Skip to main content
Log in

Methods of electron microscopy of biological and abiogenic structures in artificial gas atmospheres

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reviews opportunities for using electron microscopy in various gas atmospheres for the analysis and morpho-physiological modification of biological structures. The approaches that allow varying the gaseous phase content, as well as temperature, humidity, and pressure, are considered. The applicability of both kinetic and dynamic approaches to the tissue and bioinorganic structure manipulations is pointed out. The possibility of simulation of the beam-induced formation and disintegration of abiogenetic molecular structures is also mentioned as a particular case of the electron beam influence and treatment of the precursor medium in an artificial atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, J.H., Sowa Resat, M., Metting, N.F., Wei, K., Lynch, D.J., and Wilson, W.E., Monte Carlo simulation of single-cell irradiation by an electron microbeam, Radiat. Environ. Biophys., 2000, vol. 39, no. 3, pp. 173–177.

    Article  Google Scholar 

  2. Miller, J.H., Suleiman, A., Chrisler, W.B., and Sowa, M.B., Simulation of electron-beam irradiation of skin tissue model, Radiat. Res., 2011, vol. 175, no. 1, pp. 113–118.

    Article  Google Scholar 

  3. Moncrieff, D.A., Barker, P.R., and Robinson, V.N.E., Electron scattering by gas in the scanning electron microscope, J. Phys. D: Appl. Phys., 1979, vol. 12, no. 4, pp. 481–488.

    Article  Google Scholar 

  4. Mathieu, C., The beam-gas and signal-gas interactions in the variable pressure scanning electron microscope, Scanning Microsc., 1999, vol. 13, no. 1, pp. 23–41.

    Google Scholar 

  5. Morgan, S.W. and Phillips, M.R., Transient analysis of gaseous electron-ion recombination in the environmental scanning electron microscope, J. Microsc. (Oxford, U. K.), 2006, vol. 221, no. 3, pp. 183–202.

    Article  MathSciNet  Google Scholar 

  6. Danilatos, G.D., Cathodoluminescence and gaseous scintillation in the environmental SEM, Scanning, 1986, vol. 8, no. 6, pp. 279–284.

    Article  Google Scholar 

  7. Liu, W., Liu, Y., Chen, H., Liu, K., Tao, H., and Sun, X., Xenon preconditioning: molecular mechanisms and biological effects, Med. Gas Res., 2013, vol. 3(1), no. 3. doi: 10.1186/2045-9912-3-3

    Article  Google Scholar 

  8. Delgado-Roche, L., Martínez-Sánchez, G., and Re, L., Ozone oxidative preconditioning prevents atherosclerosis development in New Zealand white rabbits, J. Cardiovasc. Pharmacol., 2013, vol. 61, no. 2, pp. 160–165.

    Article  Google Scholar 

  9. Smit, K.F., Oei, G.T., Brevoord, D., Stroes, E.S., Nieuwland, R., Schlack, W.S., Hollmann, M.W., Weber, N.C., and Preckel, B., Helium induces preconditioning in human endothelium in vivo, Anesthesiology, 2013, vol. 118, no. 1, pp. 95–104.

    Article  Google Scholar 

  10. Duan, Z., Zhang, L., Liu, J., Xiang, X., and Lin, H., Early protective effect of total hypoxic preconditioning on rats against systemic injury from hemorrhagic shock and resuscitation, J. Surg. Res., 2012, vol. 178, no. 2, pp. 842–850.

    Article  Google Scholar 

  11. Soejima, Y., Ostrowski, R.P., Manaenko, A., Fujii, M., Tang, J., and Zhang, J.H., Hyperbaric oxygen preconditioning attenuates hyperglycemia enhanced hemorrhagic transformation after transient MCAO in rats, Med. Gas Res., 2012, vol. 2(1), no. 9. doi: 10.1186/2045-9912-2-9

    Article  Google Scholar 

  12. Semenza, G.L. and Prabhakar, N.R., Gas biology: Small molecular medicine, J. Mol. Med. (Heidelberg, Ger.), 2012, vol. 90, no. 3, pp. 213–215.

    Google Scholar 

  13. Nakao, A. and Toyoda, Y., Book review: Gas biology research in clinical practice, edited by Toshikazu Yoshikawa and Yuji Naito, Med. Gas Res., 2011, vol. 1(1), no. 25. doi: 10.1186/2045-9912-1-25

    Article  Google Scholar 

  14. Frey, S.A., Stroboscopic technique for electron micrographs, Med. Biol., 1965, vol. 15 (Suppl.), pp. 19–21.

    Google Scholar 

  15. Plows, G.S. and Nixon, W.C., Stroboscopic scanning electron microscopy, J. Sci. Instrum., 1968, vol. 2, no. 1, pp. 595–600.

    Article  Google Scholar 

  16. Robinson, G.Y., Stroboscopic scanning electron microscopy at gigahertz frequencies, Rev. Sci. Instrum., 1971, vol. 42, no. 2, pp. 251–255.

    Article  Google Scholar 

  17. Szentesi, O.I., Stroboscopic electron mirror microscopy at frequencies up to 100 MHz, J. Phys. E: Sci. Instrum., 1972, vol. 5, no. 6, pp. 563–567.

    Article  Google Scholar 

  18. Zewail, A.H., Four-dimensional electron microscopy, Science, 2010, vol. 328, no. 5975, pp. 187–193.

    Article  Google Scholar 

  19. Kwon, O.-H., Ortalan, V., and Zewail, A.H., Macromolecular structural dynamics visualized by pulsed dose control in 4D electron microscopy, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 15, pp. 6026–6031.

    Article  Google Scholar 

  20. Baskin, J.S., Park, H.S., and Zewail, A.H., Nanomusical systems visualized and controlled in 4D electron microscopy, Nano Lett., 2011, vol. 11, no. 15, pp. 2183–2191.

    Article  Google Scholar 

  21. Gradov, O.V. and Gradova, M.A., Cryo-electron microscopy as a functional instrument for systems biology, structural analysis and experimental manipulations with living cells. A comprehensive analytical review of the current works, Probl. Cryobiol. Cryomed., 2014, vol. 24, no. 3, pp. 193–211.

    Google Scholar 

  22. Nejadasl, K.F., Karuppasamy, M., Koster, A.J., and Ravelli, R.B., Defocus estimation from stroboscopic cryo-electron microscopy data, Ultramicroscopy, 2011, vol. 111, no. 11, pp. 1592–1598.

    Article  Google Scholar 

  23. Danilatos, G.D., Design and construction of an atmospheric or environmental SEM (part 1), Scanning, 1981, vol. 4, no. 1, pp. 9–20.

    Article  Google Scholar 

  24. Danilatos, G.D. and Postle, R., Design and construction of an atmospheric or environmental SEM (part 2), Micron, 1983, vol. 14, no. 1, pp. 41–52.

    Google Scholar 

  25. Danilatos, G.D., Design and construction of an atmospheric or environmental SEM (part 3), Scanning, 1985, vol. 7, no. 1, pp. 26–42.

    Article  MathSciNet  Google Scholar 

  26. Danilatos, G.D., Design and construction of an atmospheric or environmental SEM (part 4), Scanning, 1990, vol. 12, no. 1, pp. 23–27.

    Article  Google Scholar 

  27. De Jonge, N., Bigelow, W.C., and Veith, G.M., Atmospheric pressure scanning transmission electron microscopy, Nano Lett., 2010, vol. 10, no. 3, pp. 1028–1031.

    Article  Google Scholar 

  28. Morrison, I.E.G., Dennison, C.L., Nishiyama, H., Suga, M., Sato, C., Yarwood, A., and O’Toole, P.J., Atmospheric scanning electron microscope for correlative microscopy, Methods Cell Biol., 2012, vol. 111, ch. 16, pp. 307–324.

    Article  Google Scholar 

  29. Maruyama, Y., Ebihara, T., Nishiyama, H., Suga, M., and Sato, C., Immuno EM-OM correlative microscopy in solution by atmospheric scanning electron microscopy (ASEM), J. Struct. Biol., 2012, vol. 180, no. 2, pp. 259–270.

    Article  Google Scholar 

  30. Suga, M., Nishiyama, H., Konyuba, Y., Iwamatsu, S., Watanabe, Y., Yoshiura, C., Ueda, T., and Sato, C., The atmospheric scanning electron microscope with open sample space observes dynamic phenomena in liquid or gas, Ultramicroscopy, 2011, vol. 111, no. 12, pp. 1650–1658.

    Article  Google Scholar 

  31. Sato, C., Manaka, S., Nakane, D., Nishiyama, H., Suga, M., Nishizaka, T., Miyata, M., and Maruyama, Y., Rapid imaging of mycoplasma in solution using atmospheric scanning electron microscopy (ASEM), Biochem. Biophys. Res. Commun., 2012, vol. 417, no. 4, pp. 1213–1218.

    Article  Google Scholar 

  32. Murai, T., Sato, M., Nishiyama, H., Suga, M., and Sato, C., Ultrastructural analysis of nanogold-labeled cell surface microvilli in liquid by atmospheric scanning electron microscopy and their relevance in cell adhesion, Int. J. Mol. Sci., 2013, vol. 14, no. 10, pp. 20809–20819.

    Article  Google Scholar 

  33. Nishiyama, H., Suga, M., Ogura, T., Maruyama, Y., Koizumi, M., Mio, K., Kitamura, S., and Sato, C., Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film, J. Struct. Biol., 2010, vol. 169, no. 3, pp. 438–449.

    Article  Google Scholar 

  34. Nishiyama, H., Suga, M., Ogura, T., Maruyama, Y., Koizumi, M., Mio, K., Kitamura, S., and Sato, C., Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film, J. Struct. Biol., 2010, vol. 172, no. 2, pp. 191–202.

    Article  Google Scholar 

  35. Luo, P., Morrison, I., Dudkiewicz, A., Tiede, K., Boyes, E., O’Toole, P., Park, S., and Boxall, A.B., Visualization and characterization of engineered nanoparticles in complex environmental and food matrices using atmospheric scanning electron microscopy, J. Microsc. (Oxford, U. K.), 2013, vol. 250, no. 1, pp. 32–41.

    Article  Google Scholar 

  36. Maruyama, Y., Ebihara, T., Nishiyama, H., Konyuba, Y., Senda, M., Numaga-Tomita, T., Senda, T., Suga, M., and Sato, C., Direct observation of protein microcrystals in crystallization buffer by atmospheric scanning electron microscopy, Int. J. Mol. Sci., 2012, vol. 13, no. 8, pp. 10553–10567.

    Article  Google Scholar 

  37. Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M., and Zandbergen, H.W., Atomic-scale electron microscopy at ambient pressure, Ultramicroscopy, 2008, vol. 108, no. 9, pp. 993–998.

    Article  Google Scholar 

  38. Heide, H.G., Electron microscopic observation of specimens under controlled gas pressure, J. Cell Biol., 1962, vol. 13, no. 1, pp. 147–152.

    Article  Google Scholar 

  39. Clode, P.L., Charge contrast imaging of biomaterials in a variable pressure scanning electron microscope, J. Struct. Biol., 2006, vol. 155, no. 3, pp. 505–511.

    Article  Google Scholar 

  40. Griffin, B.J., Variable pressure and environmental scanning electron microscopy: Imaging of biological samples, Electron Microscopy Methods and Protocols, Methods Mol. Biol., Totowa, NJ: Humana Press, 2007, vol. 369, 2 ed., pp. 467–495.

    Article  Google Scholar 

  41. Niitsuma, J.-I., Sekiguchi, T., Yuan, X.-L., and Awano, Y., Electron beam nanoprocessing of a carbon nanotube film using a variable pressure scanning electron microscope, J. Nanosci. Nanotechnol., 2007, vol. 7, no. 7, pp. 2356–2360.

    Article  Google Scholar 

  42. Kliewer, C.E., Kiss, G., and DeMartin, G.J., Ex situ transmission electron microscopy: A fixed-bed reactor approach, Microsc. Microanal., 2006, vol. 12, no. 2, pp. 135–144.

    Article  Google Scholar 

  43. Houwink, A.L., Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study, J. Gen. Microbiol., 1956, vol. 15, no. 1, pp. 146–150.

    Article  Google Scholar 

  44. Maina, J.N., Scanning electron microscope study of the spatial organization of the air and blood conducting components of the avian lung (Gallus gallus variant domesticus), Anat. Rec., 1988, vol. 222, no. 2, pp. 145–153.

    Article  Google Scholar 

  45. McMaster, T.J., Miles, M.J., and Walsby, A.E., Direct observation of protein secondary structure in gas vesicles by atomic force microscopy, Biophys. J., 1996, vol. 70, no. 5, pp. 2432–2436.

    Article  Google Scholar 

  46. Fowler, S.A., Korb, D.R., Finnemore, V.M., Ross, R.N., and Allansmith, M.R., Coatings on the surface of siloxane gas permeable lenses worn by keratoconic patients: a scanning electron microscope study, CLAO J., 1987, vol. 13, no. 4, pp. 207–210.

    Google Scholar 

  47. Sugi, H., Akimoto, T., Chaen, S., and Suzuki, S., ATP-induced axial movement of myosin heads in living thick filaments recorded with a gas environmental chamber attached to the electron microscope, Adv. Exp. Med. Biol., 1998, vol. 453, pp. 53–62.

    Article  Google Scholar 

  48. Minoda, H., Okabe, T., Inayoshi, Y., Miyakawa, T., Miyauchi, Y., Tanokura, M., Katayama, E., Wakabayashi, T., Akimoto, T., and Sugi, H., Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber, Biochem. Biophys. Res. Commun., 2011, vol. 405, no. 4, pp. 651–656.

    Article  Google Scholar 

  49. Engelhardt, W.A. and Ljubimowa, M.N., Myosine and adenosinetriphosphatase, Nature, 1939, vol. 144, no. 3650, pp. 668–669.

    Article  Google Scholar 

  50. Gai, P.L., Environmental high resolution electron microscopy of gas-catalyst reactions, Top. Catal., 1999, vol. 8, nos. 1–2, pp. 97–113.

    Article  Google Scholar 

  51. Swiegers, G., Mechanical Catalysis: Methods of Enzymatic, Homogeneous, and Heterogeneous Catalysis, Hoboken, NJ: Wiley, 2008.

    Book  Google Scholar 

  52. Steinfeld, J.I., Francisco, J.S., and Hase, W.L., Chemical Kinetics and Dynamics, Upper Saddle River, NJ: Prentice Hall, 1998.

    Google Scholar 

  53. White, A., Dynamic aspects of biochemistry, Yale J. Biol. Med., 1947, vol. 19, no. 5, p. 900.

    Google Scholar 

  54. Cammarata, P.S., Dynamic aspects of biochemistry, Yale J. Biol. Med., 1953, vol. 25, no. 6, pp. 546–547.

    Google Scholar 

  55. Turning over an old leaf: Dynamic Aspects of Biochemistry by Ernest Baldwin. pp. 457 Cambridge University Press, 1947, Biochem. Educ., 1988, vol. 16, no. 3, p. 180.

    Google Scholar 

  56. Benesch, J.L.P. and Ruotolo, B.T., Mass spectrometry: Come of age for structural and dynamical biology, Curr. Opin. Struct. Biol., 2011, vol. 21, no. 5, pp. 641–649.

    Article  Google Scholar 

  57. Gradova, N.B., A review of the textbook Osnovy dinamicheskoi biokhimii (Fundamentals of Dynamic Biochemistry) by V.K. Plakunov and Yu.A. Nikolaev (Moscow: Logos, 2010), Microbiology, 2011, vol. 80, no. 2, p. 273.

    Google Scholar 

  58. Kamino, T., Yaguchi, T., Konno, M., Watabe, A., Marukawa, T., Mima, T., Kuroda, K., Saka, H., Arai, S., Makino, H., Suzuki, Y., and Kishita, K., Development of a gas injection/specimen heating holder for use with transmission electron microscope, J. Electron Microsc., 2005, vol. 54, no. 6, pp. 497–503.

    Article  Google Scholar 

  59. Sharma, R., Design and applications of environmental cell transmission electron microscope for in situ observations of gas-solid reactions, Microsc. Microanal., 2001, vol. 7, no. 6, pp. 494–506.

    Google Scholar 

  60. Kawasaki, T., Ueda, K., Ichihashi, M., and Tanji, T., Improvement of windowed type environmental-cell transmission electron microscope for in situ observation of gas-solid interactions, Rev. Sci. Instrum., 2009, vol. 80, no. 11, 113701. doi: 10.1063/1.3250862

    Article  Google Scholar 

  61. Robertson, I.M. and Tetter, D., Controlled environment transmission electron microscopy, Microsc. Res. Tech., 1998, vol. 42, no. 4, pp. 260–269.

    Article  Google Scholar 

  62. Danilatos, G.D. and Postle, R., The environmental scanning electron microscope and its applications, Scanning Electron Microsc., 1982, vol. 1, pp. 1–16.

    Google Scholar 

  63. Coillot, D., Podor, R., Méar, F.O., and Montagne, L., Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM), J. Electron Microsc., 2010, vol. 59, no. 5, pp. 359–366.

    Article  Google Scholar 

  64. Sigee, D.C. and Gilpin, C., X-ray microanalysis with the environmental scanning electron microscope: Interpretation of data obtained under different atmospheric conditions, Scanning Microsc., Suppl., 1994, vol. 8, pp. 219–227.

    Google Scholar 

  65. Hansen, T.W. and Wagner, J.B., Environmental transmission electron microscopy in an aberration-corrected environment, Microsc. Microanal., 2012, vol. 18, no. 4, pp. 684–690.

    Article  Google Scholar 

  66. Gauvin, R., Griffin, B., Nockolds, C., Phillips, M., and Joy, D.C., A method to measure the effective gas path length in the environmental or variable pressure scanning electron microscope, Scanning, 2002, vol. 24, no. 4, pp. 171–174.

    Article  Google Scholar 

  67. Toth, M., Thiel, B.L., and Knowles, W.R., Gas cascade amplification in ultra-high-resolution environmental scanning electron microcopy, Microsc. Microanal., 2010, vol. 16, no. 6, pp. 805–809.

    Article  Google Scholar 

  68. Crozier, P.A. and Chenna, S., In situ analysis of gas composition by electron energy-loss spectroscopy for environmental transmission electron microscopy, Ultramicroscopy, 2011, vol. 111, no. 3, pp. 177–185.

    Article  Google Scholar 

  69. Zou, Q. and Hatta, A., Electron field emission from carbon nanotubes in air for excitation of atmospheric pressure microplasma, J. Nanosci. Nanotechnol., 2009, vol. 9, no. 2, pp. 924–928.

    Article  Google Scholar 

  70. Kim, E.L., Chuprunova, S.E., and Portnov, V.N., A method for quality control of water-soluble single crystals by X-ray diffractometry under heating, Ind. Lab. (Diagn. Mater.), 2000, vol. 66, no. 9, pp. 590–593.

    Google Scholar 

  71. Gukhman, A.A., Volynets, A.Z., Gavrilova, E.V., and Efremenko, G.N., Theory of psychrometry, J. Eng. Phys. (N. Y.), 1975, vol. 28, no. 4, pp. 499–504.

    Article  Google Scholar 

  72. Nonami, H. and Boyer, J.S., Origin of growth-induced water potential: solute concentration is low in apoplast of enlarging tissues, Plant Physiol., 1987, vol. 83, no. 3, pp. 596–601.

    Article  Google Scholar 

  73. Shackel, K.A., Direct measurement of turgor and osmotic potential in individual epidermal cells: independent confirmation of leaf water potential as determined by in situ psychrometry, Plant Physiol., 1987, vol. 83, no. 4, pp. 719–722.

    Article  Google Scholar 

  74. Ham, R.G. and Puck, T.T., A regulated incubator controlling CO2 concentration, humidity and temperature for use in animal cell culture, Proc. Soc. Exp. Biol. Med., 1962, vol. 111, no. 1, pp. 67–71.

    Article  Google Scholar 

  75. Liebes, L.F., Maher, V.M., Scherr, P., and McCormick, J.J., Automatic gas tank switching system for CO2 incubators, in vitro, 1976, vol. 12, no. 3, pp. 265–268.

    Article  Google Scholar 

  76. Ozawa, M., Nagai, T., Kaneko, H., Noguchi, J., Ohnuma, K., and Kikuchi, K., Successful pig embryonic development in vitro outside a CO2 gas-regulated incubator: Effects of pH and osmolality, Theriogenology, 2006, vol. 65, no. 4, pp. 860–869.

    Article  Google Scholar 

  77. Swif, J.A. and Brown A.C., An environmental cell for the examination of wet biological specimens at atmospheric pressure by transmission scanning electron microscopy, J. Phys. E: Sci. Instrum., 1970, vol. 3, no. 11, pp. 924–926.

    Article  Google Scholar 

  78. Parsons, D.F., Structure of wet specimens in electron microscopy, Science, 1974, vol. 186, no. 4162, pp. 407–414.

    Article  Google Scholar 

  79. Donald, A.M., The use of environmental scanning electron microscopy for imaging wet and insulating materials, Nat. Mater., 2003, vol. 2, no. 8, pp. 511–516.

    Article  Google Scholar 

  80. Henderson, R. and McMullan, G., Problems in obtaining perfect images by single-particle electron cryomicroscopy of biological structures in amorphous ice, Microscopy (Oxford, U. K.), 2013, vol. 62, no. 1, pp. 43–50.

    Google Scholar 

  81. Nolin, F., Michel, J., Wortham, L., Tchelidze, P., Balossier, G., Banchet, V., Bobichon, H., Lalun, N., Terryn, C., and Ploton, D., Changes to cellular water and element content induced by nucleolar stress: Investigation by a cryo-correlative nano-imaging approach, Cell. Mol. Life Sci., 2013, vol. 70, no. 13, pp. 2383–2394.

    Article  Google Scholar 

  82. Krichevskii, E.S., Volchenko, A.G., Podgornyi, Yu.V., Proskuryakov, R.M., and Roskin, V.I., Thermovacuum aquametrynew method of measuring moistness, Meas. Tech., 1976, vol. 19, no. 7, pp. 1042–1045.

    Article  Google Scholar 

  83. Jung, Y.C. and Bhushan, B., Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces, J. Microsc. (Oxford, U. K.), 2008, vol. 229, no. 1, pp. 127–140.

    Article  MathSciNet  Google Scholar 

  84. De Mets, M. and Lagasse, A., Scanning electron microscopic investigation of gas chromatographic support material, Chromatographia, 1969, vol. 2, no. 9, pp. 401–403.

    Article  Google Scholar 

  85. Sakodynsky, K. and Panina, L., Scanning electron microscopic investigations of gas chromatographic porous polymer sorbents, Chromatographia, 1971, vol. 4, no. 3, pp. 113–118.

    Article  Google Scholar 

  86. Wong, C. and Yang, R.T., Scanning electron microscopy study of the kinetics of a gas-solid reaction, Ind. Eng. Chem. Fundam., 1983, vol. 22, no. 4, pp. 380–384.

    Article  Google Scholar 

  87. Kim, B., Lee, J.-g., Kim, E., Yun, S., Kim, K., and Kim, J.-Y., MFM and gas adsorption isotherm analysis of proton beam irradiated multi-walled carbon nanotubes, Ultramicroscopy, 2008, vol. 108, no. 10, pp. 1228–1232.

    Article  Google Scholar 

  88. Sharma, R. and Weiss, K., Development of a TEM to study in situ structural and chemical changes at an atomic level during gas-solid interactions at elevated temperatures, Microsc. Res. Tech., 1998, vol. 42, no. 4, pp. 270–280.

    Article  Google Scholar 

  89. Nagoya University: Improvement of windowed type environmental-cell transmission electron microscope for in situ observation of gas-solid interactions, Issues in Applied, Analytical, and Imaging Sciences Research, Acton, Q.A., Ed., Atlanta, GA: ScholarlyEditions, 2011, 2011 ed.

  90. Sayagués, M.J., Krumeich, F., and Hutchison, J.L., Solid-gas reactions of complex oxides inside an environmental high-resolution transmission electron microscope, Micron, 2001, vol. 32, no. 5, pp. 457–471.

    Article  Google Scholar 

  91. Watson, J.H.L, Electron microscope observations of the morphology of several gases polymerized by charged-particle bombardment, J. Phys. Colloid Chem., 1947, vol. 51, no. 3, pp. 654–661.

    Article  Google Scholar 

  92. Barthlott, W., Ehler, N., and Schill R., Abtragung biologischer Oberflächen durch hochfrequenzaktivierten Sauerstoff für die Raster-Elektronenmikroskopie, Mikroskopie, 1976, vol. 32, nos. 1–2, pp. 35–44.

    Google Scholar 

  93. Ganczarczyk, A., Geller, M., and Lorke, A., XeF2 gasassisted focused-electron-beam-induced etching of GaAs with 30 nm resolution, Nanotechnology, 2011, vol. 22, no. 4, 045301. doi: 10.1088/09574484/22/4/045301

    Article  Google Scholar 

  94. Wu, H.M., Stern, L.A., Chen, J.H., Huth, M., Schwalb, C.H., Winhold, M., Porrati, F., Gonzalez, C.M., Timilsina, R., and Rack, P.D., Synthesis of nanowires via helium and neon focused ion beam induced deposition with the gas field ion microscope, Nanotechnology, 2013, vol. 24, no. 17, 175302. doi: 10.1088/0957-4484/24/17/175302

    Article  Google Scholar 

  95. Adamiak, B. and Mathieu, C., The reduction of the beam gas interactions in the variable pressure scanning electron microscope with the use of helium gas, Scanning, 2000, vol. 22, no. 3, pp. 178–181.

    Article  Google Scholar 

  96. Mansour, O., Kadoun, A., Khouchaf, L., and Mathieu, C., Monte Carlo simulation of the electron beam scattering under water vapor environment at low energy, Vacuum, 2013, vol. 87, pp. 11–15.

    Article  Google Scholar 

  97. Chee, A.K.W., Broom, R.F., Humphreys, C.J., and Bosch, E.G.T., A quantitative model for doping contrast in the scanning electron microscope using calculated potential distributions and Monte Carlo simulations, J. Appl. Phys. (Melville, NY, U. S.), 2011, vol. 109, no. 1, 013109. doi: 10.1063/1.3524186

    Google Scholar 

  98. Hoburg, A., Keshlaf, S., Schmidt, T., Smith, M., Gohs, U., Perka, C., Pruss, A., and Scheffler, S., Fractionation of high-dose electron beam irradiation of BPTB grafts provides significantly improved viscoelastic and structural properties compared to standard gamma irradiation, Knee Surg. Sports Traumatol. Arthrosc., 2011, vol. 19, no. 11, pp. 1955–1961.

    Article  Google Scholar 

  99. Rubino, S., Akhtar, S., Melin, P., Searle, A., Spellward, P., and Leifer, K., A site-specific focused-ionbeam lift-out method for cryo transmission electron microscopy, J. Struct. Biol., 2012, vol. 180, no. 3, pp. 572–576.

    Article  Google Scholar 

  100. Khouchaf, L., The surface skirt in gaseous scanning electron microscope (GSEM), Microsc. Res., 2013, vol. 1, no. 3, pp. 29–32.

    Article  Google Scholar 

  101. Khouchaf, L. and Verstraete, J., Electron scattering by gas in the environmental scanning electron microscope (ESEM): Effects on the image quality and on the X-ray microanalysis, J. Phys. IV, 2004, vol. 118, pp. 237–243.

    Google Scholar 

  102. Shah, J.S. and Beckett, A., A preliminary evaluation of moist environment ambient temperature scanning electron microscopy, Micron, 1979, vol. 10, no. 1, pp. 13–23.

    Google Scholar 

  103. Fletcher, A.L., Thiel, B.L., and Donald, A.M., Signal components in the environmental scanning electron microscope, J. Microsc. (Oxford, U. K.), 1999, vol. 196, no. 1, pp. 26–34.

    Article  Google Scholar 

  104. Erlykin, A., Sloan, T., and Wolfendale, A., Cosmic rays, climate and the origin of life, CERN Courier. 2010 http://cerncourier.com/cws/article/cern/41723.

    Google Scholar 

  105. Erlykin, A.D. and Wolfendale, A.W., Long term time variability of cosmic rays and possible relevance to the development of life on earth, Surv. Geophys., 2010, vol. 31, no. 4, pp. 383–398.

    Article  Google Scholar 

  106. Stribeck, N., X-ray Scattering of Soft Matter, Berlin–Heidelberg: Springer-Verlag, 2007.

    Google Scholar 

  107. Mulkidjanian, A.Y. and Galperin, M.Y., On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth, Biol. Direct, 2009, vol. 4, no. 27. doi: 10.1186/1745-6150-4-27

    Google Scholar 

  108. Podkletnov, N.E. and Markhinin, E.K., New data on abiogenic synthesis of prebiological compounds in volcanic processes, Origins Life, 1981, vol. 11, no. 4, pp. 303–315.

    Article  Google Scholar 

  109. Balucani, N., Nitrogen fixation by photochemistry in the atmosphere of titan and implications for prebiotic chemistry, The Early Evolution of the Atmospheres of Terrestrial Planets, Astrophys. Space Sci. Proc., New York: Springer, 2013, vol. 35, pp. 155–164.

    Article  Google Scholar 

  110. Abel, D.L., Moving “far from equilibrium” in a prebiotic environment: The role of Maxwell’s Demon in life origin, Genesis?In The Beginning: Precursors of Life, Chemical Models and Early Biological Evolution, Cell. Origin, Life Extreme Habitats Astrobiol., New York: Springer, 2012, vol. 22, pp. 219–236.

    Article  Google Scholar 

  111. Kobayashi, K., Tsuchiya, M., Oshima, T., and Yanagawa, H., Abiotic synthesis of amino acids and imidazole by proton irradiation of simulated primitive earth atmosphere, Origins Life Evol. Biospheres, 1990, vol. 20, no. 2, pp. 99–109.

    Article  Google Scholar 

  112. Kobayashi, K., Kaneko, T., Tsuchiya, M., Saito, T., Yamamoto, K., Koike, J., and Oshima, T., Formation of bioorganic compounds in planetary atmospheres by cosmic radiation, Adv. Space Res., 1995, vol. 15, no. 3, pp. 127–130.

    Article  Google Scholar 

  113. Kobayashi, K., Kaneko, T., Saito, T., and Oshima, T., Amino acid formation in gas mixtures by high energy particle irradiation, Origins Life Evol. Biospheres, 1998, vol. 28, no. 2, pp. 155–165.

    Article  Google Scholar 

  114. Simakov, M.B., Kuzicheva, E.A., and Gontareva, N.B., Abiogenic synthesis of oligopeptides in the open space, Paleontol. J., 2013, vol. 47, no. 9, pp. 1097–1103.

    Article  Google Scholar 

  115. Martell, E.A., Radionuclide-induced evolution of DNA and the origin of life, J. Mol. Evol., 1992, vol. 35, no. 4, pp. 346–355.

    Article  Google Scholar 

  116. Tamulis, A. and Grigalavicius, M., Quantum entanglement in photoactive prebiotic systems, Syst. Synth. Biol., 2014, vol. 8, no. 2, pp. 117–140.

    Article  Google Scholar 

  117. Tamulis, A., Grigalavicius, M., and Baltrusaitis, J., Phenomenon of quantum entanglement in a system composed of two minimal protocells, Origins Life Evol. Biospheres, 2013, vol. 43, no. 1, pp. 49–66.

    Article  Google Scholar 

  118. Bakr, W.S., Gillen, J.I., Peng, A., Fölling, S., and Greiner, M., A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature, 2009, vol. 462, no. 7269, pp. 74–77.

    Article  Google Scholar 

  119. Gericke, T., Würtz, P., Reitz, D., Langen, T., and Ott, H., High-resolution scanning electron microscopy of an ultracold quantum gas, Nat. Phys., 2008, vol. 4, no. 12, pp. 949–953.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Gradov.

Additional information

Original Russian Text © O.V. Gradov, M.A. Gradova, 2016, published in Elektronnaya Obrabotka Materialov, 2016, No. 1, pp. 117–126.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gradov, O.V., Gradova, M.A. Methods of electron microscopy of biological and abiogenic structures in artificial gas atmospheres. Surf. Engin. Appl.Electrochem. 52, 117–125 (2016). https://doi.org/10.3103/S1068375516010063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375516010063

Keywords

Navigation