Skip to main content

Studying Membrane Properties Using Fluorescence Lifetime Imaging Microscopy (FLIM)

  • Chapter
  • First Online:
Fluorescent Methods to Study Biological Membranes

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 13))

Abstract

Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to investigate the structure and composition of biological membranes. A wide variety of fluorescent probes suitable for FLIM experiments have been described. These compounds differ strongly in the details of their incorporation into membranes and in their responses toward changes in the membrane composition. In this chapter, we discuss and compare different classes of fluorescent membranes probes and their applications to studying biological membranes. We devote a section to a detailed description of fluorescent molecular rotors and their application to measuring local viscosity. As Förster resonance energy transfer (FRET) can be directly measured by changes in the donor fluorescence lifetime, FLIM is a very robust method to determine the distances between FRET pairs or the local concentrations of FRET-based membrane probes. Thus, we also discuss advantages and challenges of FRET-FLIM in the context of biological membranes. As biological membranes are considerably dynamic systems, imaging speed is often the limiting factor in biological FLIM experiments. Thus, novel fast imaging approaches and analysis methods to alleviate the issue of low photon statistics are also presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47(7):1597–1598. doi:E600002-JLR200, [pii] 10.1194/jlr.E600002-JLR200

    Article  CAS  Google Scholar 

  2. Fessler MB, Parks JS (2011) Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J Immunol 187(4):1529–1535. doi:10.4049/jimmunol.1100253

    Article  CAS  Google Scholar 

  3. Staubach S, Hanisch F-G (2011) Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics 8(2):263–277. doi:10.1586/epr.11.2

    Article  CAS  Google Scholar 

  4. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  CAS  Google Scholar 

  5. Cho W, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34(1):119–151. doi:10.1146/annurev.biophys.33.110502.133337

    Article  CAS  Google Scholar 

  6. Resh MD (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451(1):1–16

    Article  CAS  Google Scholar 

  7. Aicart-Ramos C, Valero RA, Rodriguez-Crespo I (2011) Protein palmitoylation and subcellular trafficking. Biochim Biophys Acta 1808(12):2981–2994. doi:10.1016/j.bbamem.2011.07.009

    Article  CAS  Google Scholar 

  8. Levental I, Grzybek M, Simons K (2010) Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49(30):6305–6316

    Article  CAS  Google Scholar 

  9. Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7(6):456–462

    Article  CAS  Google Scholar 

  10. Levental I, Byfield FJ, Chowdhury P, Gai F, Baumgart T, Janmey PA (2009) Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem J 424(2):163–167

    Article  CAS  Google Scholar 

  11. Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA, Baird BA, Webb WW (2007) Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci U S A 104(9):3165–3170

    Article  CAS  Google Scholar 

  12. Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746(3):234–251

    Article  CAS  Google Scholar 

  13. Loura L, Fernandes F, Prieto M (2010) Membrane microheterogeneity: Förster resonance energy transfer characterization of lateral membrane domains. Eur Biophys J 39(4):589–607. doi:10.1007/s00249-009-0547-5

    Article  CAS  Google Scholar 

  14. Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V, Honigmann A, Belov VN, Eggeling C, Coskun U, Simons K, Schwille P (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818:1777–1784. doi:10.1016/j.bbamem.2012.03.007

    Article  CAS  Google Scholar 

  15. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162, http://www.nature.com/nature/journal/v457/n7233/suppinfo/nature07596_S1.html

    Article  CAS  Google Scholar 

  16. Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R, Leutenegger M, Polyakova S, Belov VN, Hell SW, Eggeling C (2011) Sted nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys J 101(7):1651–1660. doi:10.1016/j.bpj.2011.09.006

    Article  CAS  Google Scholar 

  17. Bastos AEP, Scolari S, Stöckl M, de Almeida RFM (2012) Applications of fluorescence lifetime spectroscopy and imaging to lipid domains in vivo. In: Conn PM (ed) Methods in enzymology, vol 504. Academic Press, Burlington, pp 57–81

    Google Scholar 

  18. Shaw AS (2006) Lipid rafts: now you see them, now you don’t. Nat Immunol 7(11):1139–1142

    Article  CAS  Google Scholar 

  19. Ariola FS, Li Z, Cornejo C, Bittman R, Heikal AA (2009) Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative. Biophys J 96(7):2696–2708. doi:S0006-3495(09)00390-7, [pii] 10.1016/j.bpj.2008.12.3922

    Article  CAS  Google Scholar 

  20. Wüstner D, Solanko L, Sokol E, Garvik O, Li Z, Bittman R, Korte T, Herrmann A (2011) Quantitative assessment of sterol traffic in living cells by dual labeling with dehydroergosterol and bodipy-cholesterol. Chem Phys Lipids 164(3):221–235. doi:10.1016/j.chemphyslip. 2011.01.004

    Article  Google Scholar 

  21. Wustner D (2007) Fluorescent sterols as tools in membrane biophysics and cell biology. Chem Phys Lipids 146(1):1–25

    Article  Google Scholar 

  22. de Almeida RF, Borst J, Fedorov A, Prieto M, Visser AJ (2007) Complexity of lipid domains and rafts in giant unilamellar vesicles revealed by combining imaging and microscopic and macroscopic time-resolved fluorescence. Biophys J 93(2):539–553

    Article  Google Scholar 

  23. Ariola FS, Mudaliar DJ, Walvick RP, Heikal AA (2006) Dynamics imaging of lipid phases and lipid-marker interactions in model biomembranes. Phys Chem Chem Phys 8(39):4517–4529. doi:10.1039/b608629b

    Article  CAS  Google Scholar 

  24. Didier P, Ulrich G, Mely Y, Ziessel R (2009) Improved push-pull-push e-bodipy fluorophores for two-photon cell-imaging. Org Biomol Chem 7(18)

    Google Scholar 

  25. Stöckl M, Plazzo AP, Korte T, Herrmann A (2008) Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy of fluorescent lipid analogues. J Biol Chem 283(45):30828–30837

    Article  Google Scholar 

  26. Zarubica A, Plazzo AP, Stockl M, Trombik T, Hamon Y, Muller P, Pomorski T, Herrmann A, Chimini G (2009) Functional implications of the influence of abca1 on lipid microenvironment at the plasma membrane: a biophysical study. FASEB J 23(6):1775–1785

    Article  CAS  Google Scholar 

  27. Haluska CK, Schroder AP, Didier P, Heissler D, Duportail G, Mely Y, Marques CM (2008) Combining fluorescence lifetime and polarization microscopy to discriminate phase separated domains in giant unilamellar vesicles. Biophys J 95(12):5737–5747. doi:S0006-3495(08)81990-X, [pii] 10.1529/biophysj.108.131490

    Article  CAS  Google Scholar 

  28. Margineanu A, Hotta J, Vallee RA, Van der Auweraer M, Ameloot M, Stefan A, Beljonne D, Engelborghs Y, Herrmann A, Mullen K, De Schryver FC, Hofkens J (2007) Visualization of membrane rafts using a perylene monoimide derivative and fluorescence lifetime imaging. Biophys J 93(8):2877–2891

    Article  CAS  Google Scholar 

  29. Li C, Schoneboom J, Liu Z, Pschirer NG, Erk P, Herrmann A, Mullen K (2009) Rainbow perylene monoimides: easy control of optical properties. Chemistry 15(4):878–884. doi:10.1002/chem.200802126

    Article  CAS  Google Scholar 

  30. Obaid AL, Loew LM, Wuskell JP, Salzberg BM (2004) Novel naphthylstyryl-pyridium potentiometric dyes offer advantages for neural network analysis. J Neurosci Methods 134(2):179–190. doi:10.1016/j.jneumeth.2003.11.011, S0165027003003881 [pii]

    Article  CAS  Google Scholar 

  31. Jin L, Millard AC, Wuskell JP, Clark HA, Loew LM (2005) Cholesterol-enriched lipid domains can be visualized by di-4-aneppdhq with linear and nonlinear optics. Biophys J 89(1):L04–L06. doi:S0006-3495(05)72649-7, [pii] 10.1529/biophysj.105.064816

    Article  CAS  Google Scholar 

  32. Owen DM, Lanigan PM, Dunsby C, Munro I, Grant D, Neil MA, French PM, Magee AI (2006) Fluorescence lifetime imaging provides enhanced contrast when imaging the phase-sensitive dye di-4-aneppdhq in model membranes and live cells. Biophys J 90(11):L80–L82

    Article  CAS  Google Scholar 

  33. Talbot CB, McGinty J, Grant DM, McGhee EJ, Owen DM, Zhang W, Bunney TD, Munro I, Isherwood B, Eagle R, Hargreaves A, Dunsby C, Neil MA, French PM (2008) High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis. J Biophotonics 1(6):514–521. doi:10.1002/jbio.200810054

    Article  Google Scholar 

  34. Svensson FR, Matson M, Li M, Lincoln P (2010) Lipophilic ruthenium complexes with tuned cell membrane affinity and photoactivated uptake. Biophys Chem 149(3):102–106. doi:10.1016/j.bpc.2010.04.006

    Article  CAS  Google Scholar 

  35. Svensson FR, Li M, Nordén B, Lincoln P (2008) Luminescent dipyridophenazine-ruthenium probes for liposome membranes. J Phys Chem B 112(35):10969–10975. doi:10.1021/jp803964x

    Article  CAS  Google Scholar 

  36. Svensson FR, Abrahamsson M, Strömberg N, Ewing AG, Lincoln P (2011) Ruthenium(ii) complex enantiomers as cellular probes for diastereomeric interactions in confocal and fluorescence lifetime imaging microscopy. J Phys Chem Lett 2(5):397–401. doi:10.1021/jz101580e

    Article  CAS  Google Scholar 

  37. Shang L, Azadfar N, Stockmar F, Send W, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2011) One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 7(18):2614–2620. doi:10.1002/smll.201100746

    Article  CAS  Google Scholar 

  38. Davey AM, Krise KM, Sheets ED, Heikal AA (2008) Molecular perspective of antigen-mediated mast cell signaling. J Biol Chem 283(11):7117–7127. doi:M708879200, [pii] 10.1074/jbc.M708879200

    Article  CAS  Google Scholar 

  39. Davey AM, Walvick RP, Liu Y, Heikal AA, Sheets ED (2007) Membrane order and molecular dynamics associated with IgE receptor cross-linking in mast cells. Biophys J 92(1):343–355. doi:S0006-3495(07)70832-9, [pii] 10.1529/biophysj.106.088815

    Article  CAS  Google Scholar 

  40. Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    Article  CAS  Google Scholar 

  41. Kapitulnik J, Weil E, Rabinowitz R, Krausz MM (1987) Fetal and adult human liver differ markedly in the fluidity and lipid composition of their microsomal membranes. Hepatology 7(1):55–60. doi:S0270913987000259 [pii]

    Article  CAS  Google Scholar 

  42. Emmerson PJ, Clark MJ, Medzihradsky F, Remmers AE (1999) Membrane microviscosity modulates mu-opioid receptor conformational transitions and agonist efficacy. J Neurochem 73(1):289–300

    Article  CAS  Google Scholar 

  43. Thorin E, Hamilton C, Dominiczak AF, Dominiczak MH, Reid JL (1995) Oxidized-ldl induced changes in membrane physico-chemical properties and [ca2+]i of bovine aortic endothelial cells. Influence of vitamin e. Atherosclerosis 114(2):185–195. doi:002191509405482X [pii]

    Article  CAS  Google Scholar 

  44. Saldanha C, Sargento L, Monteiro J, Perdigao C, Ribeiro C, Martins-Silva J (1999) Impairment of the erythrocyte membrane fluidity in survivors of acute myocardial infarction. A prospective study. Clin Hemorheol Microcirc 20(2):111–116

    CAS  Google Scholar 

  45. Maksimov GV, Luneva OG, Maksimova NV, Matettuchi E, Medvedev EA, Pashchenko VZ, Rubin AB (2005) Role of viscosity and permeability of the erythrocyte plasma membrane in changes in oxygen-binding properties of hemoglobin during diabetes mellitus. Bull Exp Biol Med 140(5):510–513

    Article  CAS  Google Scholar 

  46. Yang X, Sheng W, He Y, Cui J, Haidekker MA, Sun GY, Lee JC (2010) Secretory phospholipase a2 type iii enhances alpha-secretase-dependent amyloid precursor protein processing through alterations in membrane fluidity. J Lipid Res 51(5):957–966. doi:jlr.M002287, [pii] 10.1194/jlr.M002287

    Article  CAS  Google Scholar 

  47. Baumann M (2003) Cell ageing for 1 day alters both membrane elasticity and viscosity. Pflugers Arch 445(5):551–555. doi:10.1007/s00424-002-0979-6

    CAS  Google Scholar 

  48. Haidekker MA, Theodorakis EA (2010) Environment-sensitive behavior of fluorescent molecular rotors. J Biol Eng 4:11. doi:1754-1611-4-11, [pii] 10.1186/1754-1611-4-11

    Article  Google Scholar 

  49. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2005) Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg Chem 33(6):415–425. doi:S0045-2068(05)00076-3, [pii] 10.1016/j.bioorg.2005.07.005

    Article  CAS  Google Scholar 

  50. Haidekker MA, Theodorakis EA (2007) Molecular rotors–fluorescent biosensors for viscosity and flow. Org Biomol Chem 5(11):1669–1678. doi:10.1039/b618415d

    Article  CAS  Google Scholar 

  51. Zhou F, Shao J, Yang Y, Zhao J, Guo H, Li X, Ji S, Zhang Z (2011) Molecular rotors as fluorescent viscosity sensors: molecular design, polarity sensitivity, dipole moments changes, screening solvents, and deactivation channel of the excited states. Eur J Organ Chem 2011(25):4773–4787. doi:10.1002/ejoc.201100606

    CAS  Google Scholar 

  52. Haidekker MA, L’Heureux N, Frangos JA (2000) Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol 278(4):H1401–H1406

    CAS  Google Scholar 

  53. Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73(11):1983–1992. doi:JST.JSTAGE/circj/CJ-09-0583 [pii]

    Article  CAS  Google Scholar 

  54. Haidekker MA, Ling T, Anglo M, Stevens HY, Frangos JA, Theodorakis EA (2001) New fluorescent probes for the measurement of cell membrane viscosity. Chem Biol 8(2):123–131. doi:S1074-5521(00)90061-9 [pii]

    Article  CAS  Google Scholar 

  55. Nipper ME, Majd S, Mayer M, Lee JC, Theodorakis EA, Haidekker MA (2008) Characterization of changes in the viscosity of lipid membranes with the molecular rotor FCVJ. Biochim Biophys Acta 1778(4):1148–1153. doi:S0005-2736(08)00021-7, [pii] 10.1016/j.bbamem.2008.01.005

    Article  CAS  Google Scholar 

  56. Haidekker MA, Brady T, Wen K, Okada C, Stevens HY, Snell JM, Frangos JA, Theodorakis EA (2002) Phospholipid-bound molecular rotors: synthesis and characterization. Bioorg Med Chem 10(11):3627–3636. doi:S0968089602002407 [pii]

    Article  CAS  Google Scholar 

  57. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2006) A ratiometric fluorescent viscosity sensor. J Am Chem Soc 128(2):398–399. doi:10.1021/ja056370a

    Article  Google Scholar 

  58. Nipper ME, Dakanali M, Theodorakis E, Haidekker MA (2011) Detection of liposome membrane viscosity perturbations with ratiometric molecular rotors. Biochimie 93(6):988–994. doi:S0300-9084(11)00058-7, [pii] 10.1016/j.biochi.2011.02.002

    Article  CAS  Google Scholar 

  59. Peng X, Yang Z, Wang J, Fan J, He Y, Song F, Wang B, Sun S, Qu J, Qi J, Yan M (2011) Fluorescence ratiometry and fluorescence lifetime imaging: using a single molecular sensor for dual mode imaging of cellular viscosity. J Am Chem Soc 133(17):6626–6635. doi:10.1021/ja1104014

    Article  CAS  Google Scholar 

  60. Kuimova MK, Botchway SW, Parker AW, Balaz M, Collins HA, Anderson HL, Suhling K, Ogilby PR (2009) Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat Chem 1(1):69–73. doi:nchem.120, [pii] 10.1038/nchem.120

    Article  CAS  Google Scholar 

  61. Kuimova MK, Yahioglu G, Levitt JA, Suhling K (2008) Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J Am Chem Soc 130(21):6672–6673. doi:10.1021/ja800570d

    Article  CAS  Google Scholar 

  62. Baumgart T, Hunt G, Farkas ER, Webb WW, Feigenson GW (2007) Fluorescence probe partitioning between lo/ld phases in lipid membranes. Biochim Biophys Acta 1768(9):2182–2194

    Article  CAS  Google Scholar 

  63. Sengupta P, Hammond A, Holowka D, Baird B (2008) Structural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles. Biochim Biophys Acta 1778(1):20–32

    Article  CAS  Google Scholar 

  64. Konig I, Schwarz JP, Anderson KI (2008) Fluorescence lifetime imaging: association of cortical actin with a pip3-rich membrane compartment. Eur J Cell Biol 87(8–9):735–741. doi:S0171-9335(08)00030-7, [pii] 10.1016/j.ejcb.2008.02.002

    Article  CAS  Google Scholar 

  65. Scolari S, Engel S, Krebs N, Plazzo AP, De Almeida RF, Prieto M, Veit M, Herrmann A (2009) Lateral distribution of the transmembrane domain of influenza virus hemagglutinin revealed by time-resolved fluorescence imaging. J Biol Chem 284(23):15708–15716. doi:M900437200, [pii] 10.1074/jbc.M900437200

    Article  CAS  Google Scholar 

  66. Engel S, Scolari S, Thaa B, Krebs N, Korte T, Herrmann A, Veit M (2010) Flim-fret and frap reveal association of influenza virus haemagglutinin with membrane rafts. Biochem J 425(3):567–573. doi:10.1042/bj20091388

    Article  CAS  Google Scholar 

  67. Thaa B, Herrmann A, Veit M (2010) Intrinsic cytoskeleton-dependent clustering of influenza virus m2 protein with hemagglutinin assessed by flim-fret. J Virol 84(23):12445–12449. doi:10.1128/jvi.01322-10

    Article  CAS  Google Scholar 

  68. Valkonen M, Kalkman ER, Saloheimo M, Penttila M, Read ND, Duncan RR (2007) Spatially segregated snare protein interactions in living fungal cells. J Biol Chem 282(31):22775–22785

    Article  CAS  Google Scholar 

  69. Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F (2007) Fret imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc Natl Acad Sci U S A 104(30):12359–12364. doi:0701180104, [pii] 10.1073/pnas.0701180104

    Article  CAS  Google Scholar 

  70. Willemse J, Borst JW, de Waal E, Bisseling T, van Wezel GP (2011) Positive control of cell division: Ftsz is recruited by ssgb during sporulation of streptomyces. Genes Dev 25(1):89–99. doi:10.1101/gad.600211

    Article  CAS  Google Scholar 

  71. Osterrieder A, Carvalho CM, Latijnhouwers M, Johansen JN, Stubbs C, Botchway S, Hawes C (2009) Fluorescence lifetime imaging of interactions between golgi tethering factors and small gtpases in plants. Traffic 10(8):1034–1046. doi:10.1111/j.1600-0854.2009.00930.x

    Article  CAS  Google Scholar 

  72. Herl L, Thomas AV, Lill CM, Banks M, Deng A, Jones PB, Spoelgen R, Hyman BT, Berezovska O (2009) Mutations in amyloid precursor protein affect its interactions with presenilin/gamma-secretase. Mol Cell Neurosci 41(2):166–174. doi:S1044-7431(09)00044-X, [pii] 10.1016/j.mcn.2009.02.008

    Article  CAS  Google Scholar 

  73. Uemura K, Farner K, Nasser-Ghodsi N, Jones P, Berezovska O (2011) Reciprocal relationship between app positioning relative to the membrane and ps1 conformation. Mol Neurodegener 6(1):15

    Article  CAS  Google Scholar 

  74. Martin-Villar E, Fernandez-Munoz B, Parsons M, Yurrita MM, Megias D, Perez-Gomez E, Jones GE, Quintanilla M (2010) Podoplanin associates with cd44 to promote directional cell migration. Mol Biol Cell 21(24):4387–4399. doi:E10-06-9, [pii] 10.1091/mbc.E10-06-9

    Article  CAS  Google Scholar 

  75. Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, Neel BG, Bastiaens PI, Lackmann M (2010) Ptp1b regulates eph receptor function and trafficking. J Cell Biol 191(6):1189–1203. doi:jcb.201005035, [pii] 10.1083/jcb.201005035

    Article  CAS  Google Scholar 

  76. Bu W, Lim KB, Yu YH, Chou AM, Sudhaharan T, Ahmed S (2010) Cdc42 interaction with n-wasp and toca-1 regulates membrane tubulation, vesicle formation and vesicle motility: implications for endocytosis. PLoS One 5(8):e12153. doi:e12153, [pii] 10.1371/journal.pone.0012153

    Article  Google Scholar 

  77. Dumas F, Byrne RD, Vincent B, Hobday TM, Poccia DL, Larijani B (2010) Spatial regulation of membrane fusion controlled by modification of phosphoinositides. PLoS One 5(8):e12208. doi:10.1371/journal.pone.0012208

    Article  Google Scholar 

  78. Fjorback AW, Pla P, Muller HK, Wiborg O, Saudou F, Nyengaard JR (2009) Serotonin transporter oligomerization documented in rn46a cells and neurons by sensitized acceptor emission fret and fluorescence lifetime imaging microscopy. Biochem Biophys Res Commun 380(4):724–728. doi:S0006-291X(09)00108-9, [pii] 10.1016/j.bbrc.2009.01.128

    Article  CAS  Google Scholar 

  79. Nyborg AC, Herl L, Berezovska O, Thomas AV, Ladd TB, Jansen K, Hyman BT, Golde TE (2006) Signal peptide peptidase (spp) dimer formation as assessed by fluorescence lifetime imaging microscopy (flim) in intact cells. Mol Neurodegener 1:16. doi:1750-1326-1-16, [pii] 10.1186/1750-1326-1-16

    Article  Google Scholar 

  80. Grecco HE, Roda-Navarro P, Girod A, Hou J, Frahm T, Truxius DC, Pepperkok R, Squire A, Bastiaens PI (2010) In situ analysis of tyrosine phosphorylation networks by flim on cell arrays. Nat Methods 7(6):467–472. doi:nmeth.1458, [pii] 10.1038/nmeth.1458

    Article  CAS  Google Scholar 

  81. Trinel D, Leray A, Spriet C, Usson Y, Héliot L (2011) Upgrading time domain flim using an adaptive Monte Carlo data inflation algorithm. Cytometry A 79A(7):528–537. doi:10.1002/cyto.a.21054

    Article  Google Scholar 

  82. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94(2):L14–L16

    Article  CAS  Google Scholar 

  83. Leray A, Spriet C, Trinel D, Blossey R, Usson Y, Heliot L (2011) Quantitative comparison of polar approach versus fitting method in time domain flim image analysis. Cytometry A 79(2):149–158. doi:10.1002/cyto.a.20996

    CAS  Google Scholar 

  84. Jameson DM, Gratton E, Hall RD (1984) The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl Spectrosc Rev 20(1):55–106. doi:10.1080/05704928408081716

    Article  CAS  Google Scholar 

  85. Clayton AH, Hanley QS, Verveer PJ (2004) Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J Microsc 213(Pt 1):1–5. doi:1265 [pii]

    Article  CAS  Google Scholar 

  86. Redford GI, Clegg RM (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15(5):805–815. doi:10.1007/s10895-005-2990-8

    Article  CAS  Google Scholar 

  87. Chang CW, Mycek MA (2010) Enhancing precision in time-domain fluorescence lifetime imaging. J Biomed Opt 15(5):056013. doi:10.1117/1.3494566

    Article  Google Scholar 

  88. Slepkov AD, Ridsdale A, Wan HN, Wang MH, Pegoraro AF, Moffatt DJ, Pezacki JP, Kao FJ, Stolow A (2011) Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-stokes Raman scattering microscopy. J Biomed Opt 16(2):021103. doi:10.1117/1.3490641

    Article  Google Scholar 

  89. Won YJ, Han WT, Kim DY (2011) Precision and accuracy of the analog mean-delay method for high-speed fluorescence lifetime measurement. J Opt Soc Am A Opt Image Sci Vis 28(10):2026–2032. doi:10.1364/JOSAA.28.002026, 222391 [pii]

    Article  Google Scholar 

  90. Moon S, Won Y, Kim DY (2009) Analog mean-delay method for high-speed fluorescence lifetime measurement. Opt Express 17(4):2834–2849. doi:176573 [pii]

    Article  CAS  Google Scholar 

  91. Won Y, Moon S, Yang W, Kim D, Han WT, Kim DY (2011) High-speed confocal fluorescence lifetime imaging microscopy (flim) with the analog mean delay (amd) method. Opt Express 19(4):3396–3405. doi:10.1364/OE.19.003396, 209963 [pii]

    Article  CAS  Google Scholar 

  92. Hinde E, Digman MA, Welch C, Hahn KM, Gratton E (2011) Biosensor Forster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy. Microsc Res Tech. doi:10.1002/jemt.21054

  93. Elder AD, Kaminski CF, Frank JH (2009) Phi2flim: a technique for alias-free frequency domain fluorescence lifetime imaging. Opt Express 17(25):23181–23203. doi:10.1364/OE.17.023181, 192319 [pii]

    Article  CAS  Google Scholar 

  94. Schlachter S, Elder AD, Esposito A, Kaminski GS, Frank JH, van Geest LK, Kaminski CF (2009) Mhflim: resolution of heterogeneous fluorescence decays in widefield lifetime microscopy. Opt Express 17(3):1557–1570. doi:176133 [pii]

    Article  CAS  Google Scholar 

  95. Chen YC, Clegg RM (2011) Spectral resolution in conjunction with polar plots improves the accuracy and reliability of flim measurements and estimates of fret efficiency. J Microsc 244(1):21–37. doi:10.1111/j.1365-2818.2011.03488.x

    Article  CAS  Google Scholar 

  96. Greger K, Neetz MJ, Reynaud EG, Stelzer EH (2011) Three-dimensional fluorescence lifetime imaging with a single plane illumination microscope provides an improved signal to noise ratio. Opt Express 19(21):20743–20750. doi:10.1364/OE.19.020743, 222944 [pii]

    Article  CAS  Google Scholar 

  97. McGinty J, Stuckey DW, Soloviev VY, Laine R, Wylezinska-Arridge M, Wells DJ, Arridge SR, French PM, Hajnal JV, Sardini A (2011) In vivo fluorescence lifetime tomography of a fret probe expressed in mouse. Biomed Opt Express 2(7):1907–1917. doi:10.1364/BOE.2.001907, 146182 [pii]

    Article  CAS  Google Scholar 

  98. McGinty J, Taylor HB, Chen L, Bugeon L, Lamb JR, Dallman MJ, French PM (2011) In vivo fluorescence lifetime optical projection tomography. Biomed Opt Express 2(5):1340–1350. doi:10.1364/BOE.2.001340, 14367 [pii]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin T. Stöckl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stöckl, M.T., Bizzarri, R., Subramaniam, V. (2012). Studying Membrane Properties Using Fluorescence Lifetime Imaging Microscopy (FLIM). In: Mély, Y., Duportail, G. (eds) Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_48

Download citation

Publish with us

Policies and ethics