Skip to main content

Chemoprotection Against Cancer by Isothiocyanates: A Focus on the Animal Models and the Protective Mechanisms

  • Chapter
  • First Online:
Natural Products in Cancer Prevention and Therapy

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 329))

Abstract

The isothiocyanates are among the most extensively studied chemoprotective agents. They are derived from glucosinolate precursors by the action of β-thioglucosidase enzymes (myrosinases). The Cruciferae family represents a rich source of glucosinolates. Notably, nearly all of the biological activities of glucosinolates, in both plants and animals, are attributable to their cognate hydrolytic products, and the isothiocyanates are prominent examples. In contrast to their relatively inert glucosinolate precursors, the isothiocyanates are endowed with high chemical reactivity, especially with sulfur-centered nucleophiles, such as protein cysteine residues. There are numerous examples of the chemoprotective effects of isothiocyanates in a number of animal models of experimental carcinogenesis at various organ sites and against carcinogens of several different types. It is becoming increasingly clear that this efficient protection is due to multiple mechanisms, including induction of cytoprotective proteins through the Keap1/Nrf2/ARE pathway, inhibition of proinflammatory responses through the NFκB pathway, induction of cell cycle arrest and apoptosis, effects on heat shock proteins, and inhibition of angiogenesis and metastasis. Because the isothiocyanates affect the function of transcription factors and ultimately the expression of networks of genes, such protection is comprehensive and long-lasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  Google Scholar 

  2. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  Google Scholar 

  3. Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci 15:283–290

    Article  CAS  Google Scholar 

  4. McCully ME, Miller C, Sprague SJ et al (2008) Distribution of glucosinolates and sulphur-rich cells in roots of field-grown canola (Brassica napus). New Phytol 180:193–205

    Article  CAS  Google Scholar 

  5. Koroleva OA, Davies A, Deeken R et al (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:599–608

    Article  CAS  Google Scholar 

  6. Koroleva OA, Gibson TM, Cramer R et al (2010) Glucosinolate-accumulating S-cells in Arabidopsis leaves and flower stalks undergo programmed cell death at early stages of differentiation. Plant J 64:456–469

    Article  CAS  Google Scholar 

  7. Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5:300–307

    Article  CAS  Google Scholar 

  8. Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131:3027S–3033S

    CAS  Google Scholar 

  9. Ratzka A, Vogel H, Kliebenstein DJ et al (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci USA 99:11223–11228

    Article  CAS  Google Scholar 

  10. Mi L, Di Pasqua AJ, Chung FL (2011) Proteins as binding targets of isothiocyanates in cancer prevention. Carcinogenesis 32:1405–1413

    Article  CAS  Google Scholar 

  11. Zhang Y (2012) The molecular basis that unifies the metabolism, cellular uptake and chemopreventive activities of dietary isothiocyanates. Carcinogenesis 33:2–9

    Article  CAS  Google Scholar 

  12. Winayanuwattikun P, Ketterman AJ (2005) An electron-sharing network involved in the catalytic mechanism is functionally conserved in different glutathione transferase classes. J Biol Chem 280:31776–31782

    Article  CAS  Google Scholar 

  13. Sidransky H, Ito N, Verney E (1966) Influence of alpha-naphthyl-isothiocyanate on liver tumorigenesis in rats ingesting ethionine and N-2-fluorenylacetamide. J Natl Cancer Inst 37:677–686

    CAS  Google Scholar 

  14. Lacasagne A, Hurst L, Xuong MD (1970) Inhibition by 2-naphtylisothiocyanates of hepatocarcinogenesis induced by p-dimethylaminoazobenzene (DAB) in rats. C R Seances Soc Biol Fil 164:230–233

    Google Scholar 

  15. Wattenberg LW (1977) Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J Natl Cancer Inst 58:395–398

    CAS  Google Scholar 

  16. Wattenberg LW (1981) Inhibition of carcinogen-induced neoplasia by sodium cyanate, tert-butyl isocyanate, and benzyl isothiocyanate administered subsequent to carcinogen exposure. Cancer Res 41:2991–2994

    CAS  Google Scholar 

  17. Wattenberg LW (1987) Inhibitory effects of benzyl isothiocyanate administered shortly before diethylnitrosamine or benzo[a]pyrene on pulmonary and forestomach neoplasia in A/J mice. Carcinogenesis 8:1971–1973

    Article  CAS  Google Scholar 

  18. Wattenberg LW (1990) Inhibition of carcinogenesis by naturally-occurring and synthetic compounds. Basic Life Sci 52:155–166

    CAS  Google Scholar 

  19. Wattenberg LW (1990) Inhibition of carcinogenesis by minor anutrient constituents of the diet. Proc Nutr Soc 49:173–183

    Article  CAS  Google Scholar 

  20. Morse MA, Wang CX, Stoner GD et al (1989) Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced DNA adduct formation and tumorigenicity in the lung of F344 rats by dietary phenethyl isothiocyanate. Cancer Res 49:549–553

    CAS  Google Scholar 

  21. Morse MA, Amin SG, Hecht SS et al (1989) Effects of aromatic isothiocyanates on tumorigenicity, O 6-methylguanine formation, and metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mouse lung. Cancer Res 49:2894–2897

    CAS  Google Scholar 

  22. Morse MA, Eklind KI, Amin SG et al (1989) Effects of alkyl chain length on the inhibition of NNK-induced lung neoplasia in A/J mice by arylalkyl isothiocyanates. Carcinogenesis 10:1757–1759

    Article  CAS  Google Scholar 

  23. Morse MA, Reinhardt JC, Amin SG et al (1990) Effect of dietary aromatic isothiocyanates fed subsequent to the administration of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone on lung tumorigenicity in mice. Cancer Lett 49:225–230

    Article  CAS  Google Scholar 

  24. Morse MA, Eklind KI, Hecht SS et al (1991) Structure-activity relationships for inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone lung tumorigenesis by arylalkyl isothiocyanates in A/J mice. Cancer Res 51:1846–1850

    CAS  Google Scholar 

  25. Morse MA, Eklind KI, Hecht SS et al (1991) Inhibition of tobacco-specific nitrosamine 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) tumorigenesis with aromatic isothiocyanates. IARC Sci Publ 105:529–534

    CAS  Google Scholar 

  26. Morse MA, Eklind KI, Amin SG et al (1992) Effect of frequency of isothiocyanate administration on inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced pulmonary adenoma formation in A/J mice. Cancer Lett 62:77–81

    Article  CAS  Google Scholar 

  27. Hecht SS, Morse MA, Eklind KI et al (1991) A/J mouse lung tumorigenesis by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its inhibition by arylalkyl isothiocyanates. Exp Lung Res 17:501–511

    Article  CAS  Google Scholar 

  28. Chung FL, Morse MA, Eklind KI (1992) New potential chemopreventive agents for lung carcinogenesis of tobacco-specific nitrosamine. Cancer Res 52:2719s–2722s

    CAS  Google Scholar 

  29. Dingley KH, Ubick EA, Chiarappa-Zucca ML et al (2003) Effect of dietary constituents with chemopreventive potential on adduct formation of a low dose of the heterocyclic amines PhIP and IQ and phase II hepatic enzymes. Nutr Cancer 46:212–221

    Article  CAS  Google Scholar 

  30. Stoner GD, Morrissey DT, Heur YH et al (1991) Inhibitory effects of phenethyl isothiocyanate on N-nitrosobenzylmethylamine carcinogenesis in the rat esophagus. Cancer Res 51:2063–2068

    CAS  Google Scholar 

  31. Morse MA, Zu H, Galati AJ et al (1993) Dose-related inhibition by dietary phenethyl isothiocyanate of esophageal tumorigenesis and DNA methylation induced by N-nitrosomethylbenzylamine in rats. Cancer Lett 72:103–110

    Article  CAS  Google Scholar 

  32. Wilkinson JT, Morse MA, Kresty LA et al (1995) Effect of alkyl chain length on inhibition of N-nitrosomethylbenzylamine-induced esophageal tumorigenesis and DNA methylation by isothiocyanates. Carcinogenesis 16:1011–1015

    Article  CAS  Google Scholar 

  33. Siglin JC, Barch DH, Stoner GD (1995) Effects of dietary phenethyl isothiocyanate, ellagic acid, sulindac and calcium on the induction and progression of N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. Carcinogenesis 16:1101–1106

    Article  CAS  Google Scholar 

  34. Stoner GD, Adams C, Kresty LA et al (1998) Inhibition of N′-nitrosonornicotine-induced esophageal tumorigenesis by 3-phenylpropyl isothiocyanate. Carcinogenesis 19:2139–2143

    Article  CAS  Google Scholar 

  35. Zhang Y, Kensler TW, Cho CG et al (1994) Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci USA 91:3147–3150

    Article  CAS  Google Scholar 

  36. Fahey JW, Haristoy X, Dolan PM et al (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci USA 99:7610–7615

    Article  CAS  Google Scholar 

  37. Chung FL, Conaway CC, Rao CV et al (2000) Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 21:2287–2291

    Article  CAS  Google Scholar 

  38. Conaway CC, Wang CX, Pittman B et al (2005) Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res 65:8548–8557

    Article  CAS  Google Scholar 

  39. Kuroiwa Y, Nishikawa A, Kitamura Y et al (2006) Protective effects of benzyl isothiocyanate and sulforaphane but not resveratrol against initiation of pancreatic carcinogenesis in hamsters. Cancer Lett 241:275–280

    Article  CAS  Google Scholar 

  40. Myzak MC, Dashwood WM, Orner GA et al (2006) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 20:506–508

    CAS  Google Scholar 

  41. Hu R, Khor TO, Shen G et al (2006) Cancer chemoprevention of intestinal polyposis in ApcMin/+ mice by sulforaphane, a natural product derived from cruciferous vegetable. Carcinogenesis 27:2038–2046

    Article  CAS  Google Scholar 

  42. Khor TO, Cheung WK, Prawan A et al (2008) Chemoprevention of familial adenomatous polyposis in Apc(Min/+) mice by phenethyl isothiocyanate (PEITC). Mol Carcinog 47:321–325

    Article  CAS  Google Scholar 

  43. Singh SV, Warin R, Xiao D et al (2009) Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells. Cancer Res 69:2117–2125

    Article  CAS  Google Scholar 

  44. Keum YS, Khor TO, Lin W et al (2009) Pharmacokinetics and pharmacodynamics of broccoli sprouts on the suppression of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: implication of induction of Nrf2, HO-1 and apoptosis and the suppression of Akt-dependent kinase pathway. Pharm Res 26:2324–2331

    Article  CAS  Google Scholar 

  45. Ding Y, Paonessa JD, Randall KL et al (2010) Sulforaphane inhibits 4-aminobiphenyl-induced DNA damage in bladder cells and tissues. Carcinogenesis 31:1999–2003

    Article  CAS  Google Scholar 

  46. Munday R, Mhawech-Fauceglia P, Munday CM et al (2008) Inhibition of urinary bladder carcinogenesis by broccoli sprouts. Cancer Res 68:1593–1600

    Article  CAS  Google Scholar 

  47. Bhattacharya A, Li Y, Geng F et al (2012) The principal urinary metabolite of allyl isothiocyanate, N-acetyl-S-(N-allylthiocarbamoyl)cysteine, inhibits the growth and muscle invasion of bladder cancer. Carcinogenesis 33:394–398

    Article  CAS  Google Scholar 

  48. Gills JJ, Jeffery EH, Matusheski NV et al (2006) Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett 236:72–79

    Article  CAS  Google Scholar 

  49. Xu C, Huang MT, Shen G et al (2006) Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res 66:8293–8296

    Article  CAS  Google Scholar 

  50. Dinkova-Kostova AT, Jenkins SN, Fahey JW et al (2006) Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 240:243–252

    Article  CAS  Google Scholar 

  51. Dinkova-Kostova AT, Fahey JW, Benedict AL et al (2010) Dietary glucoraphanin-rich broccoli sprout extracts protect against UV radiation-induced skin carcinogenesis in SKH-1 hairless mice. Photochem Photobiol Sci 9:597–600

    Article  CAS  Google Scholar 

  52. Srivastava SK, Xiao D, Lew KL et al (2003) Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo. Carcinogenesis 24:1665–1670

    Article  CAS  Google Scholar 

  53. Khor TO, Keum YS, Lin W et al (2006) Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res 66:613–621

    Article  CAS  Google Scholar 

  54. Chiao JW, Wu H, Ramaswamy G et al (2004) Ingestion of an isothiocyanate metabolite from cruciferous vegetables inhibits growth of human prostate cancer cell xenografts by apoptosis and cell cycle arrest. Carcinogenesis 25:1403–1408

    Article  CAS  Google Scholar 

  55. Myzak MC, Tong P, Dashwood WM et al (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med (Maywood) 232:227–234

    CAS  Google Scholar 

  56. Hudson TS, Perkins SN, Hursting SD et al (2012) Inhibition of androgen-responsive LNCaP prostate cancer cell tumor xenograft growth by dietary phenethyl isothiocyanate correlates with decreased angiogenesis and inhibition of cell attachment. Int J Oncol 40:1113–1121

    CAS  Google Scholar 

  57. Kanematsu S, Yoshizawa K, Uehara N et al (2011) Sulforaphane inhibits the growth of KPL-1 human breast cancer cells in vitro and suppresses the growth and metastasis of orthotopically transplanted KPL-1 cells in female athymic mice. Oncol Rep 26:603–608

    CAS  Google Scholar 

  58. Li Y, Zhang T, Schwartz SJ et al (2011) Sulforaphane potentiates the efficacy of 17-allylamino 17-demethoxygeldanamycin against pancreatic cancer through enhanced abrogation of Hsp90 chaperone function. Nutr Cancer 63:1151–1159

    Article  CAS  Google Scholar 

  59. Chen MJ, Tang WY, Hsu CW et al (2012) Apoptosis induction in primary human colorectal cancer cell lines and retarded tumor growth in SCID mice by sulforaphane. Evid Based Complement Alternat Med 2012:415231

    Google Scholar 

  60. Qazi A, Pal J, Maitah M et al (2010) Anticancer activity of a broccoli derivative, sulforaphane, in Barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Transl Oncol 3:389–399

    Google Scholar 

  61. Benson AM, Batzinger RP, Ou SY et al (1978) Elevation of hepatic glutathione S-transferase activities and protection against mutagenic metabolites of benzo(a)pyrene by dietary antioxidants. Cancer Res 38:4486–4495

    CAS  Google Scholar 

  62. Benson AM, Cha YN, Bueding E et al (1979) Elevation of extrahepatic glutathione S-transferase and epoxide hydratase activities by 2(3)-tert-butyl-4-hydroxyanisole. Cancer Res 39:2971–2977

    CAS  Google Scholar 

  63. Benson AM, Hunkeler MJ, Talalay P (1980) Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci USA 77:5216–5220

    Article  CAS  Google Scholar 

  64. Benson AM, Barretto PB (1985) Effects of disulfiram, diethyldithiocarbamate, bisethylxanthogen, and benzyl isothiocyanate on glutathione transferase activities in mouse organs. Cancer Res 45:4219–4223

    CAS  Google Scholar 

  65. Benson AM, Barretto PB, Stanley JS (1986) Induction of DT-diaphorase by anticarcinogenic sulfur compounds in mice. J Natl Cancer Inst 76:467–473

    CAS  Google Scholar 

  66. Talalay P, Batzinger RP, Benson AM et al (1978) Biochemical studies on the mechanisms by which dietary antioxidants suppress mutagenic activity. Adv Enzyme Regul 17:23–36

    Article  CAS  Google Scholar 

  67. Hayes JD, McMahon M (2001) Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Lett 174:103–113

    Article  CAS  Google Scholar 

  68. Kwak MK, Wakabayashi N, Kensler TW (2004) Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers. Mutat Res 555:133–148

    Article  CAS  Google Scholar 

  69. Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557

    Article  CAS  Google Scholar 

  70. Nguyen T, Yang CS, Pickett CB (2004) The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med 37:433–441

    Article  CAS  Google Scholar 

  71. Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7:385–394

    Article  CAS  Google Scholar 

  72. Kobayashi M, Yamamoto M (2006) Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 46:113–140

    Article  CAS  Google Scholar 

  73. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789

    Article  CAS  Google Scholar 

  74. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  Google Scholar 

  75. Eggler AL, Gay KA, Mesecar AD (2008) Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2. Mol Nutr Food Res 52:S84–S94

    Google Scholar 

  76. Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52:S128–S138

    Google Scholar 

  77. Osburn WO, Kensler TW (2008) Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 659:31–39

    Article  CAS  Google Scholar 

  78. Surh YJ, Kundu JK, Na HK (2008) Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 74:1526–1539

    Article  CAS  Google Scholar 

  79. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295

    Article  CAS  Google Scholar 

  80. Li W, Kong AN (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 48:91–104

    Article  CAS  Google Scholar 

  81. Hayes JD, McMahon M (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34:176–188

    Article  CAS  Google Scholar 

  82. Hayes JD, McMahon M, Chowdhry S et al (2010) Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 13:1713–1748

    Article  CAS  Google Scholar 

  83. Kwak MK, Kensler TW (2010) Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol 244:66–76

    Article  CAS  Google Scholar 

  84. Villeneuve NF, Lau A, Zhang DD (2010) Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal 13:1699–1712

    Article  CAS  Google Scholar 

  85. Slocum SL, Kensler TW (2011) Nrf2: control of sensitivity to carcinogens. Arch Toxicol 85:273–284

    Article  CAS  Google Scholar 

  86. Dinkova-Kostova AT, Holtzclaw WD, Cole RN et al (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 99:11908–11913

    Article  CAS  Google Scholar 

  87. McMahon M, Lamont DJ, Beattie KA et al (2010) Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci USA 107:18838–18843

    Article  CAS  Google Scholar 

  88. Hu C, Eggler AL, Mesecar AD et al (2011) Modification of Keap1 cysteine residues by sulforaphane. Chem Res Toxicol 24:515–521

    Article  CAS  Google Scholar 

  89. Prochaska HJ, Santamaria AB (1988) Direct measurement of NAD(P)H:quinone reductase from cells cultured in microtiter wells: a screening assay for anticarcinogenic enzyme inducers. Anal Biochem 169:328–336

    Article  CAS  Google Scholar 

  90. Prochaska HJ, Santamaria AB, Talalay P (1992) Rapid detection of inducers of enzymes that protect against carcinogens. Proc Natl Acad Sci USA 89:2394–2398

    Article  CAS  Google Scholar 

  91. Fahey JW, Dinkova-Kostova AT, Stephenson KK et al (2004) The “Prochaska” microtiter plate bioassay for inducers of NQO1. Methods Enzymol 382:243–258

    Article  CAS  Google Scholar 

  92. Zhang Y, Talalay P, Cho CG et al (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403

    Article  CAS  Google Scholar 

  93. Zhang Y, Tang L (2007) Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin 28:1343–1354

    Article  CAS  Google Scholar 

  94. Matusheski NV, Jeffery EH (2001) Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J Agric Food Chem 49:5743–5749

    Article  CAS  Google Scholar 

  95. Munday R, Munday CM (2004) Induction of phase II detoxification enzymes in rats by plant-derived isothiocyanates: comparison of allyl isothiocyanate with sulforaphane and related compounds. J Agric Food Chem 52:1867–1871

    Article  CAS  Google Scholar 

  96. Zhang Y, Munday R, Jobson HE et al (2006) Induction of GST and NQO1 in cultured bladder cells and in the urinary bladders of rats by an extract of broccoli (Brassica oleracea italica) sprouts. J Agric Food Chem 54:9370–9376

    Article  CAS  Google Scholar 

  97. McMahon M, Itoh K, Yamamoto M et al (2001) The Cap‘n’Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res 61:3299–3307

    CAS  Google Scholar 

  98. Seo KW, Kim JG, Park M et al (2000) Effects of phenethylisothiocyanate on the expression of glutathione S-transferases and hepatotoxicity induced by acetaminophen. Xenobiotica 30:535–545

    Article  CAS  Google Scholar 

  99. Munday R, Zhang Y, Munday CM et al (2008) Structure–activity relationships and organ specificity in the induction of GST and NQO1 by alkyl–aryl isothiocyanates. Pharm Res 25:2164–2170

    Article  CAS  Google Scholar 

  100. Munday R, Munday CM (2002) Selective induction of phase II enzymes in the urinary bladder of rats by allyl isothiocyanate, a compound derived from Brassica vegetables. Nutr Cancer 44:52–59

    Article  CAS  Google Scholar 

  101. Thimmulappa RK, Mai KH, Srisuma S et al (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62:5196–5203

    CAS  Google Scholar 

  102. Hu R, Xu C, Shen G et al (2006) Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (−/−) mice. Cancer Lett 243:170–192

    Article  CAS  Google Scholar 

  103. Reen RK, Dombkowski AA, Kresty LA et al (2007) Effects of phenylethyl isothiocyanate on early molecular events in N-nitrosomethylbenzylamine-induced cytotoxicity in rat esophagus. Cancer Res 67:6484–6492

    Article  CAS  Google Scholar 

  104. Stoner GD, Dombkowski AA, Reen RK et al (2008) Carcinogen-altered genes in rat esophagus positively modulated to normal levels of expression by both black raspberries and phenylethyl isothiocyanate. Cancer Res 68:6460–6467

    Article  CAS  Google Scholar 

  105. Traka M, Gasper AV, Melchini A et al (2008) Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate. PLoS One 3:e2568

    Article  Google Scholar 

  106. Dinkova-Kostova AT, Fahey JW, Wade KL et al (2007) Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts. Cancer Epidemiol Biomarkers Prev 16:847–851

    Article  CAS  Google Scholar 

  107. Heiss E, Herhaus C, Klimo K et al (2001) NFκB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276:32008–32015

    Article  CAS  Google Scholar 

  108. Heiss E, Gerhäuser C (2005) Time-dependent modulation of thioredoxin reductase activity might contribute to sulforaphane-mediated inhibition of NFκB binding to DNA. Antioxid Redox Signal 7:1601–1611

    Article  CAS  Google Scholar 

  109. Woo KJ, Kwon TK (2007) Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter. Int Immunopharmacol 7:1776–1783

    Article  CAS  Google Scholar 

  110. Lin W, Wu RT, Wu T (2008) Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem Pharmacol 76:967–973

    Article  CAS  Google Scholar 

  111. Liu H, Dinkova-Kostova AT, Talalay P (2008) Coordinate regulation of enzyme markers for inflammation and for protection against oxidants and electrophiles. Proc Natl Acad Sci USA 105:15926–15931

    Article  CAS  Google Scholar 

  112. Prawan A, Saw CL, Khor TO et al (2009) Anti-NF-κB and anti-inflammatory activities of synthetic isothiocyanates: effect of chemical structures and cellular signaling. Chem Biol Interact 179:202–211

    Article  CAS  Google Scholar 

  113. Cheung KL, Khor TO, Kong AN (2009) Synergistic effect of combination of phenethyl isothiocyanate and sulforaphane or curcumin and sulforaphane in the inhibition of inflammation. Pharm Res 26:224–231

    Article  CAS  Google Scholar 

  114. Wu L, Noyan Ashraf MH, Facci M et al (2004) Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc Natl Acad Sci USA 101:7094–7099

    Article  CAS  Google Scholar 

  115. Xu C, Shen G, Chen C et al (2005) Suppression of NF-κB and NF-κB-regulated gene expression by sulforaphane and PEITC through IκBα, IKK pathway in human prostate cancer PC-3 cells. Oncogene 24:4486–4495

    Article  CAS  Google Scholar 

  116. Kallifatidis G, Rausch V, Baumann B et al (2009) Sulforaphane targets pancreatic tumour-initiating cells by NF-B-induced antiapoptotic signalling. Gut 58:949–963

    Article  CAS  Google Scholar 

  117. Moon DO, Kim MO, Kang SH et al (2009) Sulforaphane suppresses TNF-α-mediated activation of NF-κB and induces apoptosis through activation of reactive oxygen species-dependent caspase-3. Cancer Lett 274:132–142

    Article  CAS  Google Scholar 

  118. Song MY, Kim EK, Moon WS et al (2009) Sulforaphane protects against cytokine- and streptozotocin-induced beta-cell damage by suppressing the NF-κB pathway. Toxicol Appl Pharmacol 235:57–67

    Article  CAS  Google Scholar 

  119. Shan Y, Wu K, Wang W et al (2009) Sulforaphane down-regulates COX-2 expression by activating p38 and inhibiting NF-κB-DNA-binding activity in human bladder T24 cells. Int J Oncol 34:1129–1134

    CAS  Google Scholar 

  120. Brandenburg LO, Kipp M, Lucius R et al (2010) Sulforaphane suppresses LPS-induced inflammation in primary rat microglia. Inflamm Res 59:443–450

    Article  CAS  Google Scholar 

  121. Kivelä AM, Mäkinen PI, Jyrkkänen HK et al (2010) Sulforaphane inhibits endothelial lipase expression through NF-κB in endothelial cells. Atherosclerosis 213:122–128

    Article  CAS  Google Scholar 

  122. Jeong SI, Choi BM, Jang SI (2010) Sulforaphane suppresses TARC/CCL17 and MDC/CCL22 expression through heme oxygenase-1 and NF-κB in human keratinocytes. Arch Pharm Res 33:1867–1876

    Article  CAS  Google Scholar 

  123. Negi G, Kumar A, Sharma SS (2011) Nrf2 and NF-κB Modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Curr Neurovasc Res 8:294–304

    Article  CAS  Google Scholar 

  124. Dey M, Ribnicky D, Kurmukov AG et al (2006) In vitro and in vivo anti-inflammatory activity of a seed preparation containing phenethylisothiocyanate. J Pharmacol Exp Ther 317:326–333

    Article  CAS  Google Scholar 

  125. Dey M, Kuhn P, Ribnicky D et al (2010) Dietary phenethylisothiocyanate attenuates bowel inflammation in mice. BMC Chem Biol 10:4

    Article  CAS  Google Scholar 

  126. Talalay P, Fahey JW, Healy ZR et al (2007) Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc Natl Acad Sci USA 104:17500–17505

    Article  CAS  Google Scholar 

  127. Saw CL, Huang MT, Liu Y et al (2011) Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Mol Carcinog 50:479–486

    Article  CAS  Google Scholar 

  128. Shibata A, Nakagawa K, Yamanoi H et al (2010) Sulforaphane suppresses ultraviolet B-induced inflammation in HaCaT keratinocytes and HR-1 hairless mice. J Nutr Biochem 21:702–709

    Article  CAS  Google Scholar 

  129. Khor TO, Hu R, Shen G et al (2006) Pharmacogenomics of cancer chemopreventive isothiocyanate compound sulforaphane in the intestinal polyps of ApcMin/+ mice. Biopharm Drug Dispos 27:407–420

    Article  CAS  Google Scholar 

  130. Brown KK, Blaikie FH, Smith RA et al (2009) Direct modification of the proinflammatory cytokine macrophage migration inhibitory factor by dietary isothiocyanates. J Biol Chem 284:32425–32433

    Article  CAS  Google Scholar 

  131. Cross JV, Rady JM, Foss FW et al (2009) Nutrient isothiocyanates covalently modify and inhibit the inflammatory cytokine macrophage migration inhibitory factor (MIF). Biochem J 423:315–321

    Article  CAS  Google Scholar 

  132. Ouertatani-Sakouhi H, El-Turk F, Fauvet B et al (2009) A new class of isothiocyanate-based irreversible inhibitors of macrophage migration inhibitory factor. Biochemistry 48:9858–9870

    Article  CAS  Google Scholar 

  133. Healy ZR, Liu H, Holtzclaw WD et al (2011) Inactivation of tautomerase activity of macrophage migration inhibitory factor by sulforaphane: a potential biomarker for anti-inflammatory intervention. Cancer Epidemiol Biomarkers Prev 20:1516–1523

    Article  CAS  Google Scholar 

  134. Fimognari C, Nüsse M, Berti F et al (2004) Isothiocyanates as novel cytotoxic and cytostatic agents: molecular pathway on human transformed and non-transformed cells. Biochem Pharmacol 68:1133–1138

    Article  CAS  Google Scholar 

  135. Gamet-Payrastre L (2006) Signaling pathways and intracellular targets of sulforaphane mediating cell cycle arrest and apoptosis. Curr Cancer Drug Targets 6:135–145

    Article  CAS  Google Scholar 

  136. Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127

    Article  CAS  Google Scholar 

  137. Antosiewicz J, Ziolkowski W, Kar S et al (2008) Role of reactive oxygen intermediates in cellular responses to dietary cancer chemopreventive agents. Planta Med 74:1570–1579

    Article  CAS  Google Scholar 

  138. Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269:291–304

    Article  CAS  Google Scholar 

  139. Cheung KL, Kong AN (2010) Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J 12:87–97

    Article  CAS  Google Scholar 

  140. Jackson SJ, Singletary KW (2004) Sulforaphane: a naturally occurring mammary carcinoma mitotic inhibitor, which disrupts tubulin polymerization. Carcinogenesis 25:219–227

    Article  CAS  Google Scholar 

  141. Jackson SJ, Singletary KW, Venema RC (2007) Sulforaphane suppresses angiogenesis and disrupts endothelial mitotic progression and microtubule polymerization. Vascul Pharmacol 46:77–84

    Article  CAS  Google Scholar 

  142. Thejass P, Kuttan G (2006) Antimetastatic activity of sulforaphane. Life Sci 78:3043–3050

    Article  CAS  Google Scholar 

  143. Thejass P, Kuttan G (2007) Allyl isothiocyanate (AITC) and phenyl isothiocyanate (PITC) inhibit tumour-specific angiogenesis by downregulating nitric oxide (NO) and tumour necrosis factor-alpha (TNF-α) production. Nitric Oxide 16:247–257

    Article  CAS  Google Scholar 

  144. Thejass P, Kuttan G (2007) Immunomodulatory activity of Sulforaphane, a naturally occurring isothiocyanate from broccoli (Brassica oleracea). Phytomedicine 14:538–545

    Article  CAS  Google Scholar 

  145. Thejass P, Kuttan G (2007) Inhibition of endothelial cell differentiation and proinflammatory cytokine production during angiogenesis by allyl isothiocyanate and phenyl isothiocyanate. Integr Cancer Ther 6:389–399

    Article  CAS  Google Scholar 

  146. Thejass P, Kuttan G (2007) Modulation of cell-mediated immune response in B16F-10 melanoma-induced metastatic tumor-bearing C57BL/6 mice by sulforaphane. Immunopharmacol Immunotoxicol 29:173–186

    Article  CAS  Google Scholar 

  147. Kim HJ, Barajas B, Wang M et al (2008) Nrf2 activation by sulforaphane restores the age-related decrease of T(H)1 immunity: role of dendritic cells. J Allergy Clin Immunol 121:1255–1261.e7

    Article  CAS  Google Scholar 

  148. Manesh C, Kuttan G (2003) Effect of naturally occurring isothiocyanates on the immune system. Immunopharmacol Immunotoxicol 25:451–459

    Article  CAS  Google Scholar 

  149. Suganuma H, Fahey JW, Bryan KE et al (2011) Stimulation of phagocytosis by sulforaphane. Biochem Biophys Res Commun 405:146–151

    Article  CAS  Google Scholar 

  150. Marks P, Rifkind RA, Richon VM et al (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    Article  CAS  Google Scholar 

  151. Myzak MC, Karplus PA, Chung FL et al (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774

    Article  CAS  Google Scholar 

  152. Myzak MC, Hardin K, Wang R et al (2006) Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis 27:811–819

    Article  CAS  Google Scholar 

  153. Dashwood RH, Ho E (2007) Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 17:363–369

    Article  CAS  Google Scholar 

  154. Ma X, Fang Y, Beklemisheva A et al (2006) Phenylhexyl isothiocyanate inhibits histone deacetylases and remodels chromatins to induce growth arrest in human leukemia cells. Int J Oncol 28:1287–1293

    CAS  Google Scholar 

  155. Beklemisheva AA, Fang Y, Feng J et al (2006) Epigenetic mechanism of growth inhibition induced by phenylhexyl isothiocyanate in prostate cancer cells. Anticancer Res 26:1225–1230

    CAS  Google Scholar 

  156. Pledgie-Tracy A, Sobolewski MD, Davidson NE (2007) Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther 6:1013–1021

    Article  CAS  Google Scholar 

  157. Wang LG, Liu XM, Fang Y et al (2008) De-repression of the p21 promoter in prostate cancer cells by an isothiocyanate via inhibition of HDACs and c-Myc. Int J Oncol 33:375–380

    CAS  Google Scholar 

  158. Gan N, Wu YC, Brunet M et al (2010) Sulforaphane activates heat shock response and enhances proteasome activity through up-regulation of Hsp27. J Biol Chem 285:35528–35536

    Article  CAS  Google Scholar 

  159. Shapiro TA, Fahey JW, Wade KL et al (1998) Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomarkers Prev 7:1091–1100

    CAS  Google Scholar 

  160. Getahun SM, Chung FL (1999) Conversion of glucosinolates to isothiocyanates in humans after ingestion of cooked watercress. Cancer Epidemiol Biomarkers Prev 8:447–451

    CAS  Google Scholar 

  161. Conaway CC, Getahun SM, Liebes LL et al (2000) Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutr Cancer 38:168–178

    Article  CAS  Google Scholar 

  162. Shapiro TA, Fahey JW, Wade KL et al (2001) Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomarkers Prev 10:501–508

    CAS  Google Scholar 

  163. Ye L, Dinkova-Kostova AT, Wade KL et al (2002) Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: pharmacokinetics of broccoli sprout isothiocyanates in humans. Clin Chim Acta 316:43–53

    Article  CAS  Google Scholar 

  164. Kensler TW, Chen JG, Egner PA et al (2005) Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People’s Republic of China. Cancer Epidemiol Biomarkers Prev 14:2605–2613

    Article  CAS  Google Scholar 

  165. Gasper AV, Al-Janobi A, Smith JA et al (2005) Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am J Clin Nutr 82:1283–1291

    CAS  Google Scholar 

  166. Shapiro TA, Fahey JW, Dinkova-Kostova AT et al (2006) Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study. Nutr Cancer 55:53–62

    Article  CAS  Google Scholar 

  167. Cornblatt BS, Ye L, Dinkova-Kostova AT et al (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28:1485–1490

    Article  CAS  Google Scholar 

  168. Riedl MA, Saxon A, Diaz-Sanchez D (2009) Oral sulforaphane increases phase II antioxidant enzymes in the human upper airway. Clin Immunol 130:244–251

    Article  CAS  Google Scholar 

  169. Egner PA, Chen JG, Wang JB et al (2011) Bioavailability of sulforaphane from two broccoli sprout beverages: results of a short-term, cross-over clinical trial in Qidong, China. Cancer Prev Res (Phila) 4:384–395

    Article  CAS  Google Scholar 

  170. Cramer JM, Jeffery EH (2011) Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutr Cancer 63:196–201

    Article  CAS  Google Scholar 

  171. Li F, Hullar MA, Beresford SA et al (2011) Variation of glucoraphanin metabolism in vivo and ex vivo by human gut bacteria. Br J Nutr 106:408–416

    Article  CAS  Google Scholar 

  172. Harvey CJ, Thimmulappa RK, Sethi S et al (2011) Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model. Sci Transl Med 3:78ra32

    Article  CAS  Google Scholar 

  173. Clarke JD, Hsu A, Riedl K et al (2011) Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacol Res 64:456–463

    Article  CAS  Google Scholar 

  174. Kensler TW, Ng D, Carmella SG et al (2012) Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis 33:101–107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is very grateful to Research Councils UK and Cancer Research UK (C20953/A10270) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albena T. Dinkova-Kostova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dinkova-Kostova, A.T. (2012). Chemoprotection Against Cancer by Isothiocyanates: A Focus on the Animal Models and the Protective Mechanisms. In: Pezzuto, J., Suh, N. (eds) Natural Products in Cancer Prevention and Therapy. Topics in Current Chemistry, vol 329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_337

Download citation

Publish with us

Policies and ethics