Skip to main content
Log in

A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov.

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Thermophilic green sulfur bacteria of the genus Chlorobium were isolated from certain acidic high sulfide New Zealand hot springs. Cells were Gram-negative nonmotile rods of variable length and contained bacteriochlorophyll c and chlorosomes. Cultures of thermophilic chlorobia grew only under anaerobic, phototrophic conditions, either photoautotrophically or photoheterotrophically. The optimum growth temperature for the strains of thermophilic green sulfur bacteria isolated was 47–48°C with generation times of about 2 h being observed. The upper temperature limit for growth was about 52°C. Thiosulfate was a major electron donor for photoautotrophic growth while sulfide alone was only poorly used. N2 fixation was observed at 48°C and cell suspensions readily reduced acetylene to ethylene. The G+C content of DNA from strains of thermophilic chlorobia was 56.5–58.2 mol% and the organisms positioned phylogenetically within the green sulfur bacterial branch of the domain Bacteria. The new phototrophs are described as a new species of the genus Chlorobium, Chlorobium tepidum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach-Richter LR, Gupta JR, Stetter KO, Woese CR (1987) Were the original eubacteria thermophiles? Syst Appl Microbiol 9:34–39

    Article  CAS  Google Scholar 

  • Bauld J, Brock TD (1973) Ecological studies of Chloroflexis, a gliding photosynthetic bacterium. Arch Mikrobiol 92:267–284

    Article  Google Scholar 

  • Beiji A, Izard D, Gavini F, Leclerc H, Leseine-Delstanche M, Krembel J (1987) A rapid chemical procedure for isolation and purification of chromosomal DNA from Gram-negative bacilli. Anal Biochem 162:18–23

    Article  Google Scholar 

  • Beyer P, Falk H, Kleinig H (1983) Particulate fractions from Chloroflexus aurantiacus and distribution of lipids and polyprenoid forming activities. Arch Microbiol 134:60–63

    Article  CAS  Google Scholar 

  • Biggin MD, Gibson TJ, Hong GF (1983) Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci (USA) 80:3963–3965

    Article  CAS  Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Brosius J, Palmer ML, Kennedy JP, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805

    Article  CAS  Google Scholar 

  • Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castenholz RW (1973) The possible photosynthetic use of sulfide by the filamentous phototrophic bacteria of hot springs. Limnol Occanogr 18:863–876

    Article  CAS  Google Scholar 

  • Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb Ecol 3:79–105

    Article  CAS  Google Scholar 

  • Castenholz RW (1988) The green sulfur and nonsulfur bacteria of hot springs. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 243–255

    Chapter  Google Scholar 

  • Castenholz RW, Bauld J, Jørgensen BB (1990) Anoxygenic microbial mats of hot springs: thermophilic Chlorobium sp. FEMS Microbiol Ecol 74:325–336

    Article  CAS  Google Scholar 

  • Castenholz RW, Pierson BK (1981) Isolation of members of the family Chloroflexaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 290–298

    Chapter  Google Scholar 

  • Cohen-Bazire G, Sistrom WR (1966) The procaryotic photosynthetic apparatus. In: Vernon LP, Seeley GR (eds) The chlorophylls. Academic Press, New York, pp 313–341

    Chapter  Google Scholar 

  • DeSoete G (1983) A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626

    Article  Google Scholar 

  • Gemerden Hvan (1986) The production of elemental sulfur by green and purple sulfur bacteria. Arch Microbiol 146:52–56

    Article  Google Scholar 

  • Gibson J, Ludwig W, Stackebrandt E, Woese CR (1985) The phylogeny of the green photosynthetic bacteria: absence of a close relationship between Chlorobium and Chloroflexus. System Appl Microbiol 6:152–156

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Revsbech NP, Ward DM, Castenholz RW (1987) Obligately phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats. Arch Microbiol 147:80–87

    Article  CAS  Google Scholar 

  • Gloe A, Pfennig N, Brockmann HJr, Trowitzsch W (1975) A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 102:103–109

    Article  CAS  Google Scholar 

  • Gloe A, Risch N (1978) Bacteriochlorophyll c s, a new bacteriochlorophyll from Chloroflexus aurantiacus. Arch Microbiol 118:153–156

    Article  CAS  Google Scholar 

  • Green CJ, Stewart GC, Hollis MA, Vold BS, Bott KF (1985) Nucleotide sequence of Bacillus subtilis ribosomal RNA operon, rrnB. Gene 37:261–266

    Article  CAS  Google Scholar 

  • Heda GD, Madigan MT (1986) Aspects of nitrogen fixation in Chlorobium. Arch Microbiol 143:330–336

    Article  CAS  Google Scholar 

  • Holo H, Brock-Due M, Ormerod JG (1985) Glycolipids and the structure of chlosomes in green bacteria. Arch Microbiol 143:94–99

    Article  CAS  Google Scholar 

  • Jørgensen BB (1990) A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152–154

    Article  Google Scholar 

  • Jukes TH, Cantor R (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Kelly DP (1974) Growth and metabolism of the obligate photolithotroph Chlorobium thiosulfatophilum in the presence of added organic nutrients. Arch Microbiol 100:163–178

    Article  CAS  Google Scholar 

  • Knudsen E, Jantzen E, Bryn K, Ormerod JG, Sirevåg R (1982) Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 132:149–154

    Article  CAS  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959

    Article  CAS  Google Scholar 

  • Madigan MT (1984) A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 225:313–315

    Article  CAS  Google Scholar 

  • Madigan MT (1986) Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. Int J Syst Bacteriol 36:222–227

    Article  CAS  Google Scholar 

  • Madigan MT (1988) Microbiology, physiology and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 39–111

    Google Scholar 

  • Madigan MT, Brock TD (1975) Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic, gliding bacterium. J Bacteriol 122:782–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Cox SS, Stegeman RA (1984) Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol 157:73–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594:33–51

    Article  CAS  Google Scholar 

  • Pfennig N, Trüper HG (1989) Anoxygenic phototrophic bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 1635–1709

    Google Scholar 

  • Pierson BK, Castenholz RW (1974a) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

    Article  CAS  Google Scholar 

  • Pierson BK, Castenholz RW (1974b) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100:283–305

    Article  CAS  Google Scholar 

  • Pierson BK, Castenholz RW (1991) The anoxygenic phototrophic bacteria (Family Chloroflexaceae). In: Balows A, Trüper HG, Dowrkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd ed., Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Pierson BK, Giovannoni SJ, Castenholz RW (1984) Physiological ecology of a gliding bacterium containing bacteriochlorophyll a. Appl Environ Microbiol 47:576–584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pierson BK, Giovannoni SJ, Stahl DA, Castenholz RW (1985) Heliothrix oregonensis gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch Microbiol 142:164–167

    Article  CAS  Google Scholar 

  • Resnick S, Madigan MT (1989) Isolation and characterization of a mildly thermophilic nonsulfur purple bacterium containing bacteriochlorophyll b. FEMS Microbiol Lett 65:165–170

    Article  CAS  Google Scholar 

  • Ryter A, Kellenberger E, Birch-Andersen A, Maaløe O (1958) Etude au microscope électronique de plasma contenant de l'acide desoxyribonucléique I. Les nucleoides des bactéries en croissance active. Z Naturforsch 136:597–605

    Article  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Article  CAS  Google Scholar 

  • Schmidt K (1980) A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain OK-70-fl and Chlorobium limicola, f. thiosulfatophilum strain 6230. Arch Microbiol 124: 21–31

    Article  CAS  Google Scholar 

  • Shiea J, Brassell SC, Ward DM (1991) Comparative analysis of extractable lipids in hot spring microbial mats and their component photosynthetic bacteria. Org Geochem 17:309–319

    Article  CAS  Google Scholar 

  • Stanier RY, Smith JHC (1960) The chlorophylls of green bacteria. Biochim Biophys Acta 41:478–484

    Article  CAS  Google Scholar 

  • Stolz JF, Fuller RC, Redlinger TE (1990) Pigment-protein diversity in chlorosomes of green phototrophic bacteria. Arch Microbiol 154:422–427

    Article  CAS  Google Scholar 

  • Trüper HG (1978) Sulfur metabolism. In Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 269–274

    Google Scholar 

  • Wang J, Brune DC, Blakenship RE (1990) Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. Biochim Biophys Acta 1015:457–463

    Article  CAS  Google Scholar 

  • Ward DM, Weller R, Shiea J, Castenholz RW, Cohen Y (1989) Host spring microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y, Rosenberg E (eds) Microbial mats-physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 3–15

    Google Scholar 

  • Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Yang D, Mandelco L, Sechrest J, Lawrence TG, vanEtten J, Maniloff J, Woese CR (1989) A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171:6455–6467

    Article  CAS  Google Scholar 

  • Woese CR, Stackebrandt E, Macke TJ, Fox GE (1985) A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6:143–151

    Article  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990a) Toward a natural system of organisms: Proposals for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  CAS  Google Scholar 

  • Woese CR, Mandelco L, Yang D, Gherna R, Madigan MT (1990b) The case for relationship of the flavobacteria and their relatives to the green sulfur bacteria. Syst Appl Microbiol 13:258–262

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Professor Norbert Pfennig on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahlund, T.M., Woese, C.R., Castenholz, R.W. et al. A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov.. Arch. Microbiol. 156, 81–90 (1991). https://doi.org/10.1007/BF00290978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290978

Key words

Navigation