Skip to main content
Log in

Formation and Destruction of Gas-Filled Bubbles in the Surface Layer of Glass under the Action of Electron-Proton Plasma

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The influence of electron-proton irradiation on the process of changing the surface structure of K‑208 glass, caused by the formation of gas-filled bubbles and their destruction, is studied by atomic-force microscopy (AFM). These phenomena are associated with the formation of hydrogen atoms H in the process of the recombination of protons with electrons injected into the glass and those that appeared in it during ionization. The migration of hydrogen atoms and their aggregation into H-clusters in the vicinity of glass structure defects leads to the formation of molecular hydrogen (H2) bubbles. The glass is exposed to electrons and protons with energies of 40 and 20 keV, respectively. Irradiation is carried out in a vacuum chamber with a residual pressure of 10–4 Pa. At a fixed value of the proton flux density φр = 5.5 × 1010 cm–2 s–1, the electron flux density φe varies in the range (0–16.8) × 1010 cm–2 s–1. It is shown that the size of the bubbles depends on the ratio of the parameters φe and φр. Analysis of the experimental data suggests that the destruction of a bubble occurs with a local decrease in the thickness of its cap to 10–20 nm, as a result of heating and growth in the direction normal to the surface under the pressure of the accumulating gas. It is also found that electrostatic discharges developing along the irradiated glass surface stimulate the destruction of bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. D. Daniels, J. Appl. Phys. 42, 417 (1971).

    Article  CAS  Google Scholar 

  2. J. B. Condon and T. Schober, J. Nucl. Mater. 207, 1 (1993).

    Article  CAS  Google Scholar 

  3. D. Milcius, L. L. Pranevicius, and C. Templier, J. Alloys Compd. 398, 203 (2005).

    Article  CAS  Google Scholar 

  4. D. G. Xie, Z. J. Wang, J. Sun, J. Li, E. Ma, and Z. W. Shan, Nat. Mater. 14, 899 (2015).

    Article  CAS  Google Scholar 

  5. M. Sznajder and U. Geppert, in Advances in Solar Sailing, Ed. by M. Macdonald (Springer, Berlin, 2014), p. 559. https://doi.org/10.1007/978-3-642-34907-2_35

  6. D. C. Ferguson and S. C. Wimberly, in Proceedings of the 51st AIAA Aerospace Sci. Meeting (Grapevine, TX, 2013), AIAA 2013-0810. https://doi.org/10.2514/6.2013-810

  7. S. R. Messenger, F. Wong, B. Hoang, C. D. Cress, R. J. Walters, C. A. Kleuver, and G. Jones, IEEE Trans. Nucl. Sci. 61, 3348 (2014). https://doi.org/10.1109/TNS.2014.2364894

    Article  Google Scholar 

  8. K. Toyoda, T. Okumura, S. Hosoda, and M. Cho, J. Spacecr. Rockets 42, 947 (2005). https://doi.org/10.2514/1.11602

    Article  Google Scholar 

  9. V. S. Kovivchak and T. V. Panova, J. Surf. Invest.: X‑Ray, Synchrotron Neutron Tech. 11, 840 (2017). https://doi.org/10.1134/S1027451017040218

    Article  CAS  Google Scholar 

  10. R. Kh. Khasanshin, L. S. Novikov, and D. A. Primenko, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 14, 906 (2020). https://doi.org/10.1134/S1027451020050110

    Article  Google Scholar 

  11. N. Ollier, B. Boizot, B. Reynard, D. Ghaleb, and G. Petite, J. Nucl. Mater. 340, 209 (2005).

    Article  CAS  Google Scholar 

  12. B. Boizot, G. Petite, D. Ghaleb, B. Reynard, and G. Calas, J. Non-Cryst. Solids 243, 268 (1999).

    Article  CAS  Google Scholar 

  13. B. Boizot, G. Petite, D. Ghaleb, N. Pellerin, F. Fayon, B. Reynard, and G. Calas, Nucl. Instrum. Methods Phys. Res. 166, 500 (2000). https://doi.org/10.1016/S0168-583X(99)00787-9

    Article  Google Scholar 

  14. B. Boizot, G. Petite, D. Ghaleb, and G. Calas, J. Non-Cryst. Solids 283, 179 (2001). https://doi.org/10.1016/S0022-3093(01)00338-6

    Article  CAS  Google Scholar 

  15. K. Sun, L. M. Wang, R. C. Ewing, and W. J. Weber, Philos. Mag. 85, 597 (2005). https://doi.org/10.1080/02678370412331320080

    Article  CAS  Google Scholar 

  16. L. Chen, T. S. Wang, G. F. Zhang, K. J. Yang, H. B. Peng, and L. M. Zhang, Chin. Phys. B 22, 126101 (2013).

    Article  Google Scholar 

  17. R. Kh. Khasanshin and L. S. Novikov, Perspekt. Mater., No. 11, 5 (2020). https://doi.org/10.30791/1028-978X-2020-11-5-14

  18. N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, New York, 1990). https://doi.org/10.1016/C2009-0-21628-X

  19. A. Abbas, Y. Serruys, D. Ghaleb, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 166–167, 445 (2000). https://doi.org/10.1016/S0168-583X(99)00695-3

    Article  Google Scholar 

  20. G. F. Zhang, T. S. Wang, K. J. Yang, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 316, 218 (2013). https://doi.org/10.1016/j.nimb.2013.09.020

    Article  CAS  Google Scholar 

  21. L. Chen, D. F. Zhang, P. Lv, et al., J. Non-Cryst. Solids 448, 6 (2016). https://doi.org/10.1016/j.jnobcrysol.2016.06.029

    Article  CAS  Google Scholar 

  22. L. Chen, T. S. Wang, K. J. Yang, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 307, 566 (2013). https://doi.org/10.1016/j.nimb.2013.01.089

    Article  CAS  Google Scholar 

  23. R. Kh. Khasanshin and L. S. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12, 1088 (2018). https://doi.org/10.1134/S1027451018050452

    Article  CAS  Google Scholar 

  24. R. H. Khasanshin and L. S. Novikov, IEEE Trans. Plasma Sci. 47, 3796 (2019). https://doi.org/10.1109/TPS.2019.2916210

    Article  CAS  Google Scholar 

  25. H. Metzger, J. Peisl, and J. Williams, J. Phys. F: Met. Phys. 6, 2195 (1976). https://doi.org/10.1088/0305-4608/6/12/006

    Article  CAS  Google Scholar 

  26. G. J. Thomas and W. D. Drotning, Metall. Trans. A 14, 1545 (1983). https://doi.org/10.1007/BF02654380

    Article  Google Scholar 

  27. X. Ren, W. Chu, J. Li, J. Su, and L. Qiao, Mater. Chem. Phys. 107, 231 (2008). https://doi.org/10.1016/j.matchemphys.2007.07.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. H. Khasanshin or L. S. Novikov.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khasanshin, R.H., Novikov, L.S. Formation and Destruction of Gas-Filled Bubbles in the Surface Layer of Glass under the Action of Electron-Proton Plasma. J. Surf. Investig. 15, 671–677 (2021). https://doi.org/10.1134/S102745102104008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102104008X

Keywords:

Navigation