Skip to main content

Taxonomy and Physiology of Phototrophic Purple Bacteria and Green Sulfur Bacteria

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

Anoxygenic phototrophic bacteria have always attracted scientists because of their coloration and ability to perform photosynthesis in the absence of air and without producing oxygen. Despite this common feature of these bacteria, variation in morphological, physiological and molecular properties, including molecular structures of the photosynthetic pigments and the photosynthetic apparatus, is great. This chapter will give a short introduction into the diversity of green sulfur and phototrophic purple bacteria, list some important properties of the species, and indicate important physiological features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adkins JP, Madigan MT, Mandelco L, Woese CR and Tanner RS (1993) Arhodomonas aquaeolei gen. nov., sp. nov., an aerobic halophilic bacterium isolated from a subterranean brine. Intl J Syst Bacteriol 43: 514–520

    CAS  Google Scholar 

  • Albers H and Gottschalk G (1976) Acetate metabolism in Rhodopseudomonas gelatinosa and several other Rhodospirillaceae. Arch Microbiol 111: 45–49

    Article  CAS  PubMed  Google Scholar 

  • Akiba T, Usami R and Horikoshi K (1983) Rhodopseudomonas rutila, a new species of nonsulfur purple photosynthetic bacteria. Intl J Syst Bacteriol 33: 551–556

    Google Scholar 

  • Ambler RP, Daniel M, Hermoso J, Meyer TE, Bartsch RG and Kamen MD (1979) Cytochrome c2 sequence variations among the recognised species of purple nonsulphur photosynthetic bacteria. Nature 278: 659–660

    CAS  PubMed  Google Scholar 

  • Amesz J and Knaff DB (1988) Molecular mechanism of bacterial photosynthesis. In: Zehnder AJB (ed) Biology of Anaerobic Microorganisms, pp 113–178. Wiley, Chichester

    Google Scholar 

  • Bavendamm W (1924) Die farblosen und roten Schwefelbakterien des Süβ-und Salzwassers. Fischer Verlag, Jena

    Google Scholar 

  • Beatty JT and Gest H (1981) Biosynthetic and bioenergetic functions of citric acid cycle reactions in Rhodopseudomonas capsulata. J Bacteriol 148: 584–593

    CAS  PubMed  Google Scholar 

  • Beer-Romero P and Gest H (1987) Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll g. FEMS Microbiol Lett 41: 109–114

    Article  CAS  Google Scholar 

  • Beer-Romero P, Favinger JL, and Gest H (1988) Distinctive properties of bacilliform photosynthetic heliobacteria. FEMS Microbiol Lett 49: 451–454

    Article  CAS  Google Scholar 

  • Brockmann H Jr and Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136: 17–19

    Article  CAS  Google Scholar 

  • Buchanan BB, Evans MCW and Arnon DI (1967) Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum. Arch Microbiol 59: 32–40

    CAS  Google Scholar 

  • Burgess JG, Kawaguchi R, Yamada A and Matsunaga T (1994) Rhodobacter marinus sp. nov.: A new marine hydrogen producing photosynthetic bacterium which is sensitive to oxygen and sulphide. Microbiology 140: 965–970

    CAS  Google Scholar 

  • Caumette P, Baulaigue R and Matheron R (1988) Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salinas. Syst Appl Microbiol 10: 284–292

    Google Scholar 

  • Caumette P, Baulaigue R and Matheron R (1991) Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155: 170–176

    Article  Google Scholar 

  • Cohen-Bazire G, Pfennig N, and Kunizawa R (1964) The fine structure of green bacteria. J Cell Biol 22: 207–225

    Article  CAS  PubMed  Google Scholar 

  • Dickerson RE (1980) Evolution and gene transfer in purple photosynthetic bacteria. Nature 283: 210–212

    Article  CAS  PubMed  Google Scholar 

  • Drews G (1981) Rhodospirillum salexigens, spec. nov., an obligatory halophilic phototrophic bacterium. Arch Microbiol 130: 325–327

    Article  CAS  Google Scholar 

  • Eckersley K and Dow CS (1980) Rhodopseudomonas blastica sp. nov.: A member of the Rhodospirillaceae. J Gen Microbiol 119: 465–473

    Google Scholar 

  • Eichler B and Pfennig N (1986) Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov. Arch Microbiol 146: 295–300

    Article  CAS  Google Scholar 

  • Eichler B and Pfennig N (1988) A new purple sulfur bacterium from stratified fresh-water lakes, Amoebobacter purpureus sp. nov. Arch Microbiol 149: 395–100

    Article  CAS  Google Scholar 

  • Evans MCW, Buchanan BB and Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55: 928–934

    CAS  PubMed  Google Scholar 

  • Evans WR, Fleischmann DE, Calvert HE, Pyati PV, Alter GM and Rao NSS (1990) Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTAi 1. Appl Environ Microbiol 56: 3445–3449

    CAS  PubMed  Google Scholar 

  • Favinger J, Stadtwald R and Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming photosynthetic bacterium. Antonie van Leeuwenhoek 55: 291–296

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SJ, Jackson JB and McEwan AG (1987) Anaerobic respiration in the Rhodospirillaceae: characterisation of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol Rev 46: 117–143

    CAS  Google Scholar 

  • Fowler VJ, Pfennig N, Schubert W and Stackebrandt E (1984) Towards a phylogeny of phototrophic purple sulfur bacteria—16S rRNA oligonucleotide cataloguing of 11 species of Chromatiaceae. Arch Microbiol 139: 382–387

    Article  CAS  Google Scholar 

  • Fuchs G, Stupperich E and Jaenchen R (1980a) Autotrophic CO2 fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Arch Microbiol 128: 56–63

    CAS  Google Scholar 

  • Fuchs G, Stupperich E and Eden G (1980b) Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128: 64–71

    CAS  Google Scholar 

  • Gerola PD and Olson JM (1986) A new bacteriochlorophyll α-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848: 69–76

    CAS  PubMed  Google Scholar 

  • Gest H and Favinger JF (1983) Heliobacterium chlorum, an anoxygenic brownish-green bacterium containing a ‘new’ form of bacteriochlorophyll. Arch Microbiol 136: 11–16

    Article  CAS  Google Scholar 

  • Gibson J, Stackebrandt E, Zablen LB, Gupta R and Woese CR (1979) A phylogenetic analysis of the purple photosynthetic bacteria. Curr Microbiol 3: 59–64

    CAS  Google Scholar 

  • Gibson J, Pfennig N and Waterbury JB (1984) Chloroherpeton thalassium gen. nov. et spec. nov., a nonfilamentous, flexing, and gliding green sulfur bacterium. Arch Microbiol 138: 96–101

    Article  CAS  PubMed  Google Scholar 

  • Gibson J, Ludwig W, Stackebrandt E and Woese CR (1985) The phylogeny of the green photosynthetic bacteria: Absence of a close relationship between Chlorobium and Chloroflexus. Syst Appl Microbiol 6: 152–156

    CAS  Google Scholar 

  • Gloe A and Risch N (1978) Bacteriochlorophyll c s , a new bacteriochlorophyll from Chloroflexus aurantiacus. Arch Microbiol 118: 153–156

    Article  CAS  PubMed  Google Scholar 

  • Gloe A, Pfennig N, Brockmann H Jr, and Trowitsch W (1975) A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 102: 103–109

    Article  CAS  PubMed  Google Scholar 

  • Gorlenko VM (1974) Oxidation of thiosulphate by Amoebobacter roseus in darkness under microaerobic conditions. Microbiologiya 43: 729–731 (in Russian)

    CAS  Google Scholar 

  • Gorlenko VM and Lebedeva EV (1971) New green sulphur bacteria with apophyses. Microbiologiya 40: 1035–1039 (in Russian)

    CAS  Google Scholar 

  • Gorlenko VM, Krasilnikova EN, Kikina OG and Tatarinova N Ju (1979) The new motile purple sulphur bacteria Lamprobacter modestohalophilus nov. gen., nov. spec. with gas vacuoles. Biol Bull Acad Sci USSR 6: 631–642 (in Russian)

    Google Scholar 

  • Hansen TA (1974) Sulfide als electronendonor voor Rhodospirillaceae. Doctoral thesis, University of Groningen, The Netherlands

    Google Scholar 

  • Hansen TA and Imhoff JF (1985) Rhodobacter veldkampii, a new species of phototrophic purple nonsulfur bacteria. Intl J Syst Bacteriol 35: 115–116

    Google Scholar 

  • Hansen TA and Van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Mikrobiol 86: 49–56

    Article  CAS  PubMed  Google Scholar 

  • Hansen TA and Veldkamp H (1973) Rhodopseudomonas sulfidophila nov. spec., a new species of the purple nonsulfur bacteria. Arch Mikrobiol 92: 45–58

    Article  CAS  PubMed  Google Scholar 

  • Hansen TA, Sepers ABJ and Van Gemerden H (1975) A new purple bacterium that oxidizes sulflde to extracellular sulfur and sulfate. Plant Soil 43: 17–27

    Article  CAS  Google Scholar 

  • Harashima K, Hayashi J-I, Ikari T and Shiba T (1980) O2-stimulated synthesis of bacteriochlorophyll and carotenoids in marine bacteria. Plant Cell Physiol 21: 1283–1294

    CAS  Google Scholar 

  • Hiraishi A and Kitamura H (1984) Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. Bull Jpn Soc Sci Fish 50: 1929–1937

    Google Scholar 

  • Hiraishi A and Ueda Y (1994a) Intrageneric structure of the genus Rhodobacter. Transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Intl J Syst Bacteriol 44: 15–23

    Google Scholar 

  • Hiraishi A and Ueda Y (1994b) Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Intl J Syst Bacteriol 44: 665–673

    Google Scholar 

  • Hiraishi A, Hoshino Y and Satoh T (1991) Rhodoferaxfermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the ‘Rhodocyclus gelatinosus-like’ group. Arch Microbiol 155: 330–336

    Article  Google Scholar 

  • Hiraishi A, Santos TS, Sugiyama J and Komagata K (1992) Rhodopseudomonas rutila is a later subjective synonym of Rhodopseudomonas palustris. Intl J Syst Bacteriol 42: 186–188

    Google Scholar 

  • Iba K, Takamiya K-I, Toh Y and Nishimura M (1988) Roles of bacteriochlorophyll and protein complexes in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCH 114. J Bacteriol 170: 1843–1847

    CAS  PubMed  Google Scholar 

  • Imhoff JF (1982) Taxonomic and phylogenetic implications of lipid and quinone compositions in phototrophic micro-organisms. In: Wintermans JFGM and Kuiper PJC (eds) Biochemistry and Metabolism of Plant Lipids, pp 541–544. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Imhoff JF (1983) Rhodopseudomonas marina sp. nov., a new marine phototrophic purple bacterium. Syst Appl Microbiol 4: 512–521

    Google Scholar 

  • Imhoff JF (1984a) Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Bavendamm 1924. Intl J Syst Bacteriol 34: 338–339

    Google Scholar 

  • Imhoff JF (1984b) Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 25: 85–89

    Article  CAS  Google Scholar 

  • Imhoff JF (1988) Lipids, fatty acids and quinones in taxonomy and phylogeny of anoxygenic phototrophic bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 223–232. Plenum Press, New York

    Google Scholar 

  • Imhoff JF (1989) Genus Ectothiorhodospira. In: Staley JT, Bryant MP, Pfennig N and Holt JC (eds) Bergey’s Manual of Systematic Bacteriology, Volume 3, pp 1654–1658. Williams and Wilkins, Baltimore

    Google Scholar 

  • Imhoff JF (1991) Polar lipids and fatty acids in the genus Rhodobacter. System Appl Microbiol 14: 228–234

    CAS  Google Scholar 

  • Imhoff JF and Trüper HG (1981) Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkaliphilic phototrophic bacterium. Zentralbl Bakteriol Hyg I Abt Orig C2: 228–234

    Google Scholar 

  • Imhoff JF and Trüper HG (1989) The purple nonsulfur bacteria. In: Staley JT, Bryant MP, Pfennig N and Holt JC (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1658–1661. Williams and Wilkins, Baltimore

    Google Scholar 

  • Imhoff JF, Tindall B, Grant WD and Trüper HG (1981) Ectothiorhodospira vacuolata sp. nov., a new phototrophic bacterium from soda lakes. Arch Microbiol 130: 238–242

    CAS  Google Scholar 

  • Imhoff JF, Kushner DJ, Kushwaha SC and Kates M (1982) Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families. J Bacteriol 150: 1192–1201

    CAS  PubMed  Google Scholar 

  • Imhoff JF, Trüper HG and Pfennig N (1984) Rearrangement of the species and genera of the phototrophic ‘purple nonsulfur bacteria’. Intl J Syst Bacteriol 34: 340–343

    Google Scholar 

  • Ivanovsky RN, Sinton NV and Kondratieva EN (1980) ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Arch Microbiol 128: 239–241

    Article  Google Scholar 

  • Janssen PH and Harfoot CG (1991) Rhodopseudomonas rosea sp. nov., a new purple nonsulfur bacterium. Intl J Syst Bacteriol 41: 26–30

    Google Scholar 

  • Kämpf C and Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127: 125–135

    Google Scholar 

  • Kämpf C and Pfennig N (1986) Isolation and characterization of some chemoautotrophic Chromatiaceae. J Basic Microbiol 9: 507–515

    Google Scholar 

  • Kawasaki H, Hoshino Y, Kuraishi H and Yamasoto K (1992) Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the Proteobacteria alpha group. J Gen Appl Microbiol 38: 541–551

    CAS  Google Scholar 

  • Kawasaki H, Hoshino Y, Hirata A and Yamasato K (1993) Is intracytoplasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among phototrophic purple nonsulfur bacteria. Arch Microbiol 160: 358–362

    Article  CAS  PubMed  Google Scholar 

  • Kompantseva EJ (1985) Rhodobacter euryhalinus sp. nov., a new halophilic purple bacterial species. Mikrobiologiya 54: 974–982 (in Russian)

    CAS  Google Scholar 

  • Kompantseva EJ (1989) A new species of budding purple bacterium: Rhodopseudomonas julia sp. nov. Microbiologiya 58: 254–259

    Google Scholar 

  • Kompantseva EJ and Gorlenko VM (1984) A new species of moderately halophilic purple bacterium Rhodospirillum mediosalinum sp. nov. Microbiologiya 53: 775–781

    Google Scholar 

  • Kondratieva EN (1979) Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria. In: Quale JR (ed) Microbial Biochemistry, Vol 21, pp 117–175. University Park Press, Baltimore, MD

    Google Scholar 

  • Kondratieva EN, Zhukov VG, Ivanovsky RN, Petushkova YP and Monosov EZ (1976) The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108: 287–292

    Article  CAS  PubMed  Google Scholar 

  • Kristjansen O (1988) Large Chromatiaceae: Part-time lithoautotrophs? Abstr VI Int Symp Photosynthetic Prokaryotes, Nordwijkerhout, Netherlands, p 162

    Google Scholar 

  • Liaaen-Jensen S (1965) Bacterial carotenoids. XVIII. Arylcarotenes from Phaeobium. Acta Chem Scand 19: 1025–1030

    Google Scholar 

  • Mack EE, Mandelco L, Woese CR, and Madigan MT (1993) Rhodospirillum sodomense, sp. nov, a Dead Sea Rhodospirillum species. Arch Microbiol 160: 363–371

    Article  CAS  Google Scholar 

  • Madigan MT (1986) Chromatium tepidum sp. nov, a thermophilic photosynthetic bacterium of the family Chromatiaceae. Intl J Syst Bacteriol 36: 222–227

    CAS  Google Scholar 

  • Madigan, MT and Gest H (1979) Growth of the photosynthetic bacterium ücapsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol 137: 524530

    Google Scholar 

  • Mayer H (1984) Significance of lipopolysaccharide structure for taxonomy and phylogenetical relatedness of Gram-negative bacteria. In: Haber E (ed) The Cell Membrane, pp 71–83. Plenum Press, New York

    Google Scholar 

  • Mayer H, Bock E and Weckesser J (1983) 2,3-Diamino-2,3-dideoxyglucose containing lipid A in the Nitrobacter strain X14 FEMS Microbiol Lett 17: 93–96

    Article  CAS  Google Scholar 

  • Meißner J, Krauss JH, Jürgens UJ and Weckesser J (1988a) Absence of a characteristic cell wall lipopolysaccharide in the phototrophic bacterium Chloroflexus aurantiacus. J Bacteriol 170: 3213–3216

    PubMed  Google Scholar 

  • Meißner J, Pfennig N, Krauss JH, Mayer H and Weckesser J (1988b) Lipopolysaccharides of Thiocystis violacea, Thiocapsa pfennigii and Chromatium tepidum, species of the family Chromatiaceae. J Bacteriol 170: 3217–3222

    PubMed  Google Scholar 

  • Meißner J, Borowiak D, Fischer U, Weckesser J (1988c) The lipopolysaccharide of the phototrophic bacterium Ectothiorhodospira vacuolata. Arch Microbiol 149: 245–248

    Article  Google Scholar 

  • Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR and Katz JJ (1987) Bacteriophytin g: Properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84: 2590–2594

    Google Scholar 

  • Molisch H (1907) Die Purpurbakterien nach neuen Untersuchungen. G. Fischer, Jena

    Google Scholar 

  • Neutzling O, Imhoff JF and Trüper HG (1984) Rhodopseudomonas adriatica sp. nov., a new species of the Rhodospirillaceae, dependent on reduced sulfur compounds. Arch Microbiol 137: 256–261

    Article  CAS  Google Scholar 

  • Nishimura Y, Shimizu M and Lizuka H (1981) Bacteriochlorophyll formation in radiation-resistant Pseudomonas radiora. J Gen Appl Microbiol 27: 427–430

    CAS  Google Scholar 

  • Nissen H and Dundas ID (1984) Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium from a Portuguese saltern. Arch Microbiol 138: 251–256

    Article  CAS  Google Scholar 

  • Oren A, Kessel M and Stackebrandt E (1989) Ectothiorhodospira marismortui sp. nov., an obligatory anaerobic, moderately halophilic purple sulfur bacterium from a hypersaline sulfur spring on the shore of the Dead Sea. Arch Microbiol 151: 524–529

    Article  CAS  Google Scholar 

  • Overmann J and Pfennig N (1989) Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152: 401–406

    Article  CAS  Google Scholar 

  • Overmann J, Fischer U and Pfennig N (1992) A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. Arch Microbiol 157: 329–335

    Article  CAS  Google Scholar 

  • Pelsh AD (1937) Photosynthetic sulfur bacteria of the eastern reservoir of Lake Sakskoe. Mikrobiologiya 6: 1090–1100

    Google Scholar 

  • Pfennig N (1978) General physiology and ecology of photosynthetic bacteria. In: Clayton RE and Sistrom WR (eds) The Photosynthetic Bacteria, pp 3–18. Plenum Press, New York

    Google Scholar 

  • Pfennig N (1989a) Green sulfur bacteria. In: Staley JT, Bryant MP, Pfennig N and Holt JC (eds) Bergey’s Manual of Systematic Bacteriology, Volume 3, pp 1682–1683. Williams and Wilkins, Baltimore

    Google Scholar 

  • Pfennig N (1989b) Multicellular filamentous green bacteria. In: Staley JT, Bryant MP, Pfennig N and Holt JC (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1697. Williams and Wilkins, Baltimore

    Google Scholar 

  • Pfennig N and Trüper HG (1971) Higher taxa of the phototrophic bacteria. Intl J Syst Bacteriol 21: 17–18

    Google Scholar 

  • Pfennig N and Trüper HG (1974) The phototrophic bacteria. In: Buchanan RE and Gibbons NE (eds) Bergey’s Manual of Determinative Bacteriology, pp 24–64. Williams and Wilkins, Baltimore

    Google Scholar 

  • Sato K (1978) Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AM 1. FEBS Lett 85: 207–210

    CAS  PubMed  Google Scholar 

  • Schmidt K (1978) Biosynthesis of carotenoids. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 729–750. Plenum Press, New York

    Google Scholar 

  • Schmidt K and Bowien B (1983) Notes on the description of Rhodopseudomonas blastica. Arch Microbiol 136: 242

    Article  CAS  Google Scholar 

  • Seewaldt E, Schleifer K-H, Bock E and Stackebrandt E (1982) The close phylogenetic relationship of Nitrobacter and Rhodopseudomonas palustris. Arch Microbiol 131: 287–290

    Article  CAS  Google Scholar 

  • Shiba T (1984) Utilization of light energy by the strictly aerobic bacterium Erythrobacter sp. OCH 114. J Gen Appl Microbiol 30: 239–244

    CAS  Google Scholar 

  • Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14: 140–145

    Google Scholar 

  • Shiba T, Simidu U and Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38: 43–45

    CAS  PubMed  Google Scholar 

  • Shimada K, Hayashi H and Tasumi M (1985) Bacteriochlorophyll-protein complexes of aerobic bacteria, Erythrobacter longus and Erythrobacter species OCH 114. Arch Microbiol 143: 244–247

    Article  CAS  Google Scholar 

  • Siefert E and Pfennig N (1979) Chemoautotrophic growth of Rhodopseulomonas species with hydrogen and chemotrophic utilization of methanol and formate. Arch Microbiol 122: 177–182

    Article  CAS  Google Scholar 

  • Stackebrandt E and Woese CR (1981) The evolution of procaryotes. In: Carlile MJ, Collins JR, and Moseley BEB (eds) Molecular and Cellular Aspects of Microbial Evolution, pp 1–31. Cambridge University Press, Cambridge

    Google Scholar 

  • Stackebrandt E, Fowler VJ, Schubert W and Imhoff JF (1984) Towards a phylogeny of phototrophic purple bacteria — The genus Ectothiorhodospira. Arch Microbiol 137: 366–370

    Article  CAS  Google Scholar 

  • Stackebrandt E, Murray RGE and Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the ‘purple bacteria and their relatives.’ Intl J Syst Bacteriol 38: 321–325

    Google Scholar 

  • Stadtwald-Demchick R, Turner FR and Gest H (1990a) Physiological properties of the thermotolerant photosynthetic bacterium, Rhodospirillum centenum. FEMS Microbiol Lett 67: 139–144

    Article  CAS  Google Scholar 

  • Stadtwald-Demchick, Turner FR and Gest H (1990b) Rhodopseudomonas cryptolactis, sp. nov., a new thermotolerant species of budding phototrophic purple bacteria. FEMS Microbiology Letters 71: 117–122

    Article  CAS  Google Scholar 

  • Staehelin LA, Fuller RC and Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (chlorobium vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119: 269–277

    Article  Google Scholar 

  • Staehelin LA, Golecki JR and Drews G (1980) Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589: 30–45

    CAS  PubMed  Google Scholar 

  • Steiner R, Schàfer W, Blos I, Wieschoff H and Scheer H (1981) 2, 10-Phytadienol as esterifying alcohol of bacteriochlorophyll b from Ectothiorhodospira halochloris. Z Naturforsch 36c: 417–420

    CAS  Google Scholar 

  • Trüper HG (1968) Ectothiorhodospira mobilis Pelsh, a photosynthetic sulfur bacterium depositing sulfur outside the cells. J Bacteriol 95: 1910–1920

    PubMed  Google Scholar 

  • Trüper HG (1989) Genus Erythrobacter. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1708–1709. Williams and Wilkins, Baltimore

    Google Scholar 

  • Trüper HG and Pfennig N (1981) Characterization and identification of the anoxygenic phototrophic bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A and Schlegel HG (eds) The Prokaryotes, pp 299–312. Springer Verlag, New York

    Google Scholar 

  • Van Gemerden H (1968) On the ATP generation by Chromatium in darkness. Arch Microbiol 64: 118–124

    Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW and Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156: 8190

    Article  Google Scholar 

  • Weckesser J, Drews G, Mayer H and Fromme I (1974) Lipopolysaccharide aus Rhodospirillaceae, Zusammensetzung und taxonomische Relevanz. Zentralbl Bakteriol Hyg I Abt Orig A 228: 193–198

    CAS  Google Scholar 

  • Weckesser J, Drews G and Mayer H (1979) Lipopolysaccharides of photosynthetic prokaryotes. Ann Rev Microbiol 33: 215–239

    CAS  Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B and Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–836

    Article  CAS  Google Scholar 

  • Willems A, Gillis M and de Ley J (1991) Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen. nov., comb nov., and phylogenetic relationships with Leptothrix, Sphaerotilus natans, Pseudomonas saccharophila, and Alcaligenes latus. Intl J Syst Bacteriol 41: 65–73

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    CAS  PubMed  Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH and Fox GE (1984a) The phylogeny of purple bacteria: The alpha subdivision. Syst Appl Microbiol 5: 315–326

    CAS  PubMed  Google Scholar 

  • Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops H-P, Harms H and Stackebrandt E (1984b) The phylogeny of purple bacteria: The beta subdivision. Syst Appl Microbiol 5: 327–336

    CAS  Google Scholar 

  • Woese CR, Stackebrandt E, Macke TJ and Fox GE (1985a) The phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6: 143–151

    CAS  PubMed  Google Scholar 

  • Woese CR, Weisburg WG, Hahn CM, Paster BJ, Zablen LB, Lewis BJ, Macke TJ, Ludwig W and Stackebrandt E (1985b) The phylogeny of purple bacteria: The gamma subdivision. Syst Appl Microbiol 6: 25–33

    CAS  Google Scholar 

  • Woese CR, Debrunner-Vossbrink BA, Oyaizu H, Stackebrandt E and Ludwig W (1985c) Gram positive bacteria: Possible photosynthetic ancestry. Science 229: 762–765

    CAS  PubMed  Google Scholar 

  • Zablen L and Woese CR (1975) Procaryote phylogeny IV: Concerning the phylogenetic status of a photosynthetic bacterium. J Mol Evol 5: 25–34

    Article  CAS  PubMed  Google Scholar 

  • Zahr M, Fobel B, Meyer H, Imhoff JF, Campos V P and Weckesser J (1992) Chemical composition of the lipopolysaccharides of Ectothiorhodospira shaposhnikovii, Ectothiorhodospira mobilis, and Ectothiorhodospira halophila. Arch Microbiol 157: 499–504

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Imhoff, J.F. (1995). Taxonomy and Physiology of Phototrophic Purple Bacteria and Green Sulfur Bacteria. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics