Skip to main content
Log in

Inferring pH from diatoms: a comparison of old and new calibration methods

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Two new methods for inferring pH from diatoms are presented. Both are based on the observation that the relationships between diatom taxa and pH are often unimodal. The first method is maximum likelihood calibration based on Gaussian logit response curves of taxa against pH. The second is weighted averaging. In a lake with a particular pH, taxa with an optimum close to the lake pH will be most abundant, so an intuitively reasonable estimate of the lake pH is to take a weighted average of the pH optima of the species present.

Optima and tolerances of diatom taxa were estimated from contemporary pH and proportional diatom counts in littoral zone samples from 97 pristine soft water lakes and pools in Western Europe. The optima showed a strong relation with Hustedt's pH preference groups. The two new methods were then compared with existing calibration methods on the basis of differences between inferred and observed pH in a test set of 62 additional samples taken between 1918 and 1983. The methods were ranked in order of performance as follows (between brackets the standard error of inferred pH in pH units); maximum likelihood (0.63) > weighted averaging (0.71) = multiple regression using pH groups (0.71) = the Gasse & Tekaia method (0.71) > Renberg & Hellberg's Index B (0.83) » multiple regression using taxa (2.2). The standard errors are larger than those usually obtained from surface sediment samples. The relatively large standard may be due to seasonal variation and to the effects of other factors such as humus content. The maximum likelihood method is statistically rigorous and can in principle be extended to allow for additional environmental factors. It is computer intensive however. The weighted averaging approach is a good approximation to the maximum likelihood method and is recommended as a practical and robust alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvey, N. C., N. Galwey & P. Lane, 1982. An introduction to GENSTAT. Academic Press, London, 152 pp.

    Google Scholar 

  • Bartlein, P. J. & T. III Webb, 1985. Mean July temperature at 6000 yr B.P. in Eastern North America: regression equations from fossil-pollen data. Syllogeus 55: 301–342.

    Google Scholar 

  • Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Phil. Trans. r. Soc., London 305: 451–477.

    Google Scholar 

  • Battarbee, R. W. & D. F. Charles, 1986. Diatom-based pH-reconstruction of acid lakes in Europe and North America. Wat. Air and Soil Pollut 30: 347–354.

    Google Scholar 

  • Battarbee, R. W., J. P. Smol & J. Meriläinen, 1986. Diatoms as indicators of pH: an historical review. In J. P. Smol, R. W. Battarbee, R. B. Davis & J. Merilainen (eds), Diatoms and lake acidity. Junk, Dordrecht. Developments in Hydrobiology 29: 6–14

  • Berge, F., 1976. Diatoms and pH in some rivers and lakes in Agder and Telemark (Norway). A comparison between the years 1949 and 1975. Internal Report 18/76. SNSF-Project, Oslo-Ås, 36 pp. (in Norwegian)

  • Blakar, I. A. & T. Digernes, 1984. Evaluation of acidification based on former colorimetric determination of pH: the effect of indicators on pH in poorly buffered water. Verb. int. Ver. theor. and angew. Limnol. 22: 679–685.

    Google Scholar 

  • Brown, P. J., 1982. Multivariate calibration. J. Roy. Statist. Soc. Ser. B 44: 287–321.

    Google Scholar 

  • Charles, D. F., 1985. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66: 994–1011.

    Google Scholar 

  • Davis, R. B., 1987. Paleolinmological diatom studies of acidification of lakes by acid rain: an application of Quaternary science. Quater. Sci. Rev. 6: 147–163.

    Google Scholar 

  • Davis, R. B. & D. S. Anderson, 1985. Methods of pH calibration of sedimentary diatom remains for reconstructing history of pH in lakes. Hydrobiologia 120: 69–87.

    Google Scholar 

  • Davis, R. B. & J. P. Smol, 1986. The use of sedimentary remains of siliceous algae for inferring past chemistry of lake waters — problems, potentials and research needs. In J. P. Smol, R. W. Battarbee, R. B. Davis & J. Meriläinen (eds), Diatoms and lake acidity. Junk, Dordrecht. Developments in Hydrobiology 29: 291–300

  • Dixit, S. S., 1986. Diatom-inferred pH calibration of lakes near Wawa, Ontario. Can. J. Bot. 64: 1129–1133.

    Google Scholar 

  • Dixit, S. S. & R. D. Evans, 1986. Spatial variability in sedimentary algal microfossils and its bearing on diatominferred pH reconstructions. Can. J. Fish. aquat. Sci. 43: 1836–1845.

    Google Scholar 

  • Ellenberg, H., 1948. Unkrautgesellschaften als Mass für den Säuregrad, die Verdichtung und andere Eigenschaften des Ackerbodens. Ber. Landtech. 4: 130–146.

    Google Scholar 

  • Ellenberg, H., 1979. Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobotanica 9, Göttingen, 121 pp.

    Google Scholar 

  • Flower, R. J., 1986. The relationship between surface sediment diatom assemblages and pH in 33 Galloway Lakes: some regression models for reconstructing pH and their application to sediment cores. Hydrobiologia 143: 93–103.

    Google Scholar 

  • Gasse, F. & F. Tekaia, 1983. Transfer functions for estimating paleoecological conditions (pH) from East African diatoms. Hydrobiologia 103: 85–90.

    Google Scholar 

  • Gauch, H. G. & R. H. Whittaker, 1972. Coenocline simulation. Ecology 53: 446–451.

    Google Scholar 

  • Gause, G. F., 1930. Studies on the ecology of the Orthoptera. Ecology 11: 307–325.

    Google Scholar 

  • Gifi, A., 1981. Nonlinear multivariate analysis. DSWO-press, Leiden, 451 pp.

    Google Scholar 

  • Goff, F. G. & G. Cottam, 1967. Gradient analysis: the use of species and synthetic indices. Ecology 48: 793–806.

    Google Scholar 

  • Haines, T. A., J. G. Akielaszek, S. A. Norton & R. B. Davis, 1983. Errors in pH measurement with colorimetric methods in low alkalinity waters. Hydrobiologia 107: 56–61.

    Google Scholar 

  • Hesse, R., 1924. Tiergeographie auf ökologischer Grundlage. Verlag von Gustav Fisher, Jena, 613 pp.

    Google Scholar 

  • Howe, S. E. & T. III Webb, 1983. Calibrating pollen data in climatic terms: improving the methods. Quater. Sci. Rev. 2: 17–51.

    Google Scholar 

  • Hustedt, F., 1939. Systematische und ökologische Untersuchungen über die Diatomeenflora von Java, Bali and Sumatra. Arch. Hydrobiol./Suppl. 16: 274–394.

    Google Scholar 

  • Imbrie, J. & N. G. Kipp, 1971. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. In K. K. Turekian (ed.): The late Cenozoic glacial ages. Yale University Press, New Haven: 77–181.

    Google Scholar 

  • Jones, V. J. & R. J. Flower, 1986. Spatial and temporal variability in periphytic diatom communities: Palaeoecological significance in an acidified lake. In J. P. Smol, R. W. Battarbee, R. B. Davis & J. Meriläinen (eds), Diatoms and lake acidity. Junk, Dordrecht, Developments in Hydrobiology 29: 87–94

  • Jørgensen, B., 1983. Maximum likelihood estimation and large-sample inference for generalized linear and nonlinear regression models. Biometrika 70: 19–28.

    Google Scholar 

  • Kelly, C. A., J. W. M. Rudd, A. Furutani & D. W. Schindler, 1984. Effects of lake acidification on rates of organic matter decomposition in sediments. Limnol. Oceanogr. 29: 687–694.

    Google Scholar 

  • McCullagh, P. & J. A. Nelder, 1983. Generalized linear models. Chapman and Hall, London, 261 pp.

    Google Scholar 

  • Montgomery, D. C. & E. A. Peck, 1982. Introduction to linear regression analysis. J. Wiley & Sons, NY, 504 pp.

    Google Scholar 

  • Oehlert, G. W., 1986. Interval estimates for diatom inferred lake pH histories. Techn. report 469, School of Statistics, University of Minnesota, Minnesota.

    Google Scholar 

  • Pantle, R. & H. Buck, 1955. Die biologische Ueberwachung der Gewässer und die Darstellung der Ergebnisse. Gasund Wasserfach 96: 604.

    Google Scholar 

  • Renberg, I. & T. Hellberg, 1982. The pH history of lakes in southwestern Sweden as calculated from the subfossil diatom flora of the sediments. Ambio 11: 30–33.

    Google Scholar 

  • Roux, M., 1979. Estimation des paléoclimats d'après l'écologie des foraminifères. Cah. Anal. Données 4: 61–79.

    Google Scholar 

  • Salden, N., 1978. Beiträge zur Ökologie der Diatomeen (Bacillariophyceae) des Süsswassers. Decheniana, Beih. (Bonn) 22: 1–238.

    Google Scholar 

  • Shelford, V. E., 1911. Ecological succession: stream fishes and the method of physiographic analysis. Biol. Bull. (Woods Hole) 21: 9–34.

    Google Scholar 

  • Sládeček, V., 1986. Diatoms as indicators of organic pollution. Acta hydrochim. hydrobiol. 14: 555–566.

    Google Scholar 

  • Steinberg, C., K. Arzet & D. Krause-Dellin, 1984. Gewässer-versauerung in der Bundesrepublik Deutschland im Lichte paläolimnologischer Studien. Naturwissenschaften 71: 631–634.

    Google Scholar 

  • Stoermer, E. F. & T. B. Ladewski, 1976. Apparent optimal temperatures for the occurrence of some common phytoplankton species in southern Lake Michigan. Great Lakes Research Division, publication 18, the University of Michigan, Ann Arbor.

    Google Scholar 

  • Taylor, M. C., H. C. Duthie & S. M. Smith, 1986. Surficial diatom assemblages — limnological relationships in Canadian Shield lakes. Poster, presented at the Ninth International Symposium on Living and Fossil Diatoms, Bristol. 24–30 August 1986.

  • Ter Braak, C. J. F., 1985. Correspondence analysis of incidence and abundance data: properties in terms of a unimodal reponse model. Biometrics 41: 859–873.

    Google Scholar 

  • Ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • Ter Braak, C. J. F., 1987a. Calibration. In R. H. G. Jongman, C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen: 78–90.

    Google Scholar 

  • Ter Braak, C. J. F., 1987b. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.

    Google Scholar 

  • Ter Braak, C. J. F., 1987c. CANOCO — a FORTRAN program for canonical community ordination by [partial][detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). TNO Institute of Applied Computer Science, Wageningen, 95 pp.

    Google Scholar 

  • Ter Braak, C. J. F. & L. G. Barendregt, 1986. Weighted averaging of species indicator values: its efficiency in environmental calibration. Math. Biosci. 78: 57–72.

    Google Scholar 

  • Ter Braak, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3–11.

    Google Scholar 

  • Thienemann, A., 1932. Limnologie. In R. Dittler, G. Joos, E. Korschelt, G. Linck, F. Oltmanns & K. Schaum (eds), Handbuch der Naturwissenschaften (2. Aufl.), 6. Band. Fischer, Jena: 434–475.

    Google Scholar 

  • Van Dam, H., 1984. A guide to the literature for the identification of freshwater diatoms in The Netherlands. Hydrobiol. Bull. 18: 11–16.

    Google Scholar 

  • Van Dam, H. & K. Beljaars, 1984. Nachweis von Versauerung in West-Europäischen kalkarmen stehenden Gewässern durch Vergleich von alten and rezenten Kieselalgenproben. In J. Wieting, B. Lenhart, C. Steinberg, A. Hamm & R. Schoen (eds), Gewässerversauerung in der Bundesrepublik Deutschland. Umweltbundesamt/Schmidt, Berlin. Materialien 1: 184–188.

  • Van Dam, H. & H. Kooyman-van Blokland, 1978. Manmade changes in some Dutch moorland pools, as reflected by historical and recent data about diatoms and macrophytes. Int. Revue ges. Hydrobiol. 63: 587–607.

    Google Scholar 

  • Van Dam, H., G. Suurmond & C. J. F. ter Braak, 1981. Impact of acidification on diatoms and chemistry of Dutch moorland pools. Hydrobiologia 35: 425–459.

    Google Scholar 

  • Walker, I. R. & C. G. Paterson, 1986. Associations of diatoms in the surficial sediments of lakes and peat pools in Atlantic Canada. Hydrobiologia 134: 265–272.

    Google Scholar 

  • Webb, T. III & D. R. Clark, 1977. Calibrating micropaleontological data in climatic terms: a critical review. Ann. N.Y. Acad. Sci. 288: 93–118.

    Google Scholar 

  • Whittaker, R. H., S. A. Levin & R. B. Root, 1973. Niche, habitat and ecotope. Am. Nat. 107: 321–338.

    Google Scholar 

  • Zelinka, M. & P. Marvan, 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fliessender Gewässer. Arch. Hydrobiol. 57: 389–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ter Braak, C.J.F., van Dame, H. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178, 209–223 (1989). https://doi.org/10.1007/BF00006028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006028

Key words

Navigation