Skip to main content

Advertisement

Log in

Structure–Activity Relationships and Organ Specificity in the Induction of GST and NQO1 by Alkyl-Aryl Isothiocyanates

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To compare the ability of alkyl-aryl isothiocyanates (ITCs) to increase the activities of the Phase 2 detoxification enzymes NAD[P]H:quinone acceptor oxidoreductase 1 (NQO1) and glutathione S-transferases (GST) in rat tissues in vivo and in cells in vitro.

Materials and Methods

Twelve alkyl-aryl ITCs and the fully-reduced derivative of benzyl ITC (cyclohexylmethyl ITC) were administered to rats each day for 5 days. The animals were then killed and organs harvested. The ITCs were also evaluated in a bladder cell line in culture. The activities of NQO1 and GST in the organs and cells were measured.

Results

In vivo, the organ most susceptible to the inductive activity of the ITCs was the urinary bladder, with α-methylbenzyl ITC and cyclohexylmethyl ITC being the most effective. Inductive activity in the bladder in vivo did not, however, correlate with that in bladder cells in vitro.

Conclusions

Induction of Phase 2 enzymes increases resistance to chemical carcinogenesis. ITCs could therefore be valuable chemopreventative agents, and the specificity of these substances toward the urinary bladder suggest that they could be particularly useful for protecting against bladder cancer. In this regard, α-methylbenzyl ITC and cyclohexylmethyl ITC could be especially valuable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. T. Wilkinson, M. A. Morse, L. A. Kresty, and G. D. Stoner. Effect of alkyl chain length on inhibition of N-nitrosomethylbenzylamine-induced esophagal tumorigenesis and DNA methylation by isothiocyanates. Carcinogenesis. 16:1011–1015 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. G. D. Stoner, C. Adams, L. A. Kresty, S. G. Amin, D. Desai, S. S. Hecht, S. E. Murphy, and M. A. Morse. Inhibition of N’-nitrosonornicotine-induced esophageal tumorigenesis by 3-phenylpropyl isothiocyanate. Carcinogenesis. 1998:2139–2143 (1998).

    Article  Google Scholar 

  3. M. A. Morse, K. I. Eklind, S. G. Amin, S. S. Hecht, and F.-L. Chung. Effect of alkyl chain length on the inhibition of NNK-induced lung neoplasia in A/J mice by arylalkyl isothiocyanates. Carcinogenesis. 10:1757–1759 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. A. Nishikawa, F. Furukawa, C. Uneyama, S. Ikezaki, Z.-Y. Tanakamaru, and Y. Hayashi. Chemopreventative effects of phenethyl isothiocyanate on lung and pancreatic tumorigenesis in N-nitrosobis(2-oxopropyl)amine-treated hamsters. Carcinogenesis. 17:1381–1384 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. S. Sugie, A. Okumura, T. Tanaka, and H. Mori. Inhibitory effects of benzyl isothiocyanate and benzyl thiocyanate on diethylnitrosamine-induced hepatocarcinogenesis in rats. Jpn. J. Cancer Res. 84:865–870 (1993).

    PubMed  CAS  Google Scholar 

  6. S. Sugie, K. Okamoto, A. Okumura, T. Tanaka, and H. Mori. Inhibitory effects of benzyl thiocyanate and benzyl isothiocyanate on methylazoxymethanol acetate-induced intestinal carcinogenesis. Carcinogenesis. 15:1555–1560 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. F.-L. Chung, C. C. Conaway, C. V. Rao, and B. S. Reddy. Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis. 21:2287–2291 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. L. W. Wattenberg. Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J. Nat. Cancer Inst. 58:395–398 (1977).

    PubMed  CAS  Google Scholar 

  9. Y. Zhang. Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutat. Res. 555:173–190 (2004).

    PubMed  CAS  Google Scholar 

  10. R. Munday, Y. Zhang, J. W. Fahey, H. E. Jobson, C. M. Munday, J. Li, and K. K. Stephenson. Evaluation of isothiocyanates as potent inducers of carcinogen-detoxifying enzymes in the urinary bladder: Critical nature of in vivo bioassay. Nutr. Cancer. 54:223–231 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. J. D. Hayes, and D. J. Pulford. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30:445–600 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. A. T. Dinkova-Kostova, and P. Talalay. Persuasive evidence that quinone reductase Type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Rad. Biol. Med. 29:231–240 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. J. Šalagovič, I. Kalina, V. Habalová, M. Hrivňák, L. Valanský, and E. Biroš. The role of human glutathione S-transferases M1 and T1 in individual susceptibility to bladder cancer. Physiol. Res. 48:465–471 (1999).

    PubMed  Google Scholar 

  14. W. A. Schulz, A. Krummeck, I. Rösinger, P. Eickelmann, C. Neuhaus, T. Ebert, B. J. Schmitz-Dräger, and H. Sies. Increased frequency of a null-allele for NAD(P)H:quinone oxidoreductase in patients with urological malignancies. Pharmacogenetics. 7:235–239 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. S.-J. Park, H. Zhao, M. R. Spitz, H. B. Grossman, and X. Wu. An association between NQO1 polymorphism and risk of bladder cancer. Mutat. Res. 536:131–137 (2003).

    PubMed  CAS  Google Scholar 

  16. G. A. Törüner, C. Akyerli, A. Uçar, T. Aki, N. Atsu, H. Ozen, M. Tez, M. Cetinkaya, and T. Ozçelik. Polymorphisms of glutathione S-transferase genes (GSTM1, GSTP1 and GSTT1) and bladder cancer susceptibility in the Turkish population. Arch. Toxicol. 75:459–464 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. R. Munday, P. Mhawech-Fauceglia, C. M. Munday, J. D. Paonessa, L. Tang, J. S. Munday, C. Lister, P. Wilson, J. W. Fahey, W. Davis, and Y. Zhang. Inhibition of urinary bladder carcinogenesis by broccoli sprout extracts. Cancer Res. 68:1593–1600 (2008).

    Article  PubMed  CAS  Google Scholar 

  18. J. W. Fahey, A. T. Zalcmann, and P. Talalay. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 56:5–51 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. A. M. Benson, P. B. Barreto, and J. S. Stanley. Induction of DT-diaphorase by anticarcinogenic sulfur compounds in mice. J. Nat. Cancer Inst. 76:467–473 (1986).

    PubMed  CAS  Google Scholar 

  20. G.-Q. Zheng, P. M. Kenney, and L. K. T. Lam. Phenylalkyl isothiocyanate-cysteine conjugates as glutathione S-transferase stimulating agents. J. Med. Chem. 35:185–188 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. L. Drobnica, P. Kristián, and J. Augustin. The chemistry of the-NCS group. In S. Patai (ed.), The Chemistry of Cyanates and their Thio Derivatives, Part 2, Wiley, Chichester, UK, 1977, pp. 1003–1221.

    Google Scholar 

  22. L. Ernster. DT diaphorase. Meth. Enzymol. 10:309–317 (1967).

    Article  CAS  Google Scholar 

  23. W. H. Habig, M. J. Pabst, and W. B. Jakoby. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249:7130–7139 (1974).

    PubMed  CAS  Google Scholar 

  24. G. Brüsewitz, B. D. Cameron, L. F. Chasseaud, K. Görler, D. R. Hawkins, H. Koch, and W. H. Mennicke. The metabolism of benzyl isothiocyanate and its cysteine conjugate. Biochem. J. 162:99–107 (1977).

    PubMed  Google Scholar 

  25. C. C. Conaway, J. Krzeminski, S. Amin, and F. L. Chung. Decomposition rates of isothiocyanate conjugates determine their activity as inhibitors of cytochrome p450 enzymes. Chem. Res. Toxicol. 14:1170–1176 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. L. Tang, and Y. Zhang. Isothiocyanates in the chemoprevention of bladder cancer. Curr. Drug Metab. 5:193–201 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. R. Munday, and C. M. Munday. Selective induction of Phase II enzymes in the urinary bladder of rats by allyl isothiocyanate, a compound derived from Brassica vegetables. Nutr. Cancer. 44:52–59 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. Y. Zhang, R. Munday, H. E. Jobson, C. M. Munday, C. Lister, P. Wilson, J. W. Fahey, and P. Mhawech-Fauceglia. Induction of GST and NQO1 in cultured bladder cells and in the urinary bladders of rats by an extract of broccoli (Brassica oleracea italica) sprouts. J. Agric. Food Chem. 54:9370–9376 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Zhang, and P. Talalay. Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic Phase 2 enzymes. Cancer Res. 58:4632–4639 (1998).

    PubMed  CAS  Google Scholar 

  30. R. Munday, and C. M. Munday. Induction of Phase II detoxification enzymes in rats by plant-derived isothiocyanates: Comparison of allyl isothiocyanate with sulforaphane and related compounds. J. Agric. Food Chem. 52:1867–1871 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. A. Nishikawa, M. A. Morse, and F.-L. Chung. Inhibitory effects of 2-mercaptoethane sulfonate and 6-phenylhexyl isothiocyanate on urinary bladder tumorigenesis in rats induced by N-butyl-N-(4-hydroxybutyl)nitrosamine. Cancer Lett. 193:11–16 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. K. Okazaki, M. Yamagishi, H.-Y. Son, T. Imazawa, F. Furukawa, H. Nakamura, A. Nishikawa, T. Masegi, and M. Hirose. Simultaneous treatment with benzyl isothiocyanate, a strong bladder promoter, inhibits rat urinary bladder carcinogenesis by N-butyl-N-(4-hydroxybutyl)nitrosamine. Nutr. Cancer. 42:211–216 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. K. Okazaki, T. Umemura, T. Imazawa, A. Nishikawa, T. Masegi, and M. Hirose. Enhancement of urinary bladder carcinogenesis by combined treatment with benzyl isothiocyanate and N-butyl-N-(4-hydroxybutyl)nitrosamine in rats after initiation. Cancer Sci. 94:948–952 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. K. Ogawa, M. Futakuchi, M. Hirose, P. Boonyaphiphat, Y. Mizoguchi, T. Miki, and T. Shirai. Stage and organ dependent effects of 1-O-hexyl-2,3,5-trimethylhydroquinone, ascorbic acid derivatives, N-heptadecane-8,10-dione and phenylethyl isothiocyanate in a rat multiorgan carcinogenesis model. Int. J. Cancer. 76:851–856 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. M. Hirose, T. Yamaguchi, N. Kimoto, K. Ogawa, M. Futakuchi, M. Sano, and T. Shirai. Strong promoting activity of phenylethyl isothiocyanate and benzyl isothiocyanate on urinary bladder carcinogenesis in F344 male rats. Int. J. Cancer. 77:773–777 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. S. Sugiura, K. Ogawa, M. Hirose, F. Takashita, M. Asamoto, and T. Shirai. Reversibility of proliferative lesions and induction of non-papillary tumors in rat urinary bladder treated with phenylethyl isothiocyanate. Carcinogenesis. 24:547–553 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. H. Takagi, M. Shibutani, C. Uneyama, K.-Y. Lee, N. Kato, K. Inoue, and M. Hirose. Limited tumor-initiating activity of phenylethyl isothiocyanate by promotion with sodium L-ascorbate in a rat two-stage urinary bladder carcinogenesis model. Cancer Lett. 219:147–153 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. NCI, DCPC Chemoprevention Branch and Agent Development Committee. Clinical development plan: phenethyl isothiocyanate. J. Cell Biochem. 26S:149–157 (1996).

    Google Scholar 

  39. R. A. Lubet, V. E. Steele, I. Eto, M. M. Juliana, G. J. Kelloff, and C. J. Grubbs. Chemopreventive efficacy of anethole trithione, N-acetyl-L-cysteine, miconazole and phenethylisothiocyanate in the DMBA-induced rat mammary cancer model. Int. J. Cancer. 72:95–101 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Waikato Medical Research Foundation (New Zealand) and National Cancer Institute Grant CA 80962 (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rex Munday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munday, R., Zhang, Y., Munday, C.M. et al. Structure–Activity Relationships and Organ Specificity in the Induction of GST and NQO1 by Alkyl-Aryl Isothiocyanates. Pharm Res 25, 2164–2170 (2008). https://doi.org/10.1007/s11095-008-9595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9595-2

KEY WORDS

Navigation