014)

    Article  Google Scholar 

  70. Skalak, R., Tozeren, A., Zarda, R.P., et al.: Strain energy function of red blood cell membranes. Biophys. J. 13, 245–264 (1973)

  71. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C. 28, 693–703 (1973)

    Google Scholar 

  72. Tsubota, K.: Short note on the bending models for a membrane in capsule mechanics: comparison between continuum and discrete models. J. Comput. Phys. 277, 320–328 (2014)

    Article  Google Scholar 

  73. Kamada, H., Tsubota, K., Nakamura, M., et al.: A three-dimensional particle simulation of the formation and collapse of a primary thrombus. Int. J. Numer. Methods Biomed. Eng. 26, 488–500 (2010)

  74. Kamada, H., Tsubota, K., Nakamura, M., et al.: Computational study on effect of stenosis on primary thrombus formation. Biorheology 48, 99–114 (2011)

  75. Miyoshi, H., Tsubota, K., Hoyano, T., et al.: Three-dimensional modulation of cortical plasticity during pseudopodial protrusion of mouse leukocytes. Biochem. Biophys. Res. Commun. 438, 594–599 (2013)

  76. Tsubota, K., Wada, S., Yamaguchi, T.: Simulation study on effects of hematocrit on blood flow properties using particle method. J. Biomech. Sci. Eng. 1, 159–170 (2006)

    Article  Google Scholar 

  77. Morishita, Y., Iwasa, Y.: Growth based morphogenesis of vertebrate limb bud. Bull. Math. Biol. 70, 1957–1978 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  78. Morishita, Y., Suzuki, T.: Bayesian inference of whole-organ deformation dynamics from limited space-time point data. J. Theor. Biol. 357, 74–85 (2014)

    Article  MathSciNet  Google Scholar 

  79. Ishihara, S., Sugimura, K.: Baysian inference of force dynamics during morphogenesis. J. Theor. Biol. 313, 201–211 (2012)

    Article  Google Scholar 

  80. Okuda, S., Inoue, Y., Eiraku, M., et al.: Reversible network reconnection model for simulating large deformation in dynamic tissue morphogenesis. Biomech. Model. Mechanobiol. 12, 627–644 (2013)

  81. Ridley, A.J., Schwartz, M.A., Burridge, K., et al.: Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003)

  82. Mullins, R.D., Heuser, J.A., Pollard, T.D.: The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA 95, 6181–6186 (1998)

    Article  Google Scholar 

  83. Svitkina, T.M., Borisy, G.G.: Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999)

    Article  Google Scholar 

  84. Pollard, T.D., Blanchoin, L., Mullins, D.: Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000)

    Article  Google Scholar 

  85. Small, J.V., Stradal, T., Vignal, E., et al.: The lamellipodium: where motility begins. Trends Cell Biol. 12, 112–120 (2002)

  86. Chhabra, E.S., Higgs, H.N.: The many faces of actin: matching assembly factors with cellular structures. Nat. Cell Biol. 9, 1110–1121 (2007)

    Article  Google Scholar 

  87. Lazarides, E., Burridge, K.: \(\alpha \)-Actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell 6, 289–298 (1975)

    Article  Google Scholar 

  88. Weber, K., Groeschel-Stewart, U.: Antibody to myosin: the specific bisualization of myosin-containing filaments in nonmuscle cells. Proc. Natl. Acad. Sci. USA 71, 4561–4564 (1974)

    Article  Google Scholar 

  89. Small, J.V., Rottner, K., Kaverina, I., et al.: Assembling an actin cytoskeleton for cell attachment and movement. Biochim. Biophys. Acta 1404, 271–281 (1998)

  90. Hotulainen, P., Lappalainen, P.: Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006)

    Article  Google Scholar 

  91. Pellegrin, S., Mellor, H.: Actin stress fibres. J. Cell Sci. 120, 3491–3499 (2007)

    Article  Google Scholar 

  92. Chiu, J.J., Chien, S.: Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91, 327–387 (2011)

  93. Ward, M.R., Pasterkamp, G., Yeung, A.C., et al.: Arterial remodeling: mechanisms and clinical implications. Circulation 102, 1186–1191 (2000)

  94. Wojciak-Stothard, B., Ridley, A.J.: Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J. Cell Biol. 161, 429–439 (2003)

    Article  Google Scholar 

  95. Ingber, D.E.: Tensegrity II: how structure networks influence cellular information processing networks. J. Cell Sci. 116, 1397–1408 (2003)

    Article  Google Scholar 

  96. Schwartz, E.A., Gerristen, M.E., Bizios, R.: Effects of Hydrostatic Pressure on Endothelial Cells. In: Lelkes, P. I. (ed.) Endothelium and Mechanical Forces, chapter 13, pp. 275–290. Harwood Academic Publishers, London, England (1999)

  97. Chien, S.: Effects of disturbed flow on endothelial cells. Ann. Biomed. Eng. 36, 554–562 (2008)

    Article  MathSciNet  Google Scholar 

  98. Azuma, N., Aydin Duzgan, S., Ikeda, M., et al.: Endothelial cell response to different mechanical forces. J. Vasc. Surg. 32, 789–794 (2000)

  99. Davies, P.F., Tripathi, S.C.: Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ. Res. 72, 239–245 (1993)

    Article  Google Scholar 

  100. Chicurel, M.E., Chen, C.S., Ingber, D.E.: Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10, 232–239 (1998)

    Article  Google Scholar 

  101. Seneviratne, A., Hulsmans, M., Holvoet, P., et al.: Biomechanical factors and macrophages in plaque stability. Cardiovasc. Res. 99, 284–293 (2013)

  102. Gao, H., Long, Q.: Atherosclerosis Plaque Stress Analysis: A Review, vol. XIX. Springer, New York (2014)

    Google Scholar 

  103. Yim, P., DeMarco, K., Castro, M.A., et al.: Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics. Stud. Health Technol. Inform. 113, 412–442 (2005)

  104. Barbee, K.A., Davies, P.F., Lal, R.: Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ. Res. 74, 163–171 (1994)

    Article  Google Scholar 

  105. Wei, T., Nackman, G.B., Voorhees, A.: Experiments show importance of flow-induced pressure on endothelial cell shape and alignment. Proc. R. Soc. A 463, 1409–1419 (2007)

    Article  Google Scholar 

  106. Liu, S.Q., Yen, M., Fung, Y.C.: On measuring the third dimension of cultured endothelial cells in shear flow. Proc. Natl. Acad. Sci. USA 91, 8782–9796 (1994)

    Article  Google Scholar 

  107. Hazel, A.L., Pedley, T.J.: Vascular endothelial cells minimize the total force on their nuclei. Biophys. J. 78, 47–54 (2000)

    Article  Google Scholar 

  108. Waché, P., Wang, X., Maurice, et al.: Calcul numérique de la déformation mécanique d’un modèle de cellule endothéliale. C. R. Acad. Sci. Paris Bioméch./Biomech. 328, 633–638 (2000) (in German)

Download references

Acknowledgments

Hao Liu was partly supported by Grant-in-Aid for Scientific Research (Grant (B)17300141), JSPS and by Research and Development of the Next Generation Integrated Simulation of Living Matter, JST, a part of the Development and Use of the Next Generation Supercomputer Project of the MEXT, Japan. Fuyou Liang was supported by the National Natural Science Foundation of China (Grant 81370438) and the SJTU Medical Engineering Cross-cutting Research Foundation (Grant YG2012MS24). Ken-iti Tsubota was partly funded by a Grant-in-Aid for Challenging Exploratory Research (Grant 25630046), JSPS. He also thanks RIKEN for supporting the computing facilities essential for the completion of this study. Financial support provided by HKUST to JW is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liang, F., Wong, J. et al. Multi-scale modeling of hemodynamics in the cardiovascular system. Acta Mech. Sin. 31, 446–464 (2015). https://doi.org/10.1007/s10409-015-0416-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0416-7

Keywords

Navigation