Skip to main content

A Brief History of Controlled Atmosphere Transmission Electron Microscopy

  • Chapter
Controlled Atmosphere Transmission Electron Microscopy

Abstract

In this chapter, the development of controlled atmosphere conditions to study gas-solid reactions inside the transmission electron microscope (TEM) will be presented. The two successful approaches to achieve this, namely the use of electron transparent windows and the incorporation of small-bore apertures inside the TEM combined with differential pumping, will be discussed. Finally, we will also describe the state-of-the-art instrumentation available today to study the behavior of nanomaterials in reactive gas environments, which have been largely brought about by the development of aberration correctors, monochromators, specialized TEM holders, as well as faster and more sensitive spectrometers. Examples that highlight the diverse applications in this field will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have, throughout this article, used pressures converted to SI units as well as those quoted in the original publications (in parentheses). The conversions are 1 Torr ≡ 1 mm Hg ≡ 1.33 mbar ≡ 133.3 Pa.

References

  • I.M. Abrams, J.W. McBain, A closed cell for electron microscopy. J. Appl. Phys. 15, 607–609 (1944)

    Article  Google Scholar 

  • L.F. Allard, S.H. Overbury, W.C. Bigelow, M.B. Katz, D.P. Nackashi, J. Damiano, Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc. Microanal. 18, 656–666 (2012)

    Article  Google Scholar 

  • D.L. Allinson, Environmental cell for use in a high voltage electron microscope, in Proc. 7th Int. Congr. Electron Microscopy, Grenoble, 1970, pp. 169–170.

    Google Scholar 

  • D.L. Allinson, Environmental devices in electron microscopy, in Principles and Techniques of Electron Microscopy Biological Applications, ed. by M.A. Hayat, vol. 5 (Van Nostrand Reinhold, New York, 1975)

    Google Scholar 

  • D.H. Alsem, R.R. Unocic, G.M. Veith, K.L. More, N.J. Salmon, In-situ Liquid and Gas Transmission Electron Microscopy of Nano-Scale Materials. Microsc. Microanal. 18(Suppl 2), 1158–1159 (2012)

    Article  Google Scholar 

  • P.B. Amama, C.L. Pint, L. McJilton, S.M. Kim, E.A. Stach, P.T. Murray, R.H. Hauge, B. Maruyama, Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 9, 44–49 (2009)

    Article  Google Scholar 

  • S. Arrii, F. Morfin, A.J. Renouprez, J.L. Rousset, Oxidation of CO on gold supported catalysts prepared by laser vaporization: Direct evidence of support contribution. J. Am. Chem. Soc. 126, 1199–1205 (2004)

    Article  Google Scholar 

  • R.T.K. Baker, P.S. Harris, Controlled atmosphere electron microscopy. J. Physics E: Sci. Instruments 5, 793–797 (1972)

    Article  Google Scholar 

  • R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, R.J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catalysis 26, 51–62 (1972a)

    Article  Google Scholar 

  • R.T.K. Baker, F.S. Feates, P.S. Harris, Continuous electron microscopic observation of carbonaceous deposits formed on graphite and silica surfaces. Carbon 10, 93–96 (1972b)

    Article  Google Scholar 

  • R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catalysis 30, 86–95 (1973)

    Article  Google Scholar 

  • R.T.K. Baker, In situ electron microscopy studies of catalyst particle behavior. Catal. Rev. Sci. Eng. 19(2), 161–209 (1979)

    Article  Google Scholar 

  • R.T.K. Baker, Catalytic growth of carbon filaments. Carbon 27, 315–323 (1989)

    Article  Google Scholar 

  • R.T.K. Baker, Electron microscopy studies of the catalytic growth of carbon filaments, in Carbon Fibers Filaments and Composites, ed. by J.L. Figueiredo et al. (Kluwer Academic, Dordrecht, 1990), pp. 405–439

    Chapter  Google Scholar 

  • A. Baldi, T. Narayan, A.L. Koh, J.A. Dionne, In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nature Mater. 13(12), 1143–1148 (2014)

    Article  Google Scholar 

  • E.D. Boyes, P.L. Gai, L.G. Hanna, Controlled environment (ECELL) TEM for dynamic in-situ reaction studies with HREM lattice imaging. Mat. Res. Soc. Symp. Proc. 404, 53–60 (1996)

    Article  Google Scholar 

  • E.D. Boyes, P.L. Gai, Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219–232 (1997)

    Article  Google Scholar 

  • E.D. Boyes, M.R. Ward, L. Lari, P.L. Gai, ESTEM imaging of single atoms under controlled temperature and gas environment conditions in catalyst reaction studies. Ann. Phys. (Berlin) 525(6), 423–429 (2013)

    Article  Google Scholar 

  • E.D. Boyes, P.L. Gai, Aberration corrected environmental STEM (AC ESTEM) for dynamic in-situ gas reaction studies of nanoparticle catalysts. Journal of Physics: Conference Series 522, 012004 (2014a)

    Google Scholar 

  • E.D. Boyes, P.L. Gai, Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ environmental (scanning) transmission electron microscopy (E(S)TEM). C. R. Physique 15, 200–213 (2014b)

    Article  Google Scholar 

  • E.P. Butler, K.F. Hale, In situ studies of gas-solid reactions, in Dynamic Experiments in the Electron Microscope, ed. by A.M. Glauert. Practical Methods in Electron Microscopy, vol. 9 (North-Holland, Amsterdam, 1981a)

    Google Scholar 

  • E.P. Butler, K.F. Hale, Wet cell microscopy, in Dynamic Experiments in the Electron Microscope, ed. by A.M. Glauert. Practical Methods in Electron Microscopy, vol. 9 (North-Holland, Amsterdam, 1981b)

    Google Scholar 

  • M. Cargnello, V.V.T. Doan-Nguyen, T.R. Gordon, R.E. Diaz, E.A. Stach, R.J. Gorte, P. Fornasiero, C.B. Murray, Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341, 771–773 (2013)

    Article  Google Scholar 

  • F. Cavalca, A.B. Laursen, B.E. Kardynal, R.E. Dunin-Borkowski, S. Dahl, J.B. Wagner, T.W. Hansen, In situ transmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology 23, 075705 (2012) (6 pp.)

    Article  Google Scholar 

  • F. Cavalca, A.B. Laursen, J.B. Wagner, C.D. Damsgaard, I. Chorkendorff, T.W. Hansen, Light-induced reduction of cuprous oxide in an environmental transmission electron microscope. ChemCatChem 5, 2667–2672 (2013)

    Article  Google Scholar 

  • D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, Metal-assisted organization of shortened carbon nanotubes in monolayer and multilayer forest assemblies. J. Am. Chem. Soc. 123, 9451–9452 (2001)

    Article  Google Scholar 

  • S. Chenna, P.A. Crozier, Operando transmission electron microscopy: A technique for detection of catalysis using electron energy-loss spectroscopy in the transmission electron microscope. ACS Catal. 2, 2395–2402 (2012)

    Article  Google Scholar 

  • W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)

    Article  Google Scholar 

  • Y.-C. Chou, C.-Y. Wen, M.C. Reuter, D. Su, E.A. Stach, F.M. Ross, Controlling the growth of Si/Ge nanowires and heterojunctions using silver-gold alloy catalysts. ACS Nano 6, 6407–6415 (2012)

    Article  Google Scholar 

  • J.F. Creemer, S. Helveg, G.H. Hoveling, S. Ullmann, A.M. Molenbroek, P.M. Sarro, H.W. Zandbergen, Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993–998 (2008)

    Article  Google Scholar 

  • P.A. Crozier, R. Sharma, A.K. Datye, Oxidation and reduction of small palladium particles on silica. Microsc. Microanal. 4, 278–285 (1998)

    Article  Google Scholar 

  • P.A. Crozier, R. Wang, R. Sharma, In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes. Ultramicroscopy 108, 1432–1440 (2008)

    Article  Google Scholar 

  • P.A. Crozier, S. Chenna, In situ analysis of gas composition by electron energy-loss spectroscopy for environmental transmission electron microscopy. Ultramicroscopy 111, 177–185 (2011)

    Article  Google Scholar 

  • W.A. de Heer, A. Châtelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995)

    Article  Google Scholar 

  • N. de Jonge, D.B. Peckys, G.J. Kremers, D.W. Piston, Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. U. S. A. 106, 2159–2164 (2009)

    Article  Google Scholar 

  • N. de Jonge, W.C. Bigelow, G.M. Veith, Atmospheric pressure scanning transmission electron microscopy. Nano Lett. 10, 1028–1031 (2010)

    Article  Google Scholar 

  • N. de Jonge, F.M. Ross, Electron microscopy of specimens in liquid. Nature Nano 6, 695–704 (2011)

    Article  Google Scholar 

  • M. Doi, M. Yoshida, M. Nonoyama, S. Arai, T. Imura, A modified window-type environmental cell for use with HVEM, in Proc. 5th Int. Conf. High Voltage Electron Microscopy, Kyoto, 1977, p. 155.

    Google Scholar 

  • R.C. Doole, G.M. Parkinson, J.M. Stead, High resolution gas reaction cell for the JEM 4000. Institute of Physics Conference Series 119, 157–160 (1991)

    Google Scholar 

  • G. Dupouy, Electron microscopy at very high voltages, in Advances in optical and electron microscopy, ed. by R. Barer, V.E. Cosslett, vol. 2 (Academic Press, London, 1968), p. 167

    Google Scholar 

  • J. Escaig, C. Sella, Cellule porte-objet permettent l’observation des specimens chauffes sous atmosphere controlee, in Proc. 6th Int. Cong. Electron Microsc., 1966, vol. 1, p. 177

    Google Scholar 

  • J. Escaig, C. Sella, Application d’une nouvelle cellule a atmosphere controlee a l’etude de quelques problems d’oxydation et de depot par decomposition termique en phase vapeur, in Proc. 4th Europ. Conf. Electron Microsc., 1968, vol. 1, 241.

    Google Scholar 

  • J. Escaig, C. Sella, Nouvelle microchambre pour observation en microscopie-electronique, a haute temperature et sous atmosphere controlee. C. r. hebd. Séanc. Acad. Sci., Paris 268, 532 (1969)

    Google Scholar 

  • J. Escaig, C. Sella, Observation in situ au microscope electronique de l’oxydation desc couches minces metalliques. C. r. hebd. Séanc. Acad. Sci., Paris 274, 27 (1972)

    Google Scholar 

  • F.S. Feates, H. Morley, P.S. Robinson, Controlled atmosphere electron microscopy, in Proc. 7th Int. Congr. Electron Microscopy, Grenoble, 1970, pp. 295–296

    Google Scholar 

  • H.M. Flower, High voltage electron microscopy of environmental reactions. J. Micros. 97, 171–190 (1973)

    Article  Google Scholar 

  • H.M. Flower, P.R. Swann, An in situ study of Titanium oxidation by high voltage electron microscopy. Acta Metall. 22, 1339–1347 (1974)

    Article  Google Scholar 

  • H.M. Flower, B.A. Wilcox, In situ oxidation of Ni-30 Wt% Cr and TDNiCr in the high voltage electron microscope. Corros. Sci. 17, 253–264 (1977)

    Article  Google Scholar 

  • J.R. Fryer, Oxidation of graphite catalyzed by palladium. Nature 220, 1121–1122 (1968a)

    Article  Google Scholar 

  • J.R. Fryer, The direct observation of gas solid reactions inside the electron microscope. Siemens Review 35, 13 (1968b)

    Google Scholar 

  • Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003)

    Article  Google Scholar 

  • H. Fujita, M. Komatsu, I. Ishikawa, A universal environmental cell for a 3MV-class electron microscope and its applications to metallurgical sciences. Jap. J. Appl. Phys. 15(11), 2221–2228 (1976)

    Article  Google Scholar 

  • A. Fukami, K. Adachi, A new method of preparation of a self-perforated micro plastic grid and its application (I). J. Electron Microscopy 14(2), 112–118 (1965)

    Google Scholar 

  • A. Fukami, K. Adachi, M. Katoh, On a study of new micro plastic grid and its applications, in Proc. 6th Int. Congr. Electron Microscopy, Kyoto, 1966, pp. 262–264

    Google Scholar 

  • A. Fukami, K. Adachi, M. Katoh, Micro grid techniques (continued) and their contribution to specimen preparation techniques for high resolution work. J. Electron Microscopy 21(2), 99–108 (1972)

    Google Scholar 

  • P.L. Gai, E.D. Boyes, Environmental high resolution electron microscopy in materials science, in In-situ microscopy in materials research, ed. by P.L. Gai (Kluwer Academic, Boston, 1997)

    Chapter  Google Scholar 

  • P.L. Gai, E.L. Boyes, S. Helveg, P.L. Hansen, S. Giorgio, C.R. Henry, Atomic-resolution environmental transmission electron microscopy for probing gas-solid reactions in heterogeneous catalysis. MRS Bulletin 32, 1044–1050 (2007)

    Article  Google Scholar 

  • P.L. Gai, R. Sharma, F.M. Ross, Environmental (S)TEM studies of gas-liquid-solid interactions under reaction conditions. MRS Bulletin 33, 107–114 (2008)

    Article  Google Scholar 

  • P.L. Gai, E.D. Boyes, Advances in atomic resolution in situ environmental transmission electron microscopy and 1Ã… aberration corrected in situ electron microscopy. Microsc. Res. Tech. 72, 153–164 (2009)

    Article  Google Scholar 

  • E.J. Gallegos, Gas reactor for hot stage transmission electron microscopy. Rev. Sci. Instrum. 35(9), 1123–1124 (1964)

    Article  Google Scholar 

  • H. Ghassemi, W. Harlow, O. Mashtalir, M. Beidaghi, M.R. Lukatskaya, Y. Gogotsi, M.L. Taheri, In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J. Mater. Chem. A 2, 14339–14343 (2014)

    Article  Google Scholar 

  • S. Giorgio, S. Sao Joao, S. Nitsche, D. Chaudanson, G. Sitja, C.R. Henry, Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows. Ultramicroscopy 106, 503–507 (2006)

    Article  Google Scholar 

  • M. Goringe, A. Rawcliffe, A. Burden, J. Hutchison, R. Doole, Observations of solid-gas reactions by means of high-resolution transmission electron microscopy. Faraday Discuss. 105, 85–102 (1996)

    Article  Google Scholar 

  • M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Electron microscopy image enhanced. Nature 392, 768–769 (1998a)

    Article  Google Scholar 

  • M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban, A spherical aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53–60 (1998b)

    Article  Google Scholar 

  • M. Hammar, F. LeGoues, J. Tersoff, M.C. Reuter, R.M. Tromp, In situ ultrahigh vacuum transmission electron microscopy studies of hetero-epitaxial growth. I. Si(009)/Ge. Surf. Sci. 349, 129–144 (1996)

    Article  Google Scholar 

  • P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsøe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002)

    Article  Google Scholar 

  • P.L. Hansen, S. Helveg, A.K. Datye, Atomic-scale imaging of supported metal nanocluster catalysts in the working state. Adv. Catal. 50, 77–95 (2006)

    Google Scholar 

  • T.W. Hansen, J.B. Wagner, P.L. Hansen, S. Dahl, H. Topsøe, C.J.H. Jacobson, Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508–1510 (2001)

    Article  Google Scholar 

  • T.W. Hansen, J.B. Wagner, R.E. Dunin-Borkowski, Aberration-corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science. Mater. Sci. Technol. 26(11), 1338–1344 (2010)

    Article  Google Scholar 

  • T.W. Hansen, J.B. Wagner, Environmental transmission electron microscopy in an aberration-corrected environment. Micros. Microanal. 18, 684–690 (2012)

    Article  Google Scholar 

  • J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp, The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006)

    Article  Google Scholar 

  • M. Haruta, Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153–166 (1997)

    Article  Google Scholar 

  • A.R. Harutyunyan, G. Chen, T.M. Paronyan, E.M. Pigos, O.A. Kuznetsov, K. Hewaparakrama, S.M. Kim, D. Zakharov, E.A. Stach, G.U. Sumanasekera, Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326, 116–120 (2009)

    Article  Google Scholar 

  • H. Hashimoto, K. Tanaka, E. Yoda, A specimen treating device at high temperature for the electron microscope. J. Electron Microscopy 6, 8–11 (1958)

    Google Scholar 

  • H. Hashimoto, T. Naiki, T. Eto, K. Fujiwara, M. Watanabe, Y. Nagahama, Specimen chamber for observing the reaction process with gas at high temperature, in Sixth Int. Congress for Electron Microscopy, 1966, pp. 181–182.

    Google Scholar 

  • H. Hashimoto, T. Naiki, T. Eto, K. Fujiwara, High temperature gas reaction specimen chamber for an electron microscope. Jpn. J. Appl. Phys. 7(8), 946–952 (1968)

    Article  Google Scholar 

  • S. Hashimoto, S. Urai, H. Yotsumoto, J. Sawamori, Morphology and structure of Mo oxides formed by thermal decomposition of the ammonium salt, in Proc. 7th Int. Congr. Electron Microscopy, Berlin, 1970, p. 87.

    Google Scholar 

  • K. Hata, D.N. Fubata, K. Mizuno, T. Namai, M. Yumara, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004)

    Article  Google Scholar 

  • T. Hayashi, K. Tanaka, M. Haruta, Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 178, 566–575 (1998)

    Article  Google Scholar 

  • H.G. Heide, Electron microscopic observation of specimens under controlled gas pressure. J. Cell. Bio. 13, 147–152 (1962)

    Article  Google Scholar 

  • S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Nørskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004)

    Article  Google Scholar 

  • B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004)

    Article  Google Scholar 

  • S. Hofmann, S. Sharma, C.T. Wirth, F. Cervantes-Sodi, C. Ducati, T. Kasama, R.E. Dunin-Borkowski, J. Drucker, P. Bennett, J. Robertson, Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nature Mater. 7, 372–375 (2008)

    Article  Google Scholar 

  • S. Hofmann, R. Blume, C.Y. Wirth, M. Cantoro, R. Sharma, C. Ducati, M. Hävecker, S. Zafeiratos, P. Schnoerch, A. Oestereich, D. Teschner, M. Albrecht, A. Knop-Gericke, R. Schlögl, J. Robertson, State of transition metal catalysts during carbon nanotube growth. J. Phys. Chem. C 113, 1648–1656 (2009)

    Article  Google Scholar 

  • S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  • T. Ito, K. Hiziya, A specimen reaction device for the electron microscope and its applications. J. Electron Microscopy 6, 4–8 (1958)

    Google Scholar 

  • J.R. Jinschek, S. Helveg, Image resolution and sensitivity in an environmental transmission electron microscope. Micron 43, 1156–1168 (2012)

    Article  Google Scholar 

  • J.R. Jinschek, Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions. Chem. Commun. 50, 2696–2706 (2014)

    Article  Google Scholar 

  • T. Kamino, T. Yaguchi, M. Konno, A. Watabe, T. Marukawa, T. Mina, K. Kuroda, H. Saka, S. Arai, H. Makino, Y. Suzuki, K. Kishita, Development of a gas injection/specimen heating holder for use with transmission electron microscope. J. Electron. Microsc. 54, 497–503 (2005)

    Article  Google Scholar 

  • T. Kamino, T. Yaguchi, M. Konno, A. Watabe, Y. Nagakubo, Development of a specimen heating holder with an evaporator and gas injector and its application for catalyst. J. Electron Microsc. 55, 245–252 (2006)

    Article  Google Scholar 

  • T. Kawasaki, K. Ueda, M. Ichihashi, T. Tanji, Improvement of windowed type environmental-cell transmission electron microscope for in situ observation of gas-solid interactions. Re. Sci. Instrum. 80, 113701 (2009)

    Article  Google Scholar 

  • B.J. Kim, J. Tersoff, S. Kodambaka, M.C. Reuter, E.A. Stach, F.M. Ross, Kinetics of individual nucleation events observed in nanoscale vapor–liquid–solid growth. Science 322, 1070–1073 (2008)

    Article  Google Scholar 

  • S.M. Kim, C.L. Pint, P.B. Amama, D.N. Zakharov, R.H. Hauge, B. Maruyama, E.A. Stach, Evolution in catalyst morphology leads to carbon nanotube growth termination. J. Phys. Chem. Lett. 1, 918–922 (2010)

    Article  Google Scholar 

  • K.L. Klein, I.M. Anderson, N. de Jonge, Transmission electron microscopy with a liquid flow cell. J. Microscopy 242, 117–123 (2011)

    Article  Google Scholar 

  • S. Kodambaka, J.B. Hannon, R.M. Tromp, F.M. Ross, Control of Si nanowire growth by oxygen. Nano Lett. 6, 1292–1296 (2006)

    Article  Google Scholar 

  • A.L. Koh, E. Gidcumb, O. Zhou, R. Sinclair, Observations of carbon nanotube oxidation in an aberration-corrected environmental transmission electron microscope. ACS Nano 7, 2566–2572 (2013)

    Article  Google Scholar 

  • Y. Kuwauchi, H. Yoshida, T. Akita, M. Haruta, S. Takeda, Intrinsic catalytic structure of gold nanoparticles supported on TiO2. Angew. Chem. Int. Ed. 51, 7729–7733 (2012)

    Article  Google Scholar 

  • Y. Kuwauchi, S. Takeda, H. Yoshida, K. Sun, M. Haruta, H. Kohno, Stepwise displacement of catalytically active gold nanoparticles on cerium oxide. Nano Lett. 13, 3073–3077 (2013)

    Article  Google Scholar 

  • T.C. Lee, D.K. Dewald, J.A. Eades, I.M. Robertson, H.K. Birnbaum, An environmental cell transmission electron microscope. Rev. Sci. Instrum. 62, 1438–1444 (1991)

    Article  Google Scholar 

  • R.-J. Liu, P.A. Crozier, C.M. Smaith, D.A. Hucul, J. Blackson, G. Salaita, In situ electron microscopy studies of the sintering of palladium nanoparticles on alumina during catalyst regeneration processes. Microsc. Microanal. 10, 77–85 (2004)

    Article  Google Scholar 

  • G. Lolli, L.A. Zhang, L. Balzano, N. Sakulchaicharoen, Y.Q. Tan, D.E. Resasco, Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 110, 2108–2115 (2006)

    Article  Google Scholar 

  • C. López-Cartes, S. Bernal, J.J. Calvino, M.A. Cauqui, G. Blanco, J.A. Pérez-Omil, J.M. Pintado, S. Helveg, P.L. Hansen, In situ transmission electron microscopy investigation of Ce(IV) and Pr(IV) reducibility in a Rh (1%)/Ce0.8Pr0.2O2−x catalyst. Chem. Commun. 5, 644–645 (2003)

    Article  Google Scholar 

  • L. Marton, Electron microscopy of biological objects. Nature 133, 911 (1934)

    Article  Google Scholar 

  • L. Marton, La microscopie electronique des objets biologiques. Bull. Acad. r. Belg. Cl. Sci. 21, 553 (1935)

    Google Scholar 

  • M.L. McDonald, J.M. Gibson, F.C. Unterwald, Design of an ultrahigh-vacuum specimen environment for high-resolution transmission electron microscopy. Rev. Sci. Instrum. 60(4), 700–707 (1989)

    Article  Google Scholar 

  • B.K. Miller, P.A. Crozier, System for in situ UV-visible illumination of environmental transmission electron microscopy samples. Microsc. Microanal. 19, 461–469 (2013)

    Article  Google Scholar 

  • J.C. Mills, A.F. Moodie, Multipurpose high resolution stage for the electron microscope. Rev. Sci. Instrum. 39, 962–969 (1968)

    Article  Google Scholar 

  • A.M. Molenbroek, S. Helveg, H. Topsøe, B.S. Clausen, Nano-particles in heterogeneous catalysis. Top Catal 52, 1303–1311 (2009)

    Article  Google Scholar 

  • T.W. Odom, J.-L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998)

    Article  Google Scholar 

  • G.M. Parkinson, High resolution, in-situ controlled atmosphere transmission electron microscopy (CATEM) oh heterogeneous catalysts. Catal. Lett. 2, 303–308 (1989)

    Article  Google Scholar 

  • D.F. Parsons, Structure of wet specimens in electron microscopy. Science 186, 407–414 (1974)

    Article  Google Scholar 

  • D.F. Parsons, V.R. Matricardi, R.C. Moretz, J.N. Turner, Electron microscopy and diffraction of wet unstained and unfixed biological objects, in: Advances in Biological and Medical Physics (Volume 15). Edited by J. H. Lawrence, J (W Gofman and T. L. Hayes. Academic Press, New York, 1974)

    Book  Google Scholar 

  • E.A. Ring, N. de Jonge, Microfluidic System for Transmission Electron Microscopy. Microsc. Microanal. 16, 622–629 (2010)

    Article  Google Scholar 

  • A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomimek, P. Nordlander, D.T. Colbert, R.E. Smalley, Unraveling nanotubes: Field emission from an atomic wire. Science 269, 1550–1553 (1995)

    Article  Google Scholar 

  • N.M. Rodriguez, S.G. Oh, W.B. Downs, P. Pattabiraman, R.T.K. Baker, An atomic oxygen environmental cell for a transmission electron microscope. Rev. Sci. Instrum. 61(7), 1863–1868 (1990)

    Article  Google Scholar 

  • F.M. Ross, J.M. Gibson, Dynamic observations of interface propagation during silicon oxidation. Phys. Rev. Lett. 68(11), 1782–1786 (1992)

    Article  Google Scholar 

  • F.M. Ross, Growth processes and phase transformations studied by in situ transmission electron microscopy. IBM J. Res. Develop. 44, 489–501 (2000)

    Article  Google Scholar 

  • F.M. Ross, J. Tersoff, M.C. Reuter, Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 95, 146104 (2005)

    Article  Google Scholar 

  • F.M. Ross, Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 73, 114501 (2010) (21 pp.)

    Article  Google Scholar 

  • F.M. Ross, C.-Y. Wen, S. Kodambaka, B.A. Wacser, M.C. Reuter, E.A. Stach, The growth and characterization of Si and Ge nanowires grown from reactive metal catalysts. Phil. Mag. 90, 4679–4778 (2010)

    Article  Google Scholar 

  • V.E. Ruska, Beitrag zur ubermikroskopischen Abbildung bei höheren Drucken. Zolloid-Z 100, 212–219 (1942)

    Article  Google Scholar 

  • A. Sandoval, A. Gomez-Cortes, R. Zanella, G. Diaz, J.M. Saniger, Gold nanoparticles: Support effects for the WGS reaction. J. Mol. Cat. A: Chemical 278, 200–208 (2007)

    Google Scholar 

  • R. Sharma, K. Weiss, M. McKelvy, W. Glaunsinger, Gas reaction chamber for gas–solid interaction studies by high resolution transmission electron microscopy, in Proceedings of the 52nd Annual Meeting of the Microscopy Society of America, 1994, pp. 494–495

    Google Scholar 

  • R. Sharma, K. Weiss, Development of a TEM to study in situ structural and chemical changes at an atomic level during gas-solid interactions at elevated temperatures. Micros. Res. Tech. 42, 270–280 (1998)

    Article  Google Scholar 

  • R. Sharma, Design and applications of environmental cell transmission electron microscope for in situ observations of gas-solid reactions. Microsc. Microanal. 7, 494–506 (2001)

    Google Scholar 

  • R. Sharma, Z. Iqbal, In situ observations of carbon nanotube formation using environmental transmission electron microscopy. Appl. Phys. Lett. 84, 990–992 (2004)

    Article  Google Scholar 

  • R. Sharma, P. Crozier, Z.C. Kang, L. Eyring, Observation of dynamic nanostructural and nanochemical changes in ceria-based catalysts during in-situ reduction. Philosophical Magazine 84, 2731–2747 (2004)

    Article  Google Scholar 

  • R. Sharma, An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J. Mater. Res. 20(7), 1695–1707 (2005)

    Article  Google Scholar 

  • R. Sharma, P.A. Crozier, Environmental transmission electron microscopy in nanotechnology, in Handbook of Microscopy for Nanotechnology, ed. by N. Yao, Z.L. Wang (Kluwer Academic Publishers, New York, 2005), pp. 531–565

    Chapter  Google Scholar 

  • R. Sharma, P. Rez, M.M.J. Treacy, S.J. Stuart, In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. J. Electron Microsc. 54, 231–237 (2005)

    Article  Google Scholar 

  • R. Sharma, P. Rez, P. Brown, G. Du, M.M.J. Treacy, Dynamic observations of the effect of pressure and temperature conditions on the selective synthesis of carbon nanotubes. Nanotechnology 18, 125602 (2007) (8pp)

    Article  Google Scholar 

  • D. Shindo, K. Takahashi, Y. Murakami, K. Yamazaki, S. Deguchi, H. Suga, Y. Kondo, Development of a multifunctional TEM specimen holder equipped with a piezodriving probe and a laser irradiation port. J Electron Microsc 58, 245–249 (2009)

    Article  Google Scholar 

  • S.B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested, S. Helveg, Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 132, 7968–7975 (2010)

    Article  Google Scholar 

  • R. Sinclair, T. Yamashita, M.A. Parker, K.B. Kim, K. Holloway, A.F. Schwartzman, The development of in situ high resolution electron microscopy. Acta Crystallogr. Sec. A 44, 965–975 (1988)

    Article  Google Scholar 

  • R. Sinclair, In situ high-resolution transmission electron microscopy of material reactions. MRS Bulletin 38, 1065–1071 (2013)

    Article  Google Scholar 

  • E.A. Stach, P. Pauzauskie, T. Kuykendall, J. Goldberger, P. Yang, Watching GaN nanowires grow. Nano Lett. 3, 867–869 (2003)

    Article  Google Scholar 

  • H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, F. Okuyama, Carbon nanotubes as electron source in an X-Ray tube. Appl. Phys. Lett. 78, 2578–2580 (2001)

    Article  Google Scholar 

  • P.R. Swann, N.J. Tighe, High voltage microscopy of gas oxide reactions. Jernkont. Annaler 155, 497–501 (1971)

    Google Scholar 

  • P.R. Swann, High voltage microscope studies of environmental reactions in electron microscopy and structure of materials, in Proceedings of the Fifth International Materials Symposium, September 13-17, 1971, ed. by G. Thomas, R.M. Fulrath, R.M. Fisher (University of California Press, Berkeley, 1972), pp. 878–904

    Google Scholar 

  • P.R. Swann, N.J. Tighe, Performance of a differentially pumped environmental cell, in The AEI EM7. Proc. Fifth European Congress on Electron, Microscopy, 1972, pp. 360–361

    Google Scholar 

  • P.R. Swann, G. Thomas, N.J. Tighe, In situ observations of the nitriding of tantalum. J. Microscopy 97, 24–257 (1973)

    Google Scholar 

  • P.R. Swann, N.J. Tighe, High voltage microscopy of the reduction of hematite to magnetite. Metallurgical Transactions B 8B, 479–487 (1977)

    Article  Google Scholar 

  • N. Takahashi, T. Takeyama, K. Ito, T. Ito, K. Mihama, M. Watanabe, High temperature furnace for the electron microscope. J. Electron Microscopy 4, 16–23 (1956)

    Google Scholar 

  • S. Takeda, H. Yoshida, Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science. Microscopy 62(1), 193–203 (2013)

    Article  Google Scholar 

  • S. Takeda, Y. Kuwauchi, H. Yoshida, Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector. Ultramicroscopy 151, 178–190 (2015)

    Article  Google Scholar 

  • N. Tanaka, J. Usukura, M. Kusunoki, Y. Saito, K. Sasaki, T. Tanji, S. Muto, S. Arai, Development of an environmental high-voltage electron microscope for reaction science. Microscopy 62(1), 205–215 (2013)

    Article  Google Scholar 

  • N. Tanaka, J. Usukura, M. Kusunoki, Y. Saito, K. Sasaki, T. Tanji, S. Muto, S. Arai, Development of an environmental high voltage electron microscope and its application to nano and bio-materials. Journal of Physics: Conference Series 522, 012008 (2014)

    Google Scholar 

  • P.C. Tiemeijer, Measurement of Coulomb interactions in an electron beam monochromator. Ultramicroscopy 78, 53–62 (1999)

    Article  Google Scholar 

  • T. Uchiyama, H. Yoshida, Y. Kuwauchi, S. Ichikawa, S. Shimada, M. Haruta, S. Takeda, Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation. Angew. Chem. Int. Ed. 50, 10157–10160 (2011)

    Article  Google Scholar 

  • S.B. Vendelbo, C.F. Elkjær, H. Falsig, I. Puspitasari, P. Dona, L. Mele, B. Morana, B.J. Nelissen, R. van Rijn, J.F. Creemer, P.J. Kooyman, S. Helveg, Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13, 884–890 (2014)

    Article  Google Scholar 

  • P.C.K. Vesborg, I. Chorkendorff, I. Knudsen, O. Balmes, J. Nerlov, A.M. Molenbroek, B.S. Clausen, S. Helveg, Transient behavior of Cu/ZnO-based methanol synthesis catalysts. J. Catal. 262, 65–72 (2009)

    Article  Google Scholar 

  • J.B. Wagner, P.L. Hansen, A.M. Molenbroek, H. Topsøe, B.S. Clausen, S. Helveg, In situ electron energy loss spectroscopy studies of gas-dependent metal-support interactions in Cu/ZnO catalysts. J. Phys. Chem. B 107, 7753–7758 (2003)

    Article  Google Scholar 

  • J.B. Wagner, F. Cavalca, C.D. Damsgaard, L.D.L. Duchstein, T.W. Hansen, Exploring the environmental transmission electron microscope. Micron 43, 1169–1175 (2012)

    Article  Google Scholar 

  • Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, R.P.H. Chang, A Nanotube-Based Field-Emission Flat Panel Display. Appl. Phys. Lett. 72, 2912–2913 (1998)

    Article  Google Scholar 

  • R. Wang, P.A. Crozier, R. Sharma, J.B. Adas, Measuring the redox activity of individual catalytic particles in cerium-based oxides. Nano Lett. 8(3), 962–967 (2008)

    Article  Google Scholar 

  • R. Wang, P.A. Crozier, R. Sharma, Structural transformation in ceria nanoparticles during redox processes. J. Phys. Chem. C 113, 5700–5704 (2009)

    Article  Google Scholar 

  • P.R. Ward, R.F. Mitchell, A facility for electron microscopy of specimens in controlled environments. Journal of Physics E: Scientific Instruments 5, 160–162 (1972)

    Article  Google Scholar 

  • C.-Y. Wen, M.C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka, E.A. Stach, F.M. Ross, Formation of compositionally abrupt axial heterojunctions in Si/Ge nanowires. Science 326, 1247–1250 (2009)

    Article  Google Scholar 

  • J.W.G. Wilder, C. VenemaL, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)

    Article  Google Scholar 

  • W.D. Williams, M. Shekhar, W.-S. Lee, V. Kispersky, W.N. Delgass, F.H. Ribeiro, S.M. Kim, E.A. Stach, J.T. Miller, L.F. Allard, Metallic corner atoms in gold clusters supported on rutile are the dominant active site during water-gas shift catalysis. J. Am. Chem. Soc. 132, 14018–14020 (2010)

    Article  Google Scholar 

  • M.J. Williamson, R.M. Tromp, P.M. Vereecken, F.M. Ross, Dynamic microscopy of nanoscale cluster growth at solid-liquid interface. Nat. Mat. 2, 532–536 (2003)

    Article  Google Scholar 

  • T. Yaguchi, M. Suzuki, A. Watabe, Y. Nagakubo, K. Ueda, T. Kamino, Development of a high temperature–atmospheric pressure environmental cell for high-resolution TEM. J. Electron Microsc. (Tokyo) 60(3), 217–225 (2011)

    Article  Google Scholar 

  • T. Yokosawa, T. Alan, G. Pandraud, B. Dam, H. Zandbergen, In-situ TEM on (de)hydrogenation of Pd at 0.5–4.5 bar hydrogen pressure and 20–400°C. Ultramicroscopy 112, 47–52 (2012)

    Article  Google Scholar 

  • H. Yoshida, S. Takeda, Image formation in a transmission electron microscope equipped with an environmental cell: Single-walled carbon nanotubes in source gases. Phys. Rev. B 72, 195428 (2005)

    Article  Google Scholar 

  • H. Yoshida, T. Uchiyama, S. Takeda, Environmental Transmission Electron Microscopy Observations of Swinging and Rotational Growth of Carbon Nanotubes. Jap. J. Appl. Phys. 46, L917–L919 (2007)

    Article  Google Scholar 

  • H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, Y. Homma, Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 8, 2082–2086 (2008)

    Article  Google Scholar 

  • H. Yoshida, T. Shimizu, T. Uchiyama, H. Kohno, Y. Homma, S. Takeda, Atomic-scale analysis on the role of molybdenum in iron catalyzed carbon nanotube growth. Nano Lett. 9, 3810–3815 (2009)

    Article  Google Scholar 

  • H. Yoshida, Y. Kuwauchi, J.R. Jinschek, K. Sun, S. Tanaka, M. Kohyama, S. Shimada, M. Haruta, S. Takeda, Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317–319 (2012)

    Article  Google Scholar 

  • L. Zhang, B.K. Miller, P.A. Crozier, Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett. 13, 679–684 (2013)

    Article  Google Scholar 

  • Y. Zhang, Y. Li, W. Kim, D. Wang, H. Dai, Imaging as-grown single-walled carbon nanotubes originated from isolated catalytic nanoparticles. Appl. Phys. A 74, 325–328 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

A.L.K. is grateful for the support from the Stanford Nano Shared Facilities. S.C.L. and R.S. acknowledge funding support from the Center of Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0001060. R.S. also acknowledges funding from the National Cancer Institute grant CCNE-T U54CA151459-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai Leen Koh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koh, A.L., Lee, S.C., Sinclair, R. (2016). A Brief History of Controlled Atmosphere Transmission Electron Microscopy. In: Hansen, T., Wagner, J. (eds) Controlled Atmosphere Transmission Electron Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-22988-1_1

Download citation

Publish with us

Policies and ethics