Skip to main content
Log in

Fractionation of high-dose electron beam irradiation of BPTB grafts provides significantly improved viscoelastic and structural properties compared to standard gamma irradiation

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Irradiation >30 kGy is required to achieve sterility against bacterial and viral pathogens in ACL allograft sterilization. However, doses >20 kGy substantially reduce the structural properties of soft-tissue grafts. Fractionation of irradiation doses is a standard procedure in oncology to reduce tissue damage but has not been applied in tissue graft sterilization.

Methods

Forty-four human 10-mm wide bone-patellar-tendon-bone grafts were randomized into four groups of sterilization with (1) 34 kGy of ebeam (2) 34 kGy gamma (3) 34 kGy fractionated ebeam, and (4) non sterilized controls. Graft´s biomechanical properties were evaluated at time zero. Biomechanical properties were analyzed during cyclic and load-to-failure testing.

Results

Fractionation of ebeam irradiation resulted in significantly higher failure loads (1,327 ± 305) than with one-time ebeam irradiation (1,024 ± 204; P = 0.008). Compared to gamma irradiation, significantly lower strain (2.9 ± 1.5 vs. 4.6 ± 2.0; P = 0.008) and smaller cyclic elongation response (0.3 ± 0.2 vs. 0.6 ± 0.4; P = 0.05), as well as higher failure loads (1,327 ± 305 vs. 827 ± 209; P = 0.001), were found. Compared to non-irradiated BPTB grafts, no significant differences were found for any of the biomechanical parameters. Non-irradiated controls had significantly lower cyclic elongation response and higher failure loads than ebeam and gamma irradiation.

Conclusions

In this study, it was found that fractionation of high-dose electron beam irradiation facilitated a significant improvement of viscoelastic and structural properties of BPTB grafts compared to ebeam and gamma irradiation alone, while maintaining levels of non-irradiated controls. Therefore, this technique might pose an important alternative to common methods for sterilization of soft-tissue allografts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akkus O, Belaney RM, Das P (2005) Free radical scavenging alleviates the biomechanical impairment of gamma radiation sterilized bone tissue. J Orthop Res 23:838–845

    Article  PubMed  Google Scholar 

  2. Azar FM (2009) Tissue processing: role of secondary sterilization techniques. Clin Sports Med 28:191–201

    Article  PubMed  Google Scholar 

  3. Bernier J, Hall EJ, Giaccia A (2004) Radiation oncology: a century of achievements. Nat Rev Cancer 4:737–747

    Article  PubMed  CAS  Google Scholar 

  4. Buck BE, Malinin TI, Brown MD (1989) Bone transplantation and human immunodeficiency virus. An estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop Relat Res 240:129–136

    PubMed  Google Scholar 

  5. Carey JL, Dunn WR, Dahm DL, Zeger SL, Spindler KP (2009) A systematic review of anterior cruciate ligament reconstruction with autograft compared with allograft. J Bone Joint Surg Am 91:2242–2250

    Article  PubMed  Google Scholar 

  6. Dzhafarov AI, Kol’s OR (1976) Change in the antiradical activity of cell organoid lipids during deep freezing. Biofizika 21:653–655

    PubMed  CAS  Google Scholar 

  7. Dziedzic-Goclawska A, Kaminski A, Uhrynowska-Tyszkiewicz I, Stachowicz W (2005) Irradiation as a safety procedure in tissue banking. Cell Tissue Bank 6:201–219

    Article  PubMed  CAS  Google Scholar 

  8. Fideler BM, Vangsness CT Jr, Lu B, Orlando C, Moore T (1995) Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts. Am J Sports Med 23:643–646

    Article  PubMed  CAS  Google Scholar 

  9. Foster TE, Wolfe BL, Ryan S, Silvestri L, Kaye EK (2010) Does the graft source really matter in the outcome of patients undergoing anterior cruciate ligament reconstruction? An evaluation of autograft versus allograft reconstruction results: a systematic review. Am J Sports Med 38:189–199

    Article  PubMed  Google Scholar 

  10. Gerbi BJ, Antolak JA, Deibel FC, Followill DS, Herman MG, Higgins PD, Huq MS, Mihailidis DN, Yorke ED, Hogstrom KR, Khan FM (2009) Recommendations for clinical electron beam dosimetry: supplement to the recommendations of task group 25. Med Phys 36:3239–3279

    Article  PubMed  Google Scholar 

  11. Gibbons MJ, Butler DL, Grood ES, Bylski-Austrow DI, Levy MS, Noyes FR (1991) Effects of gamma irradiation on the initial mechanical and material properties of goat bone-patellar tendon-bone allografts. J Orthop Res 9:209–218

    Article  PubMed  CAS  Google Scholar 

  12. Goertzen MJ, Clahsen H, Burrig KF, Schulitz KP (1995) Sterilisation of canine anterior cruciate allografts by gamma irradiation in argon. Mechanical and neurohistological properties retained 1 year after transplantation. J Bone Joint Surg Br 77:205–212

    PubMed  CAS  Google Scholar 

  13. Hall EJ (1985) Radiation biology. Cancer 55:2051–2057

    Article  PubMed  CAS  Google Scholar 

  14. Hall EJ (1991) Weiss lecture. The dose-rate factor in radiation biology. Int J Radiat Biol 59:595–610

    Article  PubMed  CAS  Google Scholar 

  15. Hawkins CL, Davies MJ (1997) Oxidative damage to collagen and related substrates by metal ion/hydrogen peroxide systems: random attack or site-specific damage? Biochim Biophys Acta 1360:84–96

    PubMed  CAS  Google Scholar 

  16. Hoburg AT, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C, Pruss A, Scheffler S (2010) Effect of electron beam irradiation on biomechanical properties of patellar tendon allografts in anterior cruciate ligament reconstruction. Am J Sports Med 38:1134–1140

    Article  PubMed  Google Scholar 

  17. Hogstrom KR, Almond PR (2006) Review of electron beam therapy physics. Phys Med Biol 51:R455–R489

    Article  PubMed  CAS  Google Scholar 

  18. Kaminski A, Gut G, Marowska J, Lada-Kozlowska M, Biwejnis W, Zasacka M (2009) Mechanical properties of radiation-sterilised human bone-tendon-bone grafts preserved by different methods. Cell Tissue Bank 10:215–219

    Article  PubMed  CAS  Google Scholar 

  19. Kustos T, Balint L, Than P, Bardos T (2004) Comparative study of autograft or allograft in primary anterior cruciate ligament reconstruction. Int Orthop 28:290–293

    Article  PubMed  CAS  Google Scholar 

  20. Lee JH, Bae DK, Song SJ, Cho SM, Yoon KH (2010) Comparison of clinical results and second-look arthroscopy findings after arthroscopic anterior cruciate ligament reconstruction using 3 different types of grafts. Arthroscopy 26:41–49

    Article  PubMed  Google Scholar 

  21. Ma CM, Pawlicki T, Lee MC, Jiang SB, Li JS, Deng J, Yi B, Mok E, Boyer AL (2000) Energy- and intensity-modulated electron beams for radiotherapy. Phys Med Biol 45:2293–2311

    Article  PubMed  CAS  Google Scholar 

  22. McAllister DR, Joyce MJ, Mann BJ, Vangsness CT Jr (2007) Allograft update: the current status of tissue regulation, procurement, processing, and sterilization. Am J Sports Med 35:2148–2158

    Article  PubMed  Google Scholar 

  23. McGilvray KC, Santoni BG, Turner AS, Bogdansky S, Wheeler DL, Puttlitz CM (2010) Effects of (60)Co gamma radiation dose on initial structural biomechanical properties of ovine bone-patellar tendon-bone allografts. Cell Tissue Bank. doi:10.1007/s10561-010-9170-z

  24. Minami A, Ishii S, Ogino T, Oikawa T, Kobayashi H (1982) Effect of the immunological antigenicity of the allogeneic tendons on tendon grafting. Hand 14:111–119

    Article  PubMed  CAS  Google Scholar 

  25. Monboisse JC, Gardes-Albert M, Randoux A, Borel JP, Ferradini C (1988) Collagen degradation by superoxide anion in pulse and gamma radiolysis. Biochim Biophys Acta 965:29–35

    PubMed  CAS  Google Scholar 

  26. Nemzek JA, Arnoczky SP, Swenson CL (1994) Retroviral transmission by the transplantation of connective-tissue allografts. An experimental study. J Bone Joint Surg Am 76:1036–1041

    PubMed  CAS  Google Scholar 

  27. Poehling GG, Curl WW, Lee CA, Ginn TA, Rushing JT, Naughton MJ, Holden MB, Martin DF, Smith BP (2005) Analysis of outcomes of anterior cruciate ligament repair with 5-years follow-up: allograft versus autograft. Arthroscopy 21:774–785

    PubMed  Google Scholar 

  28. Polaczek-Grelik K, Orlef A, Dybek M, Konefal A, Zipper W (2010) Linear accelerator therapeutic dose-induced radioactivity dependence. Appl Radiat Isot 68:763–766

    Article  PubMed  CAS  Google Scholar 

  29. Pruss A, Kao M, Gohs U, Koscielny J, von Versen R, Pauli G (2002) Effect of gamma irradiation on human cortical bone transplants contaminated with enveloped and non-enveloped viruses. Biologicals 30:125–133

    Article  PubMed  Google Scholar 

  30. Rasmussen TJ, Feder SM, Butler DL, Noyes FR (1994) The effects of 4 Mrad of gamma irradiation on the initial mechanical properties of bone-patellar tendon-bone grafts. Arthroscopy 10:188–197

    Article  PubMed  CAS  Google Scholar 

  31. Salehpour A, Butler DL, Proch FS, Schwartz HE, Feder SM, Doxey CM, Ratcliffe A (1995) Dose-dependent response of gamma irradiation on mechanical properties and related biochemical composition of goat bone-patellar tendon-bone allografts. J Orthop Res 13:898–906

    Article  PubMed  CAS  Google Scholar 

  32. Scheffler SU, Gonnermann J, Kamp J, Przybilla D, Pruss A (2008) Remodeling of ACL allografts is inhibited by peracetic acid sterilization. Clin Orthop Relat Res 466:1810–1818

    Article  PubMed  Google Scholar 

  33. Scheffler SU, Schmidt T, Gangey I, Dustmann M, Unterhauser F, Weiler A (2008) Fresh-frozen free-tendon allografts versus autografts in anterior cruciate ligament reconstruction: delayed remodeling and inferior mechanical function during long-term healing in sheep. Arthroscopy 24:448–458

    Article  PubMed  Google Scholar 

  34. Seto A, Gatt CJ Jr, Dunn MG (2008) Radioprotection of tendon tissue via crosslinking and free radical scavenging. Clin Orthop Relat Res 466:1788–1795

    Article  PubMed  Google Scholar 

  35. Seto A, Gatt CJ Jr, Dunn MG (2009) Improved tendon radioprotection by combined cross-linking and free radical scavenging. Clin Orthop Relat Res 467:2994–3001

    Article  PubMed  Google Scholar 

  36. Sun K, Tian SQ, Zhang JH, Xia CS, Zhang CL, Yu TB (2009) Anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft versus allograft. Arthroscopy 25:750–759

    Article  PubMed  Google Scholar 

  37. Tomford WW, Doppelt SH, Mankin HJ, Friedlaender GE (1983) bone bank procedures. Clin Orthop Relat Res 174:15–21

    PubMed  Google Scholar 

  38. Withers HR (1999) Radiation biology and treatment options in radiation oncology. Cancer Res 59:1676s–1684s

    PubMed  CAS  Google Scholar 

  39. Woo SL, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19:399–404

    Article  PubMed  CAS  Google Scholar 

  40. Yusof N (2000) Irradiation for sterilising tissue grafts for viral inactivation. Malays J Nucl Sci 18:23–35

    Google Scholar 

  41. Yusof N (2006) Radiation in tissue banking—basic science and clinical applications of irradiated tissue allografts. World Scientific Publishing Co. Ptc. Ltd., Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hoburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoburg, A., Keshlaf, S., Schmidt, T. et al. Fractionation of high-dose electron beam irradiation of BPTB grafts provides significantly improved viscoelastic and structural properties compared to standard gamma irradiation. Knee Surg Sports Traumatol Arthrosc 19, 1955–1961 (2011). https://doi.org/10.1007/s00167-011-1518-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1518-9

Keywords

Navigation