Skip to main content

Summary

The basic requirements for diatom analysis have changed little over the last few decades in terms of sampling, slide preparation, microscopy and taxonomy but, on the other hand, there have been major improvements in our knowledge of diatom distribution and ecology and a revolution in our ability to analyse diatom data. These changes have been driven by the increasing recognition of the practical uses of diatoms as indicators of environmental change and by the development of novel numerical and computing techniques that allow diatom-environment relationships to be quantified. However, in the future and despite the application of new techniques (e.g., Vasko et al., 2000), it is unlikely that there will be significant improvements in transfer function statistics or in the range of environmental variables for which diatoms can be confidently used. Nevertheless, there is real scope for making transfer functions much more widely applicable around the world principally through web-based information systems such as EDDI (Battarbee et al., 2000), and in using the databases generated through merged training sets to explore unresolved and vastly under-researched questions of diatom biogeography. In addition, as multi-proxy approaches in palaeolimnology become common, diatomists should be able to focus more on questions of ecological response to environmental change rather than on reconstructing environmental change per se. Such a move would be especially welcome as it would herald a change from purely empirical mechanistic approaches inherent in the transfer function method to approaches that require a deeper understanding of diatom habitats, life-cycles and competitive strategies and a wider consideration of the role of diatoms in the overall functioning of aquatic ecosystems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alhonen, P., 1971. The Stages of the Baltic Sea as indicated by the diatom stratigraphy. Acta Bot. Fenn. 92: 1–18.

    Google Scholar 

  • Anderson, N. J., 1989. A whole-basin diatom accumulation rate for a small eutrophic lake in Northern Ireland and its palaeoecological implications. J. Ecol. 75: 926–946.

    Google Scholar 

  • Anderson, N. J., 2000. Diatoms, temperature and climate change. Eur. J. Phycol. 35(4): 307–314.

    Google Scholar 

  • Anderson, N. J. & B. Rippey, 1994. Monitoring lake recovery from point-source eutrophication: the use of diatom-inferred epilimnetic total phosphorus and sediment chemistry. Freshwat. Biol. 32: 625–639.

    Google Scholar 

  • Anderson, N. J., B. Rippey & C. E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia 253: 357–366.

    Article  Google Scholar 

  • Anonymous, 1975. Proposals for a standardization of diatom terminology and diagnoses. Nova Hedwigia, Beih. 53: 323–354.

    Google Scholar 

  • Appleby P. G., P. J. Nolan, D. W. Gifford, M. J. Godfrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210Pb dating by low background gamma counting. Hydrobiologia 143: 21–27.

    Article  Google Scholar 

  • Appleby, P. G. & F. Oldfield, 1988. Radioisotope studies of recent lake and reservoir sedimentation. In Crickmore, M. J. et al. (eds.) The Use of Nuclear Techniques in Sediment Transport and Sedimentation Problems, UNESCO.

    Google Scholar 

  • Barber, H. G. & E. Y. Haworth, 1981. A guide to the morphology of the diatom frustule, with a key to the British Freshwater genera. Freshwater Biological Association Scientific Publication No. 44., 112 pp.

    Google Scholar 

  • Barker, P., 1992. Differential diatom dissolution in late Quaternary sediments from Lake Manyara, Tanzania: an experimental approach. J. Paleolim. 7: 235–251.

    Article  Google Scholar 

  • Barker, P., J. C. Fontes, F. Gasse & J. C. Druart, 1994. Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limnol. Oceanogr. 39: 99–110.

    Google Scholar 

  • Battarbee, R. W., 1973. A new method for estimating absolute microfossil numbers, with special reference to diatoms. Limnol. Oceanogr. 18: 647–653.

    Google Scholar 

  • Battarbee, R. W., 1978a. Observations on the recent history of Lough Neagh and its drainage basin. Phil. Trans. r. Soc., Lond. 281: 303–345.

    Google Scholar 

  • Battarbee, R. W., 1978b. Relative composition, concentration and calculated influx of diatoms from a sediment core from Lough Erne, Northern Ireland. Pol. Arch. Hydrobiol. 25: 9–16.

    Google Scholar 

  • Battarbee, R. W., 1978c. Biostratigraphical evidence for variations in the recent pattern of sediment accumulation in Lough Neagh, N. Ireland. Verh. int. Ver. Limnol. 20: 624–629.

    Google Scholar 

  • Battarbee, R. W., 1979. Early algological records—help or hindrance to palaeolimnology? Nova Hedwigia 4: 379–394.

    Google Scholar 

  • Battarbee, R. W., 1981. Changes in the diatom microflora of a eutrophic lake since 1900 from a comparison of old algal samples and the sedimentary record. Holarct. Ecol. 4: 73–81.

    Google Scholar 

  • Battarbee, R. W., 1986a. Diatom analysis. In Berglund, B. E. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester: 527–570.

    Google Scholar 

  • Battarbee, R. W., 1986b. The eutrophication of Lough Erne inferred from changes in the diatom assemblages of 210Pb and 137Cs-dated sediment cores. Proc. R. Ir. Acad. B 86: 141–168.

    Google Scholar 

  • Battarbee, R. W., 1991. Recent palaeolimnology and diatom-based environmental reconstruction. In Shane L. C. K. & E. J. Cushing (eds.) Quaternary Landscapes. University of Minnesota Press, Minneapolis: 129–174.

    Google Scholar 

  • Battarbee, R. W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quat. Sci. Rev. 19: 197–124

    Article  Google Scholar 

  • Battarbee, R. W. & R. J. Flower, 1984. The inwash of catchment diatoms as a source of error in the sediment-based reconstruction of pH in an acid lake. Limnol. Oceanogr. 29: 1325–1329.

    Google Scholar 

  • Battarbee, R. W. & M. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnol. Oceanogr. 27: 184–188.

    Google Scholar 

  • Battarbee, R. W., J. P. Smol & J. Meriläinen, 1986. Diatoms as indicators of pH: a historical review. In Smol, J. P., R. W. Battarbee, R. B. Davis & J. Merilainen (eds.) Diatoms and Lake Acidity: the Use of Siliceous Algal Microfossils in Reconstructing pH. Junk, The Hague: 5–14.

    Google Scholar 

  • Battarbee, R. W., D. F. Charles, S. Dixit & I. Renberg, 1999. Diatoms as indicators of surface water acidity. In: The Diatoms: Applications for the Environmental and Earth sciences. In Stoermer, E. F. & J. P. Smol (eds.) Cambridge University Press, Cambridge: 85–127.

    Google Scholar 

  • Battarbee, R. W., J. Mason, I. Renberg & J. F. Tailing (eds.) 1990. Palaeolimnology and Lake Acidification. The Royal Society, London, 219 pp.

    Google Scholar 

  • Battarbee, R. W., S. Juggins, F. Gasse, N. J. Anderson, H. Bennion & N. G. Cameron, 2000. European Diatom Database (EDDI): an information system for palaeoenvironmental reconstruction. European Climate Science Conference, Vienna City Hall, Vienna, Austria, 19–23 October 1998, pp. 1–10.

    Google Scholar 

  • Bennion, H., 1994. A diatom-phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia 275/276: 391–110.

    Article  Google Scholar 

  • Bennion, H., S. Juggins & N. J. Anderson, 1996. Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function, and its application to lake eutrophication management. Environ. Sci. Tech. 30: 2004–2007.

    Google Scholar 

  • Berglund, B. E., 1986. Handbook of Holocene palaeoecology and palaeohydrology. John Wiley, Chichester, 896 pp.

    Google Scholar 

  • Beyens, L. & L. Denys, 1982. Problems in diatom analysis of deposits: allochthonous valves and fragmentation. Geologie Mijnb. 61: 159–162.

    Google Scholar 

  • Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds.) Statistical Modelling of Quaternary Science Data Quaternary Research Association Technical Guide 5, Cambridge: 161–254.

    Google Scholar 

  • Birks, H. J. B., 1998. Numerical tools in palaeolimnology—progress, potentialities, and problems. J. Palaeolim. 20: 307–332.

    Google Scholar 

  • Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990a. Diatoms and pH reconstruction. Phil. Trans. r. Soc., London B 327: 263–278.

    Google Scholar 

  • Birks, H. J. B., S. Juggins & J. M. Line, 1990b. Lake surface-water chemistry reconstructions from palaeolimnological data. In Mason, B. J. (ed.) The Surface Waters Acidification Programme. Cambridge University Press, Cambridge: 301–313.

    Google Scholar 

  • Bloesch, J. & N. M. Burns, 1980. A critical review of sedimentation trap techniques. Schweiz. Z. Hydrobiol. 42: 15–54.

    Google Scholar 

  • Bodén, P., 1991. Reproducibility in the random settling method for quantitative diatom analysis. Micropaleontology 37: 313–319.

    Google Scholar 

  • Bradbury, J. P., 1975. Diatom stratigraphy and human settlement in Minnesota. Geological Society of America, Special Paper 171, 74 pp.

    Google Scholar 

  • Bradbury, J. P. & K. V. Dieterich-Rurup, 1993. Holocene diatom palaeolimnology of Elk Lake, Minnesota. In Bradbury, J. P. & W. E. Dean (eds.) Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Geological Society of America Special Paper, 276. Boulder, Colorado: 215–237.

    Google Scholar 

  • Bradbury, J. P. & J. C. B. Waddington, 1973. The impact of European settlement on Shagawa Lake, Northeastern Minnesota, U. S. A. In H. Birks, J. B. & R. G. West (eds.) Quaternary Plant Ecology. Blackwell Scientific Publications, Oxford: 289–307.

    Google Scholar 

  • Bradbury, J. P. & T. C. Winter, 1976. Areal distribution and stratigraphy of diatoms in the sediments of Lake Sallie, Minnesota. Ecology 57: 1005–1014.

    Google Scholar 

  • Brander, G., 1936. Über das Einsammeln von Erdproben und ihre Praparation für die qualitative und quantitative Diatomeen analyse. Bull. Comm. géol. Finl. 115: 131–144.

    Google Scholar 

  • Brockmann, C., 1954. Die Diatomeen in den Ablagerungen der östpreussischen Haffe. Meyniana 3: 1–95

    Google Scholar 

  • Brugam, R. B., 1979. A re-evolution of the Araphidineae/Centrales index as an indicator of lake trophic status. Freshwat. Biol. 9: 451–460.

    Google Scholar 

  • Brugam, R. B. & C. Patterson, 1983. The A/C (Araphidineae/Centrales) ratio in high and low alkalinity lakes in eastern Minnesota. Freshw. Biol. 13: 47–55.

    Google Scholar 

  • Brugam, R. B., K. McKeever & L. Kolesa, 1998. A diatom-inferred water depth reconstruction for an Upper Peninsula, Michigan, lake. J. Paleolim. 20: 267–276.

    Article  Google Scholar 

  • Camburn, K. E. & D. F. Charles, 2000. Diatoms of low-alkalinity lakes in the Northeastern United States. The Academy of Natural Sciences of Philadelphia Special Publication 18, 152 pp.

    Google Scholar 

  • Camburn, K. E. & J. C. Kingston, 1986. The genus Melosira from soft-water lakes with special reference to northern Michigan, Wisconsin and Minnesota. In Smol, J. P., R. W. Battarbee, R. B. Davis & J. Meriläinen (Eds.) Diatoms and Lake Acidity. Dr. W. Junk, Dordrecht, The Netherlands: 17–34.

    Google Scholar 

  • Camburn, K. E., J. C. Kingston & D. F. Charles, 1986. PIRLA Diatom Iconograph. PIRLA Unpublished Report Number 3. Indiana University, Bloomington.

    Google Scholar 

  • Cameron, N. G., 1995. The representation of diatom communities by fossil assemblages in a small acid lake. J. Paleolim. 14: 185–223.

    Article  Google Scholar 

  • Cameron, N. G., H. J. B. Birks, V. J. Jones, F. Berge, J. Catalan, R. J. Flower, J. Garcia, B. Kawecka, K. A. Koinig, A. Marchetto, P. Sánchez-Castillo, R. Schmidt, M. Šiško, N. Solovieva, E. Štefková & M. Toro., 1999. Surface-sediment and epilithic diatom pH calibration sets for remote European mountain lakes (AL:PE Project) and their comparison with the Surface Waters Acidification Programme (SWAP) calibration set. J. Paleolim. 22: 291–317.

    Article  Google Scholar 

  • Campeau, S., R. Pienitz & A. Héquette, 1999. Diatoms from the Beaufort Sea coast, southern Arctic Ocean (Canada). Bibliotheca Diatomologica, Band 42. J. Cramer, Stuttgart, 244 pp.

    Google Scholar 

  • Canter, H. M., 1979. Fungal and protozoan parasites and their importance in the ecology of the phytoplankton. Rep. Freshwat. biol. Ass. 47: 43–50.

    Google Scholar 

  • Catalan, J. & L. Camarero, 1991. Ergoclines and biological processes in high-mountain lakes: similarities between the summer stratification and the ice-forming period in lake Redó (Pyrenees). Verh. int. Ver. Limnol. 24: 1011–1015.

    Google Scholar 

  • Catalan, J. & L. Camarero, 1993. Seasonal changes in pH and alkalinity in two Pyrenean high-mountain lakes. Verh. int. Ver. Limnol. 25: 749–753.

    Google Scholar 

  • Cattaneo, A. & J. Kalff, 1979. Primary production of algae growing on natural and artificial aquatic plants: a study of interactions between epiphytes and their substrate. Limnol. Oceanogr. 24: 1031–1037.

    Google Scholar 

  • Charles, D. F., 1985. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66: 994–1011.

    Google Scholar 

  • Charles, D. F., 1990. A checklist for describing and documenting diatom and chrysophyte calibration data sets and equations for inferring water chemistry. J. Paleolim. 3: 175–178.

    Google Scholar 

  • Charles, D. F. & D. R. Whitehead, 1986. The PIRLA project: Paleoecological Investigation of Recent Lake Acidification. Hydrobiologia 143: 13–20.

    Article  Google Scholar 

  • Cholnoky, B. J., 1968. Die ökologie der Diatomeen in Binnengewässern. Cramer, 699 pp.

    Google Scholar 

  • Cleve, P. T 1894–95. Synopsis of the naviculoid diatoms. Kgl. Sven. Vet. Akad. Handl., 26: 1–194, 27: 1–219.

    Google Scholar 

  • Cleve, P. T., 1899. Postglaciala bildninggarnas klassifikation págrund av deras fossila diatomacéer. Sver. geol. Unders. 180: 59–61.

    Google Scholar 

  • Cleve-Euler, A., 1922. Om diatomacevegetationen och dess förandringar I Sabysjön, Uppland, samt några dämda sjöar i Salatrakten. Sver. geol. Unders. C309: 1–76.

    Google Scholar 

  • Cleve-Euler, A., 1951–1955. Die Diatomeen von Schweden und Finnland. I-V. Kongl. svenska Vetenskapsakad. Handl. Ser. 4. 2(1): 1–163 (1951); Ser. 4, 3(3): 1-153 (1952); Ser. 4. 4(2): 1–158 (1953); Ser. 4. 4(5): 1–255 (1953); Ser. 4, 5(4): 1–232 (1955).

    Google Scholar 

  • Cox, E. J., 1996. Identification of Freshwater Diatoms from Live Material, Chapman & Hall, New York, 158 pp.

    Google Scholar 

  • Crawford, R. M., 1979. Filament Formation in the Diatom Genera Melosira C. A. Agardh and Paralia Hyberg. Nova Hegwigia 64: 121–133.

    Google Scholar 

  • Cumming, B. F., K. A. Davey, J. P. Smol & H. J. B. Birks, 1994. When did acid-sensitive Adirondack lakes (New York, USA) begin to acidify and are they still acidifying? Can. J. Fish. aquat. Sci. S. 51: 1550–1568.

    Google Scholar 

  • Cumming, B. F., S. E. Wilson, R. I. Hall & J. P. Smol, 1995. Diatoms from British Columbia (Canada) lakes and their relationship to salinity, nutrients and other limnological variables. Bibliotheca Diatomologica 31. J. Cramer, Stuttgart, 207 pp.

    Google Scholar 

  • Dalton, C. P., 2000. Impact of catchment afforestation on lakes in the west of Ireland. Unpublished PhD Thesis, University College London, 293 pp.

    Google Scholar 

  • Davis, R. B. & D. S. Anderson, 1985. Methods of pH calibration of sedimentary diatom remains for reconstructing history of pH in lakes. Hydrobiologia 120: 69–87.

    Google Scholar 

  • DeNicola, D. M., 1986. The representation of living diatom communities in deep-water sedimentary diatom assemblages in two Maine (U.S.A.) lakes. In Smol, J. P., R. W. Battarbee, R. B. Davis & J. Meriläinen (eds.) Diatoms and Lake Acidity. Dr. W. Junk, Dordrecht, The Netherlands: 73–85.

    Google Scholar 

  • Denys, L. & H. de Wolf, 1999. Diatoms as indicators of coastal paleoenvironments and relative sea-level change. In Stoermer, E. F. & J. P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 277–297.

    Google Scholar 

  • Digerfeldt, G., 1972. The post-glacial development of Lake Trummen: regional vegetation history, water level changes and palaeolimnology. Folia limnol. scand. 16: 1–104.

    Google Scholar 

  • Dixit, S. S., A. S. Dixit & J. P. Smol, 1991. Multivariate environmental inferences based on diatom assemblages from Sudbury (Canada) lakes. Freshwat. Biol. 26: 251–266.

    Google Scholar 

  • Dixit, S. S., B. F. Cumming, H. J. B. Birks, J. P. Smol, J. C. Kingston, A. J. Uutala, D. F. Charles & K. E. Camburn, 1993. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. J. Paleolim. 8: 27–47.

    Article  Google Scholar 

  • Douglas, M. S. V. & J. P. Smol, 1999. Freshwater diatoms as indicators of environmental change in the High Arctic. In Stoermer, E. F. & J. P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 227–244.

    Google Scholar 

  • Douglas, M. S. V., J. P. Smol & W. Blake, 1994. Marked post-18th century environmental change in high Arctic ecosystems. Science 266: 416–419.

    Google Scholar 

  • Droop, S. J. M., 1993. The “striatometer”—a new device for measuring striation densities. Diatom Research 8: 195–198.

    Google Scholar 

  • Eaton, J. W. & B. Moss, 1966. The estimation of numbers and pigment content in epipelic populations. Limnol. Oceanogr. 11: 584–595.

    Google Scholar 

  • Eronen, M., 1974. The history of the Litorina Sea and associated Holocene events. Commentat. Physico-math. 44: 79–195.

    Google Scholar 

  • Florin, M-B., 1944. En sensubarktisk transgression i trakten av Södra Kilsbergen enligtdiatomacé-succession i ormrådets hågre belögna fornsjölagerföljder. Geol. Fören. Förh. 66: 417–488.

    Google Scholar 

  • Florin, M-B., 1946. Clypeusfloran i postglaciala fornsjölagerföljder i östra Mellansverige, Geol. Fören. Förh. 68: 429–458.

    Google Scholar 

  • Flower, R. J., 1986. The relationship between surface sediment diatom assemblages and pH in 33 Galloway lakes: some regression models for reconstructing pH and their application to sediment cores. Hydrobiologia 143: 93–103.

    Article  Google Scholar 

  • Flower, R. J., 1993. Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia 269/270: 473–484.

    Article  Google Scholar 

  • Flower, R. J. & R. W. Battarbee, 1983. Diatom evidence for recent acidification of two Scottish lochs. Nature 20:130–133.

    Google Scholar 

  • Flower, R. J. & R. W. Battarbee, 1985. The morphology and biostratigraphy of Tabellaria quadriseptata Knudson (Bacillariophyta) in acid waters and lake sediments in Galloway, south-west Scotland. Br. Phycol. J. 20: 69–79.

    Google Scholar 

  • Flower, R. J. & Y. Likhoshway, 1993. An investigation of diatom preservation in Lake Baikal. Fifth workshop on diatom algae, March 16–20, Irkutsk, Russia, pp. 77–78.

    Google Scholar 

  • Flower, R., S. Juggins & R. W. Battarbee, 1997. Matching diatom assemblages in lake sediment cores and modern surface sediment samples: the implications for lake conservation and restoration with special reference to acidified systems. Hydrobiologia 344: 27–40.

    Article  Google Scholar 

  • Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.

    Article  Google Scholar 

  • Fritz, S. C., S. Juggins & R. W. Battarbee, 1993. Diatom assemblages and ionic characterization of freshwater and saline lakes of the Northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Can. J. Fish, aquat. Sci. S 50: 1844–1856.

    Google Scholar 

  • Fritz, S. C., B. F. Cumming, F. Gasse & K. Laird, 1999. Diatoms as indicators of hydrologic and climatic change in saline lakes. In: The Diatoms: Applications for the Environmental and Earth sciences. In Stoermer, E. F. & J. P. Smol (eds.) Cambridge University Press, Cambridge: 41–72.

    Google Scholar 

  • Fryxell, G. A., 1974. Diatom collections. Nova Hedwigia 53: 355–365.

    Google Scholar 

  • Gasse, F., 1986. East African diatoms: taxonomy, ecological distribution. Cramer, Stuttgart, 201 pp.

    Google Scholar 

  • Gasse, F., 1987. Diatoms for reconstructing palaeoenvironments and palaeohydrology in tropical semi-arid zones. Example of some lakes from Niger since 12,000 BP. Hydrobiologia 154: 127–163.

    Article  Google Scholar 

  • Gasse, F., S. Juggins & L. Ben Khelifa, 1995. Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeogr. Palaeoclim. Palaeoecol. 117: 31–54.

    Google Scholar 

  • Gasse, F., J. F. Talling & P. Kilham, 1983. Diatom assemblages in East Africa: classification, distribution and ecology. Revue Hydrobiol. trop. 16: 3–34.

    Google Scholar 

  • Gasse, F., P. Barker, P. A. Gell, S. C. Fritz & F. Chalie, 1997. Diatom-inferred salinity in palaeolakes: An indirect tracer of climate change. Quat. Sci. Rev. 16: 547–563.

    Article  Google Scholar 

  • Germain, H., 1981. Flore des Diatomées Paris: Soc. Nouv. Edit. Boubée, 444 pp.

    Google Scholar 

  • Glew, J. R., 1991. Miniature gravity corer for recovering short sediment cores. J. Paleolim. 5: 285–287.

    Article  Google Scholar 

  • Glew, J. R., J. P. Smol & W. M. Last, 2001. Sediment core collection and extrusion. In Last, W. M. & J. P. Smol (eds.) Tracking Environmental Change in Lake Sediments. Vol 1, Basin Analysis, Coring and Chronological Techniques. Kluwer Academic Publishers, Dordrecht: in pres.

    Google Scholar 

  • Halden, B., 1929. Kvartärgeologiska diatomacéestudier belysande den postglaciala transgression a Svenska Västkusten, Geol. Fören. Förh. 51: 311–366.

    Google Scholar 

  • Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in Biritsh Columbia (Canada) lakes. Freshwat. Biol. 27: 417–434.

    Google Scholar 

  • Hall, R. I. & J. P. Smol, 1993. The influence of catchment size on lake trophic status during the hemlock decline and recovery (4800 to 3500 BP) in southern Ontario lakes. Hydrobiologia 269/270: 371–390.

    Article  Google Scholar 

  • Hall, R. I. & J. P. Smol, 1999. Diatoms as indicators of lake eutrophication. In: The Diatoms: Applications for the Environmental and Earth Sciences. In Stoermer, E. F. & J. P. Smol (eds.) Cambridge University Press, Cambridge: 128–168.

    Google Scholar 

  • Harwood, D. M. & R. Gersonde, 1990. Lower Cretaceous diatoms from ODP leg 113 site 693 (Weddell Sea). Part 2: resting spores, chrysophycean cysts, an endoskeletal dinoflagellate, and notes on the origin of diatoms. In Barker, P. F., J. P. Kennett et al. Proc. ODP Sci. Results, 113: College Station, TX (Ocean Drilling Program): 403–125.

    Google Scholar 

  • Hasle, G. R., 1977. The use of electron microscopy in morphological and taxonomical diatom studies. In Werner, D. (ed.) The Biology of Diatoms. Blackwell, Oxford: 18–23.

    Google Scholar 

  • Haworth, E. Y., 1969. The diatoms of a sediment core from Blea Tarn, Langdale. J. Ecol. 57: 429–441.

    Google Scholar 

  • Haworth, E. Y., 1980. Comparison of continuous phytoplankton records with the diatom stratigraphy in the recent sediments of Blelham Tarn. Limnol. Oceanogr. 25: 1093–1103.

    Google Scholar 

  • Hurd, D. C., 1972. Factors affecting the solution rate of biogenic opal in seawater. Earth Planet. Sci. Letters 15: 411–417.

    Article  Google Scholar 

  • Hurd, D. C. & S. Birdwhistell, 1983. On producing a more general model for biogenic silica dissolution. Am. J. Sci. 283: 1–28.

    Article  Google Scholar 

  • Hustedt, F., 1927–66. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In Dr L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. 7. Leipzig: Akademische Verlagsgesellschaft.

    Google Scholar 

  • Hustedt, F., 1930. Bacillariophyta (Diatomaceae). In Pascher, A. Die Süsswasser-flora Mitteleuropas Heft 10. Jena: Gustav Fischer Verlag. 466 pp.

    Google Scholar 

  • Hustedt, F., 1937–39. Systematische und ökologische Untersuchungen über den Diatomeen-Flora von Java, Bali, Sumatra. Arch. Hydrobiol. 15 & 16.

    Google Scholar 

  • Hustedt, F., 1956. Kieselalgen (Diatomeen). Kosmos-Verlag Franckh, Stuttgart.

    Google Scholar 

  • Hustedt, F., 1957. Die Diatomeenflora des Fluss-systems der Weser im Gebiet der Hansestadt Bremen. Abh. Naturw. Ver. Bremen. 34: 181–440.

    Google Scholar 

  • Jewson, D. H., 1992a. Size reduction, reproductive strategy and the life-cycle of a centric diatom Phil. Trans. r. Soc., Lon. B 336: 191–213.

    Google Scholar 

  • Jewson, D. H., 1992b. Life cycle of Stephanodiscus sp. (Bacillariophyta). J. Phycol. 28: 856–866.

    Article  Google Scholar 

  • Jewson, D. H. & S. Lowry, 1993. Cymbellonitzschia diluviana Hustedt (Bacillariophyceae): habitat and auxosporulation. Hydrobiologia 269–70: 87–96.

    Google Scholar 

  • Jones, J. I., B. Moss, J. W. Eaton & J. O. Young, 2000. Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists. Freshwat. Biol. 43: 591–604.

    Google Scholar 

  • Jones, V. J. & R. J. Flower, 1986. Spatial and temporal variability in periphytic diatom communities: palaeoecological significance in an acidified lake. In Smol, J. P., R. W. Battarbee, R. B. Davis & J. Meriläinen (eds.) Diatoms and Lake Acidity. Dr. W. Junk, Dordrecht, The Netherlands: 87–94.

    Google Scholar 

  • Jones, V. & S. Juggins, 1995. The construction of a diatom-based chlorophyll a transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshwat. Biol. 34: 433–445.

    Google Scholar 

  • Jones, V. J., A. C. Stevenson & R. W. Battarbee, 1989. Acidification of lakes in Galloway, south west Scotland: a diatom and pollen study of the post-glacial history of the Round Loch of Glenhead. J. Ecol. 77: 1–23.

    Google Scholar 

  • Jousé, A., 1966. Diatomeen in Seesedimenten. Arch. Hydrobiol. 4: 1–32.

    Google Scholar 

  • Juggins, S., 1992. Diatoms in the Thames Estuary, England: Ecology, Palaeoecology, and Salinity Transfer Function. Bibliotheca Diatomologica, Volume 25, 216 pp.

    Google Scholar 

  • Juggins, S. & C. J. F. ter Braak, 1999. CALIBRATE Version 1.0—a program for species-environment calibration by [weighted averaging] partial least squares regression. Unpublished computer program, Department of Geography, University of Newcastle, 25 pp.

    Google Scholar 

  • Juggins, S., R. W. Battarbee & S. C. Fritz, 1994. Diatom/salinity transfer functions and climate change: an assessment of methods and application to two Holocene sequences from the northern Great Plains. In Funnell, B. M. & R. L. F. Kay (eds.) Palaeoclimate of the Last Glacial/Interglacial Cycle. NERC Earth Sciences Directorate, Swindon: 37–41.

    Google Scholar 

  • Jørgensen, E. G., 1955. Solubility of the silica in diatoms. Physiol. Pl. 8: 846–851.

    Google Scholar 

  • Kairesalo, T. & I. Koskimies, 1987. Grazing by oligochaetes and snails on epiphytes. Freshwat. Biol. 17: 317–324.

    Google Scholar 

  • Kilham, P., S. S. Kilham & R. E. Hecky, 1986. Hypothesized resource relationships among African planktonic diatoms. Limnol. Oceanogr. 31: 1169–1181.

    Google Scholar 

  • Kilham, S. S., 1984. Silicon and phosphorus growth kinetics and competitive interactions between Stephanodiscus minutus and Synedra sp. Verh. int. Ver. Limnol. 22: 435–439.

    Google Scholar 

  • Kilham, S. S., E. C. Theriot & S. C. Fritz, 1996. Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnol. Oceanogr. 41: 1052–1062.

    Google Scholar 

  • Kingston, J. C. & H. J. B. Birks, 1990. Dissolved organic carbon reconstructions from diatom assemblages in PIRLA project lakes, North America. Phil. Trans. r. Soc., London, B 327: 279–288.

    Google Scholar 

  • Kingston, J. C., B. F. Cumming, A. J. Uutala, J. P. Smol, K. E. Camburn, D. F. Charles, S. S. Dixit, & R. G. Kreis, 1992. Biological quality control and quality assurance: a case study in paleolimnological biomonitoring. In McKenzie, D. H., D. E. Hyatt & V. J. McDonald (eds.) Ecological Indicators. Elsevier Applied Science, London & New York: 1542–1543.

    Google Scholar 

  • Knox, A. S., 1942. The use of bromoform in the separation of non-calcareous microfossils. Science 95: 307.

    Google Scholar 

  • Kolkwitz, R. & M. Marsson, 1908. Ökologie der pflanzlichen Saprobien. Ber. dt. bot. Ges. 26a: 505–519.

    Google Scholar 

  • Korhola, A., J. Weckström, L. Holmström, & P. Erästö, 2000. A quantitative climatic record from diatoms in Northern Fennoscandia. Quat. Res. 54, 284–294.

    Article  Google Scholar 

  • Korsman, T. & H. J. B. Birks, 1996. Diatom-based water chemistry reconstructions from northern Sweden: a comparison of reconstruction techniques. J. Paleolim. 15: 65–77.

    Article  Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae. I. Teil. Naviculaceae. In Süsswasserflora von Mitteleuropa, Band 2/1. 876 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae. 2. Teil. Bacillariaceae, Epithemiaceae, Surirellaceae. In Süsswasserflora von Mitteleuropa, Band 2/2

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae. 3. Teil. Zentrische Diatomeen, Diatoma, Meridion, Asterionella, Tabellaria, Fragilaria, Eunotia und Verwandte, Peronia und Actinella. In Süsswasserflora von Mitteleuropa, Band 2/4 230 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae. 4. Teil. Achnanthes, Navicula, Gomphonema, Kritische Nachtraege, Literatur. In Süsswasserflora von Mitteleuropa.

    Google Scholar 

  • Kreiser, A. M. & R. W. Battarbee, 1988. Analytical Quality Control (AQC) in diatom analysis. Proceedings of Nordic Diatomist Meeting, University of Stockholm, Department of Quaternary Geology Research Report 12, pp 41–44.

    Google Scholar 

  • Laird, K. R., S. C. Fritz, K. A. Maasch & B. F. Cumming, B. F., 1996. Greater drought intensity and frequency before AD 1200 in the Northern Great Plains. Nature 384: 552–554.

    Article  Google Scholar 

  • Laird, K. R., S. C. Fritz & B. F. Cumming, 1998a. A diatom-based reconstruction of drought intensity, duration, and frequency from Moon Lake, North Dakota: a sub-decadal record of the last 2300 years. J. Paleolim. 19: 161–179.

    Article  Google Scholar 

  • Laird, K. R., S. C. Fritz, B. F. Cumming & E. C. Grimm, 1998b. Early-Holocene limnology and climatic variability in the Northern Great Plains. The Holocene 8: 275–285.

    Article  Google Scholar 

  • Lauterborn, R. 1896. Untersuchungen über Bau, Kernteilung und Bewegung der Diatomeen. Leipzig: W. Engelmann, 165 pp.

    Google Scholar 

  • Lewin, J., 1961. The dissolution of silica from diatom walls. Geoch. Cosmoch. Acta. 21: 182–198.

    Google Scholar 

  • Line, J. M., C. J. F. ter Braak & H. J. B. Birks, 1994. WACALIB version 3.3—a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. J. Paleolim. 10: 147–152.

    Article  Google Scholar 

  • Lohmann, K. E. & G. W. Andrews, 1968. Late Eocene non-marine diatoms from the Beaver Divide area, Fremont County, Wyoming. U.S. Geological Survey Professional Paper, 593-E, 26 pp.

    Google Scholar 

  • Lotter, A. F, H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.

    Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.

    Article  Google Scholar 

  • Lotter, A. F, P. G. Appleby, J. A. Dearing, J-A. Grytnes, W. Hofmann, C. Kamenik, A. Lami, D. M. Livingstone, C. Ohlendorf, N. L. Rose, M. Sturm & R. Thompson, in press. The record of the last 200 years in the sediments of Hagelseewli (2339 m asl), a high-elevation lake in the Swiss Alps. J. Paleolim.

    Google Scholar 

  • Lund, J. W. G., 1954. The seasonal cycle of the plankton diatom Melosira italica (Ehr.) Kütz. subarctica O. Müll. J. Ecol. 42: 151–179.

    Google Scholar 

  • Lund, J. W. G., 1955. Further observations on the seasonal cycle of Melosira italica (Ehr.) Kütz. subarctica O. Müll. J. Ecol. 43: 90–102.

    Google Scholar 

  • Lund, J. W. G., 1959a. Buoyancy in relation to the ecology of the freshwater phytoplankton. Br. phycol. Bull. 7: 1–17.

    Google Scholar 

  • Lund, J. W. G., 1959b. A simple counting chamber for nannoplankton. Limnol. Oceanogr. 4: 57–65.

    Google Scholar 

  • Lund, J. W. G. & J. F. Tailing, 1957. Botanical limnological methods with special reference to the algae. Bot. Rev. 23: 489–583.

    Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Maberly, SC., M. A. Hurley, C. Butterwick, J. E. Corry, S. I. Heaney, A. E. Irish, G. H. M. Jaworski, J. W. G. Lund, C. S. Reynolds & J. V. Roscoe, 1994. The rise and fall of Asterionella formosa in the South Basin of Windermere: analysis of a 45-year series of data. Freshwat. Biol. 31: 19–34.

    Google Scholar 

  • MacDonald, J. D., 1869. On the structure of the diatomaceous frustule, and its genetic cycle. Ann. Mag. nat. Hist. series 4, 3: 1–8.

    Google Scholar 

  • Mackay, A. W., R. J. Flower, A. E. Kuzmina, L. Z. Granina, N. L. Rose, P. G. Appleby, J. F. Boyle & R. W. Battarbee, 1998. Diatom succession trends in recent sediments from Lake Baikal and relationship to atmospheric pollution and to climate change. Phil. Trans. r. Soc., London B 353: 1011–1055.

    Google Scholar 

  • Mackereth, F. J. H., 1969. A short core sampler for subaqeous deposits. Limnol. Oceanogr. 14: 145–151.

    Google Scholar 

  • Mann, D. G., 1993. Patterns of sexual reproduction in diatoms. Hydrobiologia 269/270: 11–20

    Article  Google Scholar 

  • Mann, D. G., 1994. The origins of shape and form in diatoms: the interplay between morphogenetic studies and systematics. In: The Linnean Society, Shape and Form in Plants and Fungi of London, pp. 17–38.

    Google Scholar 

  • Mann, D. G. & H. J. Marchant, 1989. The origins of the diatom and its life cycle. In Leadbeater, B. S. C. & J. C. Green (eds.) The Chromophyte Algae: Problems and Perspectives. Oxford University Press, Oxford

    Google Scholar 

  • Medlin L. K., D. M. Williams & P. A. Sims, 1993. The evolution of the diatoms (Bacillariophyta). I. Origin of the group and assessment of the monophyly of its major divisions. European J. Phycol. 28: 261–275.

    Google Scholar 

  • Meriläinen, J., 1967. The diatom flora and the hydrogen ion concentration of the water. Ann. bot. fenn. 4: 51–58.

    Google Scholar 

  • Molder, K. & R. Tynni, 1967–80. Uber Finnlands rezente und subfossile Diatomeen I–XI, Comptes Rendus de la Societé Géologique de Finlande.

    Google Scholar 

  • Miller, U., 1964. Diatom floras in the Quaternary of the Göta River Valley. Sver. geol. Unders. 44: 1–67.

    Google Scholar 

  • Munro, M. A. R., A. M. Kreiser, R. W. Battarbee, S. Juggins, A. C. Stevenson, D. S. Anderson, N. J. Anderson, F. Berge, H. J. B. Birks, R. B. Davis, R. J. Flower, S. C. Fritz, E. Y. Haworth, V. J. Jones, J. C. Kingston & I. Renberg, 1990. Diatom quality control and data handling. Phil. Trans. r. Soc., London B 327: 257–261.

    Google Scholar 

  • Nipkow, E, 1920. Vorlaufige Mitteilung über Untersuchungen des Sclammabsatzes im Zurichsee. Schweiz. Z. Hydrobiol. 1: 100–122.

    Google Scholar 

  • Nygaard, G., 1956. Ancient and recent flora of diatoms and chrysophyceae in Lake Gribsø, Studies on the humic acid lake Gribsø. Folia limnol. scand. 8: 32–94.

    Google Scholar 

  • Oldfield, F., R. W. Battarbee & J. A. Dearing, 1983. New approaches to recent environmental change. Geog. J. 149: 167–181.

    Article  Google Scholar 

  • Overpeck, J. T, T. Webb, & I. C. Prentice, 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat. Res. 23: 87–108.

    Article  Google Scholar 

  • Paasche, E., 1960. On the relationship between primary production and standing stock of phytoplankton. J. Cons. Int. Explor. Mer. 26.

    Google Scholar 

  • Patrick, R., 1977. Ecology of freshwater diatoms—diatom communities. In Werner, D. (ed.) The Biology of Diatoms. Blackwell, Oxford: 284–332.

    Google Scholar 

  • Patrick, R. & C. W. Reimer, 1966. The diatoms of the United States I. Acad. Nat. Sci. Philad., Monogr. 13, 688 pp.

    Google Scholar 

  • Patrick, R. & C. W. Reimer, 1975. The diatoms of the United States II, part 1. Acad. Nat. Sci. Philad., Monogr. 13, 213 pp.

    Google Scholar 

  • Pennington, W., 1943. Lake sediments: the bottom deposits of the N. Basin of Windermere with special reference to the diatom succession, New Phytol. 43: 1–27.

    Google Scholar 

  • Pennington, W., R. S. Cambray & E. M. Fisher, 1973. Observations on lake sediments using fallout 137Cs as a tracer. Nature 242: 324–326.

    Article  Google Scholar 

  • Pfitzer, E., 1968. Über den Bau und die Zellteilung der Diatomeen. Bot. Ztg. 27: 774–776.

    Google Scholar 

  • Pienitz, R. & J. P. Smol, 1993. Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia 269/270: 391–404.

    Article  Google Scholar 

  • Pienitz, R. & W. F. Vincent, 2000. Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes. Nature 404: 484–487.

    Article  Google Scholar 

  • Pienitz, R., J. P. Smol & H. J. B. Birks, 1995. Assessment of freshwater diatoms as quantitative indicators of past climate change in the Yukon and Northwest Territories, Canada. J. Paleolim. 13: 21–49.

    Article  Google Scholar 

  • Pienitz, R., J. P. Smol & G. M. MacDonald, 1999. Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada. Arct. Alp. Res. 31: 82–93.

    Google Scholar 

  • Psenner, R., 1988. Alkalinity generation in a soft-water lake: watershed and in-lake processes. Limnol. Oceanogr. 33: 1463–1475.

    Google Scholar 

  • Psenner, R. & R. Schmidt, 1992. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356: 781–783.

    Article  Google Scholar 

  • Reed, J. M., 1998. Diatom preservation in the recent sediment record of Spanish lakes: implications for palaeoclimate study. J. Paleolim. 19: 129–137.

    Google Scholar 

  • Renberg, I., 1976. Palaeolimnological investigations in Lake Prästsjön. Early Norrland 9: 113–160.

    Google Scholar 

  • Renberg, I., 1981. Improved methods for sampling, photographing and varve-counting of varved lake sediments. Boreas 10: 255–258.

    Google Scholar 

  • Renberg, I., 1990a. A 12,600 year perspective of the acidification of Lilla Öresjön, southwest Sweden. Phil. Trans. r. Soc., London B, 327: 357–361.

    Google Scholar 

  • Renberg, I., 1990b. A procedure for preparing large sets of diatom slides from sediment cores. J. Paleolim. 4: 87–90.

    Article  Google Scholar 

  • Renberg, I. & T. Hellberg, 1982. The pH history of lakes in southwestern Sweden, as calculated from the subfossil diatom flora of the sediments. Ambio 11: 30–33.

    Google Scholar 

  • Reynolds, C. S., 1973. The seasonal periodicity of planktonic diatoms in a shallow eutrophic lake. Freshwat. Biol. 3: 89–110.

    Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge, 384 pp.

    Google Scholar 

  • Richardson, T. L., C. E. Gibson & S. I. Heaney, 2000. Temperature, growth and seasonal succession of phytoplankton in Lake Baikal, Siberia. Freshwat. Biol. 44: 431–440.

    Google Scholar 

  • Rioual, P., 2000. Diatom assemblages and water chemistry of lakes in the French Massif Central: A methodology for reconstruction of past limnological and climate fluctuations during the Eemian period. Unpublished PhD Thesis, University College London. 509 pp.

    Google Scholar 

  • Rippey, B., 1977. The behaviour of phosphorus and silicon in undisturbed cores of Lough Neagh sediments. In Golterman, H. L. (ed.) Interactions between Sediments and Freshwater. Dr. W. Junk, Dordrecht, The Netherlands: 348–353.

    Google Scholar 

  • Rippey, B., 1983. A laboratory study of the silicon release process from a lake sediment (Lough Neagh, Northern Ireland). Arch. Hydrobiol. 96: 417–433.

    Google Scholar 

  • Ross, R. & P. A. Sims, 1972. The fine structure of the frustule in centric diatoms: a suggested terminology. Br. Phycol. J. 7: 139–163.

    Google Scholar 

  • Ross, R., E. J. Cox, N. I. Karayeva, R. Simonsen & P. A. Sims, 1979. An amended terminology for the siliceous components of the diatom cell. Nova Hedwigia, Beih. 64: 513–533.

    Google Scholar 

  • Rothpletz, A., 1896. Über die Flywsch-Fucoiden und einige andere fossile Algen, sowie über Liasische, Diatomeen führende Hornschwämme Z. Deutsch. Geol. Ges., 48: 854–914.

    Google Scholar 

  • Rothpletz, A., 1900. Über einen neuen jurassichen Hornschwamm und die darin eingeschlossenen Diatomeen. Z. Deutsch. Geol. Ges. 52: 154–160.

    Google Scholar 

  • Round, F. E., 1957. The late-glacial and post-glacial diatom succession in the Kentmere Valley deposit. I Introduction, methods and flora. New Phytol. 56: 98–126.

    Google Scholar 

  • Round, F. E., 1981a. Morphology and phyletic relationships of the silicified algae and the archetypal diatom—monophyly or polyphyly? In Simpson, T.L. & B.E. Volcani (eds.) Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York: 97–128.

    Google Scholar 

  • Round, F. E., 1981b. Some aspects of the origin of diatoms and their subsequent evolution. Biosystems 14: 483–486.

    Article  Google Scholar 

  • Round, F. E., 1981c. The Ecology of Algae. Cambridge University Press, Cambridge, 653 pp.

    Google Scholar 

  • Round, F. E. & R. M. Crawford, 1981. The lines of evolution of the Bacillariophyhta I. Origin. Proc. r. Soc., London. B 211: 237–260.

    Google Scholar 

  • Round, F. E., R. M. Crawford & D. G. Mann, 1990. The diatoms. Biology and morphology of the genera. Cambridge University Press, Cambridge, 747 pp.

    Google Scholar 

  • Ryves, D. B., 1994. Diatom dissolution in saline lake sediments: an experimental study in the Great Plains of North America. Unpublished PhD Thesis, University College London. 306 pp.

    Google Scholar 

  • Scherer, R. P., 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. J. Paleolim. 12: 171–179.

    Article  Google Scholar 

  • Schindler, D. W., S. E. Bayley, B. R. Parker, K. G. Beaty, D. R. Cruikshank, E. J. Fee, E. U. Schindler & M. P. Stainton, 1996. The effects of climate warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol. Oceanogr. 41: 1004–1017.

    Google Scholar 

  • Schmid, A-M. M., 1995. Salt-tolerance of diatoms of the Neusiedlersee (Austria): a model study for palaeolimnological interpretations. In Robertsson, A-M., S. Hicks, A. Åkerlund, J. Risberg & T. Hackens (eds.) Landscapes and Life. PACT 50, Council of Europe: 463–470.

    Google Scholar 

  • Schmidt, A., 1874–1959. Atlas der Diatomaceenkunde 472 plates. Leipzig: R. Reisland, Ascherleben.

    Google Scholar 

  • Schoeman, F. R. & R. E. M. Archibald, 1980. The diatom flora of Southern Africa 6, 1–35 C. S.I.R. Special Rep. Wat. 50.

    Google Scholar 

  • Shennan, I., M. J. Tooley, M. J. Davis & B. A. Haggart, 1983. Analysis and interpretation of Holocene sea-level data. Nature 302: 404–406.

    Article  Google Scholar 

  • Simonsen, R., 1962. Untersuchungen zur Systematik und Ökologie der Bodendiatomeen der westlichen Ostsee. Int. Rev. ges. Hydrobiol. Syst. Beih. 1, 144 pp.

    Google Scholar 

  • Simonsen, R., 1979. The Diatom System: Ideas on Phylogeny. Bacillaria 2: 9–71.

    Google Scholar 

  • Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. int. Ver. Limnol. 23: 837–844.

    Google Scholar 

  • Smol, J. P. & B. F. Cumming, 2000. Tracking long-term changes in climate using algal indicators in lake sediments. J. Phycol. 36: 986–1011.

    Article  Google Scholar 

  • Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R.W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R. Munro & I. Renberg, 1991. The Surface Waters Acidification Project Palaeolimnology Programme: Modern Diatom/Lake-Water Chemistry Data-Set. London: Ensis Ltd, 86 pp.

    Google Scholar 

  • Stockner, J. G. & W. W. Benson, 1967. The succession of diatom assemblages in the recent sediments of Lake Washington. Limnol. Oceanogr. 12: 513–532.

    Google Scholar 

  • Stoermer, E. F. & J. P. Smol (eds.) 1999. The Diatoms: Applications for the Environmental and Earth sciences. Cambridge University Press, Cambridge, 469 pp.

    Google Scholar 

  • Suzuki, Y. & M. Takahashi, 1995. Growth responses of several diatom species isolated form various environments to temperature. J. Phycol. 31: 880–888.

    Article  Google Scholar 

  • Talling, J. F., 1957. Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytol. 56: 29–50.

    Google Scholar 

  • ter Braak, C. J. F., 1986. Canonical correspondance analysis: A new eigenvector method for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • ter Braak, C. J. F., 1987a. CANOCO—a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1) ITI-TNO, Wageningen, 95 pp.

    Google Scholar 

  • ter Braak, C. J. F., 1987b. Unimodal models to relate species to environment. Unpublished PhD thesis, University of Wageningen.

    Google Scholar 

  • ter Braak, C. J. P. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.

    Article  Google Scholar 

  • ter Braak, C. J. F. & H. van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.

    Article  Google Scholar 

  • Tessenow, U., 1964. Experimentaluntersuchungen zur Kieselsaureruckfuhrung aus dem Schlamm der Seen durch Chironomidenlarven (Plumosus-Gruppe). Arch. Hydrobiol. 60: 497–504.

    Google Scholar 

  • Tessenow, U., 1966. Untersuchungen über den Kieselsaureaushalt der Binnengewasser. Arch. Hydrobiol. Suppl. 32: 1–136.

    Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annu. Rev. Ecol. Syst. 13: 349–372.

    Article  Google Scholar 

  • Underwood, G. J. C. & J. D. Thomas, 1990. Grazing interaction between pulmonate snails and epiphytic algae and bacteria. Freshwat. Biol. 23: 505–521.

    Google Scholar 

  • Van den Hoek, C., D. G. Mann & H. M. Jahns, 1995. Algae: an Introduction to Phycology. Cambridge University Press, Cambridge, 627 pp.

    Google Scholar 

  • van der Werff, A., 1955. A new method of concentrating and cleaning diatoms and other organisms. Verh. int. Ver. Limnol. 12: 276–277.

    Google Scholar 

  • van der Werff, A. & H. Huls, 1957–74. Diatomenflora van Netherland. Reprint 1976. Otto Koeltz Science Publishers, Koenigstein.

    Google Scholar 

  • van Landingham, S. L., 1969–1979. Catalogue of the fossil and recent genera and species of diatoms and their synonyms Volumes 1–8, J. Cramer, Vaduz, 4654 pp.

    Google Scholar 

  • Vasko, K., H. T. T. Toivonen & A. Korhola, 2000. A Bayesian multinomial Gaussian response model for organism-based environmental reconstruction. J. Paleolim. 24: 243–250.

    Article  Google Scholar 

  • Vinebrooke, R. D. & P. R. Leavitt, 1996. Effects of ultraviolet radiation in an alpine lake. Limnol. Oceanogr. 41: 1035–1040.

    Article  Google Scholar 

  • Vos, P. C. & H. de Wolf, 1988. Methodological aspects of paleo-ecological diatom research in coastal areas of the Netherlands. Geologie Mijnb. 67: 31–40.

    Google Scholar 

  • Vos, P. C. & H. de Wolf, 1993a. Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. Hydrobiologia 269/270: 285–296.

    Google Scholar 

  • Vos, P. C. & H. de Wolf, 1993b. Reconstruction of sedimentary environments in Holocene coastal deposits of the southwest Netherlands; the Poortvliet boring, a case study of palaeoenvironmental diatom research. Hydrobiologia 269/270: 297–306.

    Google Scholar 

  • Vyverman, W. & K. Sabbe, 1995. Diatom-temperature transfer functions based on the altitudinal zonation of diatom assemblages in Papua New Guinea: a possible tool in the reconstruction of regional palaeoclimatic changes. J. Paleolim. 13: 65–77.

    Article  Google Scholar 

  • Weckström, J. A., A. Korhola & T. Blom, 1997. The relationship between diatoms and water temperature in 30 subarctic Fennoscandian lakes. Arc. Alp. Res. 29: 75–92.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological analyses. Springer-Verlag, New York, 391 pp.

    Google Scholar 

  • Whitehead, D. R., D. F. Charles, S. T. Jackson, J. P. Smol & D. R. Engstrom, 1989. The developmental history of Adirondack (N.Y.) lakes. J. Paleolim. 2: 185–206.

    Article  Google Scholar 

  • Whitmore, T. J., 1989. Florida diatom assemblages as indicators of trophic status and pH. Limnol. Oceanogr. 34: 882–895.

    Article  Google Scholar 

  • Williams, D. M., 1989. Publication of new and revised taxa: a guide to the International Code of Botanical Nomenclature for diatomists. J. Paleolim. 2: 55–60.

    Article  Google Scholar 

  • Williams, D. M. & F. E. Round, 1986. Revision of the genus Synedra Ehrenb. Diatom Research, 1: 313–339.

    Google Scholar 

  • Williams, D. M. & F. E. Round, 1987. Revision of the genus Fragiliaria. Diatom Research, 2: 267–288.

    Google Scholar 

  • Williams, D. M., B. Hartley, R. Ross, M. A. R. Munro, S. Juggins & R. W. Battarbee, 1988. A coded checklist of British diatoms. Ensis Ltd Publishing, London.

    Google Scholar 

  • Wilson, S. E., B. F. Cumming & J. P. Smol, 1996. Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219 lake data set from Western North America. Can. J. Fish. aquat. Sci. S 53: 1580–1594.

    Google Scholar 

  • Wolfe, A. P., 1997. On diatom concentrations in lake sediments: results from an inter-laboratory comparison and other tests performed on a uniform sample. J. Paleolim 18: 261–268.

    Google Scholar 

  • Wright, H. E., 1980. Cores of soft lake sediment. Boreas 9: 107–114.

    Google Scholar 

  • Wunsam, S. & R. Schmidt, 1995. A diatom-phosphorus transfer function for alpine and pre-alpine lakes. Memoire Istit. ital. Idrobiol. 53: 85–99.

    Google Scholar 

  • Yang, J-R. & H.C. Duthie, 1995. Regression and weighted-averaging models relating surficial sediment diatom assemblages to water depth in Lake Ontario. J. Great Lakes Res. 21: 84–94.

    Article  Google Scholar 

  • Zong, Y. & B. P. Horton, 1999. Diatom-based tidal-level transfer functions as an aid in reconstructing Quaternary history of sea-level movements in the UK. J. Quat. Sci. 14: 153–167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Battarbee, R.W. et al. (2002). Diatoms. In: Smol, J.P., Birks, H.J.B., Last, W.M., Bradley, R.S., Alverson, K. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47668-1_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-47668-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0681-4

  • Online ISBN: 978-0-306-47668-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics