Skip to main content
Log in

Multi-parametric mittag-leffler functions and their extension

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper surveys one of the last contributions by the late Professor Anatoly Kilbas (1948–2010) and research made under his advisorship. We briefly describe the historical development of the theory of the discussed multi-parametric Mittag-Leffler functions as a class of the Wright generalized hypergeometric functions. The method of the Mellin-Barnes integral representations allows us to extend the considered functions to the case of arbitrary values of parameters. Thus, the extended Mittag-Leffler-type functions appear. The properties of these special functions and their relations to the fractional calculus are considered. Our results are based mainly on the properties of the Fox H-functions, as one of the widest class of special functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramovitz, I. A. Stegun, Handbook of Mathematical Functions. National Bureau of Standards, Washington D.C. (1972), 10th printing.

    Google Scholar 

  2. R. P. Agarwal, A propos d’une note de M. Pierre Humbert. C. R. Acad. Sci. Paris. 236 (1953), 2031–2032.

    MathSciNet  MATH  Google Scholar 

  3. M.-A. Al-Bassam, Yu. F. Luchko, On generalized fractional calculus and it application to the solution of integro-differential equations. J. Fract. Calc., 7 (1995), 69–88.

    MathSciNet  MATH  Google Scholar 

  4. F. Al-Musallam, V. Kiryakova, Vu Kim Tuan, A multi-index Borel-Dzrbashjan transform. Rocky Mountain J. of Math., 32, No 2 (2002), 409–428.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Ali, V. Kiryakova, S.L. Kalla, Solutions of fractional multi-order integral and differential equations using a Poisson-type transform. J. Math. Anal. Appl. 269 (2002), 172–199.

    Article  MathSciNet  MATH  Google Scholar 

  6. E.W. Barnes, A new development of the theory of the hypergeometric functions. Proc. London Math. Soc. (Ser. 2), 6 (1908) 141–177.

    Article  MATH  Google Scholar 

  7. M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism. Pure & Appl. Geophys. 91 (1971), 134–147 (Reprinted in: Fract. Calc. Appl. Anal. 10, No 3 (2007), 309–324; at http://www.math.bas.bg/~fcaa.

    Article  Google Scholar 

  8. K. Diethelm, N. Ford, A. Freed, Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194 (2005), 743–773.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. M. Djrbashian [=Dzherbashian], On integral transforms generated by the generalized Mittag-Leffler function (In Russian). Izv. Akad. Nauk Armjan. SSR, 13, No 3 (1960), 21–63.

    MathSciNet  Google Scholar 

  10. M. M. Djrbashian [=Dzherbashian], Integral Transforms and Representation of Functions in the Complex Domain. Nauka, Moscow (1966), In Russian.

    Google Scholar 

  11. A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. 1. McGraw-Hill Co., New York (1953).

    Google Scholar 

  12. A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. 3. McGraw-Hill Co., New York (1954); Reprinted by Krieger, Melbourne — Florida (1981).

    Google Scholar 

  13. R. Gorenflo, J. Loutchko, Yu. Luchko, Computation of the Mittag-Leffler function E α,β and its derivatives. Fract. Calc. Appl. Anal. 5 (2002), 491–518.

    MathSciNet  MATH  Google Scholar 

  14. R. Gorenflo, Yu. Luchko, F. Mainardi, Wright functions as scaleinvariant solutions of the diffusion-wave equation. Comput. Appl. Math., 118 (2000), 175–191.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Gorenflo, Yu. Luchko, S. Rogozin, Mittag-Leffler type functions: Notes on growth properties and distribution of zeros. Preprint A04-97, Fachbereich Math. und Inform., Freie Univ. Berlin (1997), at http://www.math.fu-berlin.de/publ/index.html.

    Google Scholar 

  16. R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics (A. Carpinteri, F. Mainardi, Eds.), Springer, Wien — N. York (1997), 223–278.

    Google Scholar 

  17. J. W. Hanneken, B. N. N. Achar, R. Puzio, D. M. Vaught, Properties of the Mittag-Leffler function for negative α. Physica Scripta T136 (2009), 014037/15.

    Article  Google Scholar 

  18. H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications. J. Appl. Math. 2011, Article ID 298628, 51 pp. (Hindawi Publ. Co.).

    Google Scholar 

  19. R. Hilfer, H.J. Seybold, Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integr. Transform. Spec. Funct. 17 (2006), 637–652.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Hille, J. D. Tamarkin, On the theory of linear integral equations. Ann. Math. 31 (1930), 479–528.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Kilbas, A. Koroleva, Generalized extended Mittag-Leffler function. Doklady of National Academy of Sciences of Belarus 49, No 5 (2005), 5–10.

    MathSciNet  MATH  Google Scholar 

  22. A. Kilbas, A. Koroleva, Generalised MittagLeffler function and its extension. Tr. Inst. Matem. Nats. Acad. Nauk Belarus 13, No 1 (2005), 43–52.

    Google Scholar 

  23. A. Kilbas, A. Koroleva, Extended generalized Mittag-Leffler functions as H-functions, generalized Wright functions and their differentiation formulas. Vestnik Belarusian State University, Ser. 1, No 2 (2006), 53–60.

    Google Scholar 

  24. A. Kilbas, A. Koroleva, Integral transform with the extended generalized Mittag-Leffler function. Math. Model. Anal., 11, No 2 (2006), 173–186.

    MathSciNet  MATH  Google Scholar 

  25. A. Kilbas, A. Koroleva, Inversion of integral transform with the extended generalized Mittag-Leffler function. Doklady of Mathematics 74, No 3 (2006), 205–208.

    Google Scholar 

  26. A. A. Kilbas, M. Saigo, On solution of integral equations of Abel-Volterra type. Differential and Integral Equations, 8, No 5 (1995), 993–1011.

    MathSciNet  MATH  Google Scholar 

  27. A. A. Kilbas, M. Saigo, Solution of Abel integral equations of the second kind and of differential equations of fractional order (In Russian). Dokl. Akad. Nauk Belarusi 39, No 5 (1995), 29–34.

    MathSciNet  Google Scholar 

  28. A. A. Kilbas, M. Saigo, H-Transforms. Theory and Applications. Ser. “Analytical Methods and Special Functions”, Vol. 9, Chapman & Hall/CRC, Boca Raton, Fl-London-New York-Washington, D.C. (2004).

    Book  MATH  Google Scholar 

  29. A. Kilbas, R. K. Saxena, M. Saigo, J. J. Trujillo, Series representations and asymptotic expansions of extended generalized hypergeometric function. In: Analytic Methods of Analysis and Differential Equations: AMADE-2009 (Proc., S.V. Rogosin, Ed.), Cambridge Sci. Publ., Cottenham - UK (2012), 31–59.

    Google Scholar 

  30. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  31. V. Kiryakova, Multiindex Mittag-Leffler functions, related Gelfond-Leontiev operators and Laplace type integral transforms. Fract. Calc. Appl. Anal. 2, No 4 (1999), 445–462.

    MathSciNet  MATH  Google Scholar 

  32. V. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. Comput. Appl. Math. 118 (2000), 241–259.

    Article  MathSciNet  MATH  Google Scholar 

  33. V. S. Kiryakova, Some special functions related to fractional calculus and fractional (non-integer) order control systems and equations. Facta Universitatis, Ser.: Automatic Control and Robotics 7, No 1 (2008), 79–98.

    MathSciNet  Google Scholar 

  34. V. Kiryakova, The special functions of fractional calculus as generalized fractional calculus operators of some basic functions. Comp. Math. Appl. 59, No 5 (2010), 1128–1141.

    Article  MATH  Google Scholar 

  35. V. Kiryakova, The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus. Comp. Math. Appl. 59, No 5 (2010), 1885–1895.

    Article  MathSciNet  MATH  Google Scholar 

  36. V. S. Kiryakova, Yu. F. Luchko, The multi-index Mittag-Leffler functions and their applications for solving fractional order problems in applied analysis. In: American Institute of Physics — Conf. Proc. # 1301, Proc. AMiTaNS’10 (2010), 597–613; doi:10.1063/1.3526661.

    MathSciNet  Google Scholar 

  37. Yu. Luchko, Operational method in fractional calculus. Fract. Calc. Appl. Anal., 2, No 4 (1999), 463–488.

    MathSciNet  MATH  Google Scholar 

  38. Yu. Luchko, Algorithms for evaluation of the Wright function for the real arguments’ values. Fract. Calc. Appl. Anal. 11 (2008), 57–75; at http://www.math.bas.bg/~fcaa).

    MathSciNet  MATH  Google Scholar 

  39. Yu. Luchko, Integral transforms of the Mellin convolution type and their generating operators. Integr. Transforms Spec. Funct. 19, No 11 (2008), 809–851.

    Article  MathSciNet  MATH  Google Scholar 

  40. Yu. Luchko, Anomalous diffusion: Models, their analysis, and interpretation. In: Advances in Applied Analysis (S.V. Rogosin and A.A. Koroleva, Eds.), Birkhäuser, Basel (2012), 115–145.

    Chapter  Google Scholar 

  41. Yu. Luchko, R. Gorenflo, Scale-invariant solutions of a partial differential equation of fractional order. Fract. Calc. Appl. Anal., 1, No 1 (1998), 63–78.

    MathSciNet  MATH  Google Scholar 

  42. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010).

    Book  MATH  Google Scholar 

  43. F. Mainardi, G. Pagnini, Salvatore Pincherle: The pioneer of the Mellin-Barnes integrals. Comput. Appl. Math. 153 (2003), 331–342.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. M. Mathai, R. K. Saxema, The H- function with Applications in Statistics and Other Disciplines. Halsted Press (John Willey and Sons), New York — London — Sydney (1978).

    MATH  Google Scholar 

  45. A.M. Mathai, H.J. Haubold, Special Functions for Applied Scientists. Springer, Berlin etc. (2008).

    Book  MATH  Google Scholar 

  46. H. Mellin, Abriss einer einheitlichen Theorie der Gamma und der Hypergeometrischen Funktionen. Mathematische Ann., 68 (1910), 305–337.

    Article  MathSciNet  MATH  Google Scholar 

  47. M. G. Mittag-Leffler, Sur la représentation analytique d’une branche uniforme d’une fonction monogene (première note). Acta Math. 23 (1899), 43–62.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. G. Mittag-Leffler, Sur la représentation analytique d’une branche uniforme d’une fonction monogene (seconde note). Acta Math. 24 (1900), 183–204.

    Article  MathSciNet  MATH  Google Scholar 

  49. M. G. Mittag-Leffler, Sur la représentation analytique d’une branche uniforme d’une fonction monogene (troisème note). Acta Math. 24 (1900), 205–244.

    Article  MathSciNet  Google Scholar 

  50. M. G. Mittag-Leffler, Sur la représentation analytique d’une branche uniforme d’une fonction monogene (quatriéme note). Acta Math. 26 (1902), 353–392.

    Article  MathSciNet  MATH  Google Scholar 

  51. M. G. Mittag-Leffler, Sur la representation analytique d’une branche uniforme d’une fonction monogene (cinquiéme note). Acta Math. 29 (1905), 101–181.

    Article  MathSciNet  MATH  Google Scholar 

  52. M. G. Mittag-Leffler, Sur la representation analytique d’une branche uniforme d’une fonction monogene (sixiéme note). Acta Math. 42 (1920), 285–308.

    Article  MathSciNet  Google Scholar 

  53. F.W.J. Olver (Ed.-in-Chief), D.W. Lozier, R.F. Boisvert, and C.W. Clark (Eds.), NIST Handbook of Mathematical Functions. National Institute of Standards and Technology, Cambridge University Press, Gaithersburg, Maryland and New York, 951 + xv pages and a CD (2010).

    MATH  Google Scholar 

  54. J. Paneva-Konovska, Multi-index (3m-parametric) Mittag-Leffler functions and fractional calculus. Compt. Rend. de l’Acad. Bulgare des Sci. 64, No 8 (2011), 1089–1098.

    MathSciNet  MATH  Google Scholar 

  55. J. Paneva-Konovska, The convergence of series in multi-index Mittag-Leffler functions. Integr. Transf. Spec. Functions 23, No 3 (2012), 207–221; doi: 10.1080/10652469.2011.575567.

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Pincherle, Sulle funzioni ipergeometriche generalizzate. Atti R. Accademia Lincei, Rend. Cl. Sci. Fis. Mat. Nat. (Ser. 4), 4 (1888) 694–700, 792–799.

    MATH  Google Scholar 

  57. I. Podlubny, M. Kacenak, Mittag-Leffler function. Matlab Central File Exchange, File ID: # 8738 (17 Oct. 2005); Available at http://www.mathworks.com/matlabcentral/fileexchange/8738.

    Google Scholar 

  58. T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19 (1971), 7–15.

    MathSciNet  MATH  Google Scholar 

  59. A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series. More Special Functions, Vol. 3. Gordon and Breach, New York (1990).

    Google Scholar 

  60. S. Rogosin, A. Koroleva, Integral representation of the four-parametric generalized Mittag-Leffler function. Lithuanian Mathematical Journal 50, No 3 (2010), 337–343.

    Article  MathSciNet  MATH  Google Scholar 

  61. M. Saigo, A. A. Kilbas, On Mittag-Leffler type function and applications. Integral Transforms Spec. Funct. 7, No 1–2 (1998), 97–112.

    Article  MathSciNet  MATH  Google Scholar 

  62. M. Saigo, A. A. Kilbas, Solution of a class of linear differential equations in terms of functions of Mittag-Leffler type. Differential Equations 36, No 2 (2000), 193–200.

    Article  MathSciNet  MATH  Google Scholar 

  63. S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London — New York (1993).

    MATH  Google Scholar 

  64. A. I. Shushin, Anomalous two-state model for anomalous diffusion. Phys. Rev. E 64 (2001), 051108.

    Article  Google Scholar 

  65. H. M. Srivastava, K. C. Gupta, S. L. Goyal, The H-function of One and Two Variables with Applications. South Asian Publishers, New Delhi — Madras (1982).

    Google Scholar 

  66. A. Wiman, Über den Fundamentalsatz der Theorie der Funkntionen E α(x). Acta Math. 29 (1905), 191–201.

    Article  MathSciNet  MATH  Google Scholar 

  67. E.M. Wright, The asymptotic expansion of the generalized Bessel function. Proc. London Math. Soc. (Ser. II) 38 (1935), 257–270.

    Article  Google Scholar 

  68. E.M. Wright, The asymptotic expansion of the generalized hypergeometric function. Journal London Math. Soc. 10 (1935), 287–293.

    Article  Google Scholar 

  69. E.M. Wright, The generalized Bessel function of order greater than one. Quart. J. Math., Oxford Ser. 11 (1940), 36–48.

    Article  MathSciNet  Google Scholar 

  70. S. Yakubovich, Yu. Luchko, The Hypergeometric Approach to Integral Transforms and Convolutions. Ser.: Mathematics and Its Applications 287 (Kluwer Acad. Publ., Dordrecht-Boston-London (1994).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei V. Rogosin.

Additional information

Dedicated to Professor Francesco Mainardi on the occasion of his 70th anniversary

About this article

Cite this article

Kilbas, A.A., Koroleva, A.A. & Rogosin, S.V. Multi-parametric mittag-leffler functions and their extension. fcaa 16, 378–404 (2013). https://doi.org/10.2478/s13540-013-0024-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0024-9

MSC 2010

Key Words and Phrases

Navigation