Skip to main content

Advertisement

Log in

Sulforaphane suppresses LPS-induced inflammation in primary rat microglia

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The aim of this study was to investigate the signal transduction pathways involved in sulforaphane (SF) mediated inhibition of the inflammatory response to lipopolysaccharide (LPS). Additionally, we investigated the effects of SF and LPS on the activity of Nrf2.

Material

Primary rat microglia and the murine microglia cell line BV2 were used.

Treatment

Cells were treated with LPS with or without SF.

Methods

Cell viability was measured via WST-assay. Real-time RT-PCR was performed to analyze cytokine mRNA levels. The nitric oxide (NO) release was measured in LPS-stimulated microglia. The induction of various signal transduction pathways and Nrf2 was determined by Western blotting. NF-κB and AP-1 activation was measured by dual luciferase assay.

Results

We showed that SF attenuates the LPS-induced increase of IL-1β, IL-6, and TNF-α expression in microglia. In addition, SF significantly decreases the NO in a concentration-dependent manner. SF inhibits LPS-stimulated ERK1/2 and JNK phosphorylation and thereby inhibits the LPS-induced activation of NF-κB- and activator protein-1 (AP-1). Moreover, SF and LPS together are able to induce Nrf2 activation.

Conclusions

We showed that SF, and also LPS by itself, are able to activate the cell’s defence against oxidative and electrophilic stress. We conclude that SF could be a candidate agent for anti-inflammatory treatment of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Nrf2:

Nuclear factor erythroid 2-related factor 2

DMEM:

Dulbecco’s modified Eagle’s medium

FCS:

Fetal calf serum

SFM:

Serum free medium

WST:

4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1, 3-benzene disulfonate

p-:

Phospho-

ERK:

Extracellular signal-regulated kinase

ANOVA:

Analysis of variance

References

  1. Acs P, Kipp M, Norkute A, Johann S, Clarner T, Braun A, et al. 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia. 2009;57:807–14.

    Article  PubMed  Google Scholar 

  2. Braun A, Dang J, Johann S, Beyer C, Kipp M. Selective regulation of growth factor expression in cultured cortical astrocytes by neuro-pathological toxins. Neurochem Int. 2009;55:610–8.

    Article  CAS  PubMed  Google Scholar 

  3. Kipp M, Beyer C. Impact of sex steroids on neuroinflammatory processes and experimental multiple sclerosis. Front Neuroendocrinol. 2009;30:188–200.

    Article  CAS  PubMed  Google Scholar 

  4. Gonzalez-Scarano F, Martin-Garcia J. The neuropathogenesis of AIDS. Nat Rev Immunol. 2005;5:69–81.

    Article  CAS  PubMed  Google Scholar 

  5. Gonsette RE. Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J Neurol Sci. 2008;274:48–53.

    Article  CAS  PubMed  Google Scholar 

  6. Wilms H, Zecca L, Rosenstiel P, Sievers J, Deuschl G, Lucius R. Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr Pharm Des. 2007;13:1925–8.

    Article  CAS  PubMed  Google Scholar 

  7. Brandenburg LO, Konrad M, Wruck C, Koch T, Pufe T, Lucius R. Involvement of formyl-peptide-receptor-like-1 and phospholipase D in the internalization and signal transduction of amyloid beta 1–42 in glial cells. Neuroscience. 2008;156:266–76.

    Article  CAS  PubMed  Google Scholar 

  8. Thomas WE. Brain macrophages: evaluation of microglia and their functions. Brain Res Brain Res Rev. 1992;17:61–74.

    CAS  PubMed  Google Scholar 

  9. Rock RB, Peterson PK. Microglia as a pharmacological target in infectious and inflammatory diseases of the brain. J Neuroimmune Pharmacol. 2006;1:117–26.

    Article  PubMed  Google Scholar 

  10. Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009;27:119–45.

    Article  CAS  PubMed  Google Scholar 

  11. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.

    Article  CAS  PubMed  Google Scholar 

  12. Leong KG, Karsan A. Signaling pathways mediated by tumor necrosis factor alpha. Histol Histopathol. 2000;15:1303–25.

    CAS  PubMed  Google Scholar 

  13. Otten U, Marz P, Heese K, Hock C, Kunz D, Rose-John S. Cytokines and neurotrophins interact in normal and diseased states. Ann N Y Acad Sci. 2000;917:322–30.

    Article  CAS  PubMed  Google Scholar 

  14. Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, et al. Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem. 2005;280:19911–24.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Kensler TW, Cho CG, Posner GH, Talalay P. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci U S A. 1994;91:3147–50.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Talalay P, Cho CG, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A. 1992;89:2399–403.

    Article  CAS  PubMed  Google Scholar 

  17. Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem. 2001;276:32008–15.

    Article  CAS  PubMed  Google Scholar 

  18. Lin W, Wu RT, Wu T, Khor TO, Wang H, Kong AN. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem Pharmacol. 2008;76:967–73.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao J, Moore AN, Redell JB, Dash PK. Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J Neurosci. 2007;27:10240–8.

    Article  CAS  PubMed  Google Scholar 

  20. Heiss E, Gerhauser C. Time-dependent modulation of thioredoxin reductase activity might contribute to sulforaphane-mediated inhibition of NF-kappaB binding to DNA. Antioxid Redox Signal. 2005;7:1601–11.

    Article  CAS  PubMed  Google Scholar 

  21. Higgins LG, Kelleher MO, Eggleston IM, Itoh K, Yamamoto M, Hayes JD. Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents. Toxicol Appl Pharmacol. 2009;237:267–80.

    Article  CAS  PubMed  Google Scholar 

  22. Killeen ME, Englert JA, Stolz DB, Song M, Han Y, Delude RL, et al. The phase 2 enzyme inducers ethacrynic acid, DL-sulforaphane, and oltipraz inhibit lipopolysaccharide-induced high-mobility group box 1 secretion by RAW 264.7 cells. J Pharmacol Exp Ther. 2006;316:1070–9.

    Article  CAS  PubMed  Google Scholar 

  23. Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med. 2004;36:1199–207.

    Article  CAS  PubMed  Google Scholar 

  24. Lee JM, Johnson JA. An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol. 2004;37:139–43.

    CAS  PubMed  Google Scholar 

  25. Wruck CJ, Claussen M, Fuhrmann G, Romer L, Schulz A, Pufe T, et al. Luteolin protects rat PC12 and C6 cells against MPP + induced toxicity via an ERK dependent Keap1-Nrf2-ARE pathway. J Neural Transm Suppl. 2007;72:57–67.

    Article  CAS  PubMed  Google Scholar 

  26. Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R. Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. Faseb J. 2003;17:500–2.

    CAS  PubMed  Google Scholar 

  27. Brandenburg LO, Varoga D, Nicolaeva N, Leib SL, Wilms H, Podschun R, et al. Role of glial cells in the functional expression of LL-37/rat cathelin-related antimicrobial peptide in meningitis. J Neuropathol Exp Neurol. 2008;67:1041–54.

    Article  CAS  PubMed  Google Scholar 

  28. Brandenburg LO, Seyferth S, Wruck CJ, Koch T, Rosenstiel P, Lucius R, et al. Involvement of Phospholipase D 1 and 2 in the subcellular localization and activity of formyl-peptide-receptors in the human colonic cell line HT29. Mol Membr Biol. 2009;26:371–83.

    Article  CAS  PubMed  Google Scholar 

  29. Innamorato NG, Rojo AI, Garcia-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A. The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol. 2008;181:680–9.

    CAS  PubMed  Google Scholar 

  30. Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. Faseb J. 2006;20:506–8.

    CAS  PubMed  Google Scholar 

  31. Yang LP, Zhu XA, Tso MO. Minocycline and sulforaphane inhibited lipopolysaccharide-mediated retinal microglial activation. Mol Vis. 2007;13:1083–93.

    CAS  PubMed  Google Scholar 

  32. Dinkova-Kostova AT, Massiah MA, Bozak RE, Hicks RJ, Talalay P. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc Natl Acad Sci U S A. 2001;98:3404–9.

    Article  CAS  PubMed  Google Scholar 

  33. Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT, et al. Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide. Biochem Biophys Res Commun. 2006;351:883–9.

    Article  CAS  PubMed  Google Scholar 

  34. Jeon YJ, Han SB, Ahn KS, Kim HM. Differential activation of murine macrophages by angelan and LPS. Immunopharmacology. 2000;49:275–84.

    Article  CAS  PubMed  Google Scholar 

  35. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807–69.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Rosemarie Sprang, Christiane Jaeschke, Susanne Echterhagen, and Regine Worm for their excellent technical assistance. This study was supported by the “Forschungsförderung” of the medical faculty (University of Kiel, Germany, to L.O.B.), Hensel Foundation (University of Kiel, Germany, to L.O.B.), Deutsche Forschungsgemeinschaft (DFG PU214/5-2; PU214/4-2; PU214/3-2) and the Hertie Foundation (M.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars-Ove Brandenburg.

Additional information

Responsible Editor: L. Li.

T. Pufe and C. J. Wruck contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandenburg, LO., Kipp, M., Lucius, R. et al. Sulforaphane suppresses LPS-induced inflammation in primary rat microglia. Inflamm. Res. 59, 443–450 (2010). https://doi.org/10.1007/s00011-009-0116-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0116-5

Keywords

Navigation