Skip to main content
Log in

Oxidative Mechanisms and Tardive Dyskinesia

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Tardive dyskinesia has been and continues to be a significant problem associated with long-term antipsychotic use, but its pathophysiology remains unclear. In the last 10 years, preclinical studies of the administration of antipsychotics to animals, as well as clinical studies of oxidative processes in patients given anti-psychotic medications, with and without tardive dyskinesia, have continued to support the possibility that neurotoxic free radical production may be an important consequence of antipsychotic treatment, and that such production may relate to the development of dyskinetic phenomena.

In line with this hypothesis, evidence has accumulated for the efficacy of antioxidants, primarily vitamin E (α-tocopherol), in the treatment and prevention of tardive dyskinesia. Early studies suggested a modest effect of vitamin E treatment on existing tardive dyskinesia, but later studies did not demonstrate a significant effect. Because evidence has continued to accumulate for increased oxidative damage from antipsychotic medications, but less so for the effectiveness of vitamin E, especially in cases of long-standing tardive dyskinesia, alternative antioxidant approaches to the condition may be warranted. These approaches may include the use of antioxidants as a preventive measure for tardive dyskinesia or the use of other antioxidants or neuroprotective drugs, such as melatonin, for established tardive dyskinesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The pathophysiological or pathoanatomical reason why tardive dyskinesia in most individuals primarily involves the lower facial musculature as well as the distal extremities is currently unknown. It is therefore difficult to discuss how free radical—induced toxicity may relate to the specific anatomical distribution of the syndrome. Although one is tempted to speculate that certain brain regions may be more vulnerable than others to the tardive dyskinesia—causing effects of antipsychotics, it is not known what that vulnerability might be. The anatomical regions affected by tardive dyskinesia seem to be dedicated to complex movements, such as those subserving communication functions as with speech and gesture,[8] but again this does not necessarily imply a specific pathophysiological mechanism for tardive dyskinesia. Although it is possible that brain regions involved in the control of complex motor functions may be at greater risk of free radical—induced damage than other regions, there is to the authors’ knowledge no direct evidence for this conjecture.

References

  1. Lohr JB, Jeste DV. Neuroleptic-induced movement disorders: acute and subacute disorders. In: Cavenar Jr JO, editor. Psychiatry. Philadelphia (PA): Lippincott, 1988: 1–19

    Google Scholar 

  2. Glazer WM. Expected incidence of tardive dyskinesia associated with atypical antipsychotics. J Clin Psychiatry 2000; 61Suppl. 4: 21–6

    PubMed  CAS  Google Scholar 

  3. Jeste DV, Caligiuri MP, Paulsen JS, et al. Risk of tardive dyskinesia in older patients: a prospective longitudinal study of 266 outpatients. Arch Gen Psychiatry 1995; 52: 756–65

    Article  PubMed  CAS  Google Scholar 

  4. Caligiuri MR, Jeste DV, Lacro JP. Antipsychotic-induced movement disorders in the elderly: epidemiology and treatment recommendations. Drugs Aging 2000; 17: 363–84

    Article  PubMed  CAS  Google Scholar 

  5. Burt DR, Creese I, Snyder SH. Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 1977; 196: 326–8

    Article  PubMed  CAS  Google Scholar 

  6. Rubinstein M, Muschietti JP, Gershanik O, et al. Adaptive mechanisms of striatal D1 and D2 dopamine receptors in response to a prolonged reserpine treatment in mice. J Pharmacol Exp Ther 1990; 252: 810–6

    PubMed  CAS  Google Scholar 

  7. Klawans HL, Rubovits R. An experimental model of tardive dyskinesia. J Neural Transm 1972; 33: 235–46

    Article  PubMed  Google Scholar 

  8. Lohr JB, Jeste DV. Neuroleptic-induced movement disorders: tardive dyskinesia and other tardive syndromes. In: Cavenar Jr JO, editor. Psychiatry. Philadelphia (PA): Lippincott, 1988: 1–17

    Google Scholar 

  9. Sachdev PS. The current status of tardive dyskinesia. Aust N Z J Psychiatry 2000; 34: 355–69

    Article  PubMed  CAS  Google Scholar 

  10. Cadet JL, Lohr JB. Possible involvement of free radicals in neuroleptic-induced movement disorders: evidence from treatment of tardive dyskinesia with vitamin E. Ann N Y Acad Sci 1989; 570: 176–85

    Article  PubMed  CAS  Google Scholar 

  11. Fibiger HC, Lloyd KG. Neurobiological substrates of tardive dyskinesia: the GABA hypothesis. Trends Neurosci 1984; 7: 462–4

    Article  CAS  Google Scholar 

  12. Sachdev P, Saharov T, Cathcart S. The preventative role of antioxidants (selegiline and vitamin E) in a rat model of tardive dyskinesia. Biol Psychiatry 1999; 46: 1672–81

    Article  PubMed  CAS  Google Scholar 

  13. Elkashef AM, Wyatt RJ. Tardive dyskinesia: possible involvement of free radicals and treatment with vitamin E. Schizophr Bull 1999; 25: 731–40

    Article  PubMed  CAS  Google Scholar 

  14. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neuro-degenerative disorders. Science 1993; 262: 689–95

    Article  PubMed  CAS  Google Scholar 

  15. Hensley K, Floyd RA. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys 2002; 397: 377–83

    Article  PubMed  CAS  Google Scholar 

  16. Wickens AP. Ageing and free radical theory. Respir Physiol 2001; 128: 379–91

    Article  PubMed  CAS  Google Scholar 

  17. Kesavulu MM, Rao BK, Giri R, et al. Lipid peroxidation and antioxidant enzyme status in type 2 diabetics with coronary heart disease. Diabetes Res Clin Pract 2001; 53: 33–9

    Article  PubMed  CAS  Google Scholar 

  18. Dubey RK, Tyurina YY, Tyurin VA, et al. Estrogen and tamoxifen metabolites protect smooth muscle cell membrane phospholipids against peroxidation and inhibit cell growth. Circ Res 1999; 84: 229–39

    Article  PubMed  CAS  Google Scholar 

  19. Zima T, Fialova L, Mestek O, et al. Oxidative stress, metabolism of ethanol and alcohol-related diseases. J Biomed Sci 2001; 8: 59–70

    Article  PubMed  CAS  Google Scholar 

  20. Mantle D, Preedy VR. Free radicals as mediators of alcohol toxicity. Adverse Drug React Toxicol Rev 1999; 18: 235–52

    PubMed  CAS  Google Scholar 

  21. Mercuri F, Quagliaro L, Ceriello A. Oxidative stress evaluation in diabetes. Diabetes Technol Ther 2000; 2: 589–600

    Article  PubMed  CAS  Google Scholar 

  22. Turrone P, Seeman MV, Silvestri S. Estrogen receptor activation and tardive dyskinesia. Can J Psychiatry 2000; 45: 288–90

    PubMed  CAS  Google Scholar 

  23. Grace AA, Bunney BS, Moore H, et al. Dopamine-cell depolarization block as a model for the therapeutic actions of anti-psychotic drugs. Trends Neurosci 1997; 20: 31–7

    Article  PubMed  CAS  Google Scholar 

  24. Schultz SK, Miller DD, Arndt S, et al. Withdrawal-emergent dyskinesia in patients with schizophrenia during antipsychotic discontinuation. Biol Psychiatry 1995; 38: 713–9

    Article  PubMed  CAS  Google Scholar 

  25. Ahmed S, Chengappa KN, Naidu VR, et al. Clozapine withdrawal-emergent dystonias and dyskinesias: a case series. J Clin Psychiatry 1998; 59: 472–7

    Article  PubMed  CAS  Google Scholar 

  26. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: Clarendon Press, 1985

    Google Scholar 

  27. Acuna-Castroviejo D, Martin M, Macias M, et al. Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 2001; 30: 65–74

    Article  PubMed  CAS  Google Scholar 

  28. Lohr JB. Oxygen radicals and neuropsychiatrie illness: some speculations. Arch Gen Psychiatry 1991; 48: 1097–106

    Article  PubMed  CAS  Google Scholar 

  29. Jenner P. Oxidative damage in neurodegenerative disease. Lancet 1994; 344: 796–8

    Article  PubMed  CAS  Google Scholar 

  30. Beal MF. Aging, energy, and oxidative stress in neurodegenerative disease. Ann Neurol 1995; 38: 357–66

    Article  PubMed  CAS  Google Scholar 

  31. Floyd RA. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 1999; 222: 236–45

    Article  PubMed  CAS  Google Scholar 

  32. Bird ED, Collins GH, Dodson MH, et al. The effect of phenothiazine on the manganese concentration in the basal ganglia of sub-human primates. In: Barbeau A, Burnette J-R, editors. Progress in neuro-genetics. Amsterdam: Excerpta Medica, 1967: 600–5

    Google Scholar 

  33. Weiner WJ, Nausieda PA, Klawans HL. Effect of chlorpromazine on central nervous system concentrations of manganese, iron, and copper. Life Sci 1977; 20: 1181–6

    Article  PubMed  CAS  Google Scholar 

  34. Sagara Y. Induction of reactive oxygen species in neurons by haloperidol. J Neurochem 1998; 71: 1002–12

    Article  PubMed  CAS  Google Scholar 

  35. Galili-Mosberg R, Weizman A, Melamed E, et al. Haloperidol-induced neurotoxicity: possible implications for tardive dyskinesia. J Neural Transm 2000; 107: 479–90

    Article  CAS  Google Scholar 

  36. Murthy JN, Laev H, Karpiak S, et al. Enzymes of oxyradical metabolism after haloperidol treatment in rat [abstract]. Soc Neurosci Abstracts 1989; 15: 139

    Google Scholar 

  37. Cadet JL, Perumal AS. Chronic treatment with prolixin causes oxidative stress in rat brain. Biol Psychiatry 1990; 28: 738–40

    Article  PubMed  CAS  Google Scholar 

  38. Cohen G, Spina MB. Deprenyl suppresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 1989; 26: 689–90

    Article  PubMed  CAS  Google Scholar 

  39. Shivakumar BR, Ravindranath V. Oxidative stress induced by administration of the neuroleptic drug haloperidol is attenuated by higher doses of haloperidol. Brain Res 1992; 595: 256–62

    Article  PubMed  CAS  Google Scholar 

  40. Tsai G, Goff D, Chang RW, et al. Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 1998; 155: 1207–13

    PubMed  CAS  Google Scholar 

  41. Behl C, Rupprecht R, Skutella R, et al. Haloperidol-induced cell death: mechanism and protection with vitamin E in vitro. Neuroreport 1995; 7: 360–4

    PubMed  CAS  Google Scholar 

  42. Post A, Holsboer F, Behl C. Induction of NF-κB activity during haloperidol-induced oxidative toxicity in clonal hippocampal cells: suppression of NF-κB and neuroprotection by antioxidants. J Neurosci 1998; 18: 8236–46

    PubMed  CAS  Google Scholar 

  43. Burkhardt C, Kelly JP, Lim YH, et al. Neuroleptic medications inhibit complex I of the electron transport chain. Ann Neurol 1993; 33: 512–7

    Article  PubMed  CAS  Google Scholar 

  44. Prince JA, Hassin MS, Oreland L. Neuroleptic-induced mitochondrial enzyme alterations in the rat brain. J Pharmacol Exp Ther 1997; 280: 261–7

    PubMed  CAS  Google Scholar 

  45. Maurer I, Moller HJ. Inhibition of complex I by neuroleptics in normal human brain cortex parallels the extrapyramidal toxicity of neuroleptics. Mol Cell Biochem 1997; 174: 255–9

    Article  PubMed  CAS  Google Scholar 

  46. Hori H, Ohmori O, Shinkai T, et al. Manganese superoxide dismutase gene polymorphism and schizophrenia: relation to tardive dyskinesia. Psychopharmacology (Berl) 2000; 23: 170–7

    CAS  Google Scholar 

  47. Gattaz WF, Emrich A, Behrens S. Vitamin E attenuates the development of haloperidol-induced dopaminergic hypersensitivity in rats: possible implications for tardive dyskinesia. J Neural Transm 1993; 92: 197–201

    Article  CAS  Google Scholar 

  48. Lohr JB, Caligiuri MP, Manley MS, et al. Neuroleptic-induced striatal damage in rats: a study of antioxidant treatment using accelerometric and immunocytochemical methods. Psychopharmacology (Berl) 2000; 148: 171–9

    Article  CAS  Google Scholar 

  49. Hunter R, Blackwood W, Smith MC, et al. Neuropathological findings in three cases of persistent dyskinesia following phenothiazine medication. J Neurol Sci 1968; 7: 263–73

    Article  PubMed  CAS  Google Scholar 

  50. Campbell WG, Raskind MA, Gordon T, et al. Iron pigment in the brain of a man with tardive dyskinesia. Am J Psychiatry 1985; 142: 364–5

    PubMed  CAS  Google Scholar 

  51. Bartzokis G, Garber HJ, Marder SR, et al. MRI in tardive dyskinesia: shortened left caudate T 2. Biol Psychiatry 1990; 28: 1027–36

    Article  PubMed  CAS  Google Scholar 

  52. Casanova MF, Comparini SO, Kim RW, et al. Staining intensity of brain iron in patients with schizophrenia: a postmortem study. J Neuropsychiatry Clin Neurosci 1992; 4: 36–41

    PubMed  CAS  Google Scholar 

  53. Pall HS, Williams AC, Blake DR, et al. Evidence of enhanced lipid peroxidation in the cerebrospinal fluid of patients taking phenothiazines. Lancet 1987; II: 596–9

    Article  Google Scholar 

  54. Pai BN, Janakiramaiah N, Gangadhar BN, et al. Depletion of glutathione and enhanced lipid peroxidation in the CSF of acute psychotics following haloperidol administration. Biol Psychiatry 1994; 36: 489–91

    Article  PubMed  CAS  Google Scholar 

  55. Lohr JB, Kuczenski R, Bracha HS, et al. Increased indices of free radical activity in the cerebrospinal fluid of patients with tardive dyskinesia. Biol Psychiatry 1990; 28: 535–9

    Article  PubMed  CAS  Google Scholar 

  56. National Institute of Mental Health. Abnormal involuntary movement scale. In: Guy W, editor. Early clinical evaluation unit assessment manual. Rockville (MD): US Department of Health and Human Services, 1976: 534–7

    Google Scholar 

  57. Schooler NR, Kane JM. Research diagnosis for tardive dyskinesia [letter]. Arch Gen Psychiatry 1982; 39: 486–7

    PubMed  CAS  Google Scholar 

  58. Peet M, Laugharne J, Rangarajan N, et al. Tardive dyskinesia, lipid peroxidation and sustained amelioration with vitamin E treatment. Int Clin Psychopharmacol 1993; 8: 151–3

    Article  PubMed  CAS  Google Scholar 

  59. McCreadie RG, MacDonald E, Wiles D, et al. The Nithsdale schizophrenia surveys. XIV: plasma lipid peroxide and serum vitamin E levels in patients with and without tardive dyskinesia, and in normal subjects. Br J Psychiatry 1995; 167: 610–7

    Article  PubMed  CAS  Google Scholar 

  60. Goff DC, Tsai G, Beal MF, et al. Tardive dyskinesia and substrates of energy metabolism in CSF. Am J Psychiatry 1995; 152: 1730–6

    PubMed  CAS  Google Scholar 

  61. Brown K, Reid A, White T, et al. Vitamin E, lipids, and lipid peroxidation products in tardive dyskinesia. Biol Psychiatry 1998; 43: 863–7

    Article  PubMed  CAS  Google Scholar 

  62. Yao JK, Reddy R, van Kammen DP. Reduced level of plasma antioxidant uric acid in schizophrenia. Psychiatr Res 1998; 80: 29–39

    Article  CAS  Google Scholar 

  63. Abdalla DSP, Manteiro HP, Olivera JAC, et al. Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic depressive patients. Clin Chem 1986; 32: 805–7

    PubMed  CAS  Google Scholar 

  64. Yao JK, Reddy R, McElhinny LG, et al. Effects of haloperidol on antioxidant defense system enzymes in schizophrenia. J Psychiatr Res 1998; 32: 385–91

    Article  PubMed  CAS  Google Scholar 

  65. Gattaz WF. Does vitamin E prevent tardive dyskinesia? Biol Psychiatry 1995; 37: 895–7

    Article  Google Scholar 

  66. Dorfman-Etrog P, Hermesh H, Prilipko L, et al. The effect of vitamin E addition to acute neuroleptic treatment on the emergence of extrapyramidal side effects in schizophrenic patients: an open label study. Eur Neuropsychopharmacol 1999; 9: 475–7

    Article  PubMed  CAS  Google Scholar 

  67. Crane GE. Pseudoparkinsonism and tardive dyskinesia. Arch Neurol 1972; 27: 426–30

    Article  PubMed  CAS  Google Scholar 

  68. Caligiuri MP, Lohr JB, Bracha HS, et al. Clinical and instrumental assessment of neuroleptic-induced parkinsonism in patients with tardive dyskinesia. Biol Psychiatry 1991; 29: 139–48

    Article  PubMed  CAS  Google Scholar 

  69. Lohr JB, Cadet JL, Lohr MA, et al. Alpha-tocopherol in tardive dyskinesia: a preliminary study. Lancet 1987; I: 913–4

    Article  Google Scholar 

  70. Lohr JB, Cadet JL, Lohr MA, et al. Vitamin E in the treatment of tardive dyskinesia: the possible involvement of free radical mechanisms. Schizophr Bull 1988; 14: 291–6

    Article  PubMed  CAS  Google Scholar 

  71. Elkashef AM, Ruskin PE, Bacher N, et al. Vitamin E in the treatment of tardive dyskinesia. Am J Psychiatry 1990; 147: 505–6

    PubMed  CAS  Google Scholar 

  72. Schmidt M, Meister P, Baumann P. Treatment of tardive dyskinesias with vitamin E. Eur Psychiatry 1991; 6: 201–7

    Google Scholar 

  73. Egan MF, Hyde T, Albers G, et al. Treatment of tardive dyskinesia with vitamin E. Am J Psychiatry 1992; 149: 773–7

    PubMed  CAS  Google Scholar 

  74. Shriqui CL, Bradwejn J, Annable L, et al. Vitamin E in the treatment of tardive dyskinesia: a double-blind placebo-controlled study. Am J Psychiatry 1992; 149: 391–3

    PubMed  CAS  Google Scholar 

  75. Spivak B, Schwartz B, Radwan M, et al. Alpha-tocopherol treatment for tardive dyskinesia. J Nerv Ment Dis 1992; 180: 400–1

    Article  PubMed  CAS  Google Scholar 

  76. Junker D, Steigleider P, Gattaz WF. Alpha-tocopherol in the treatment of tardive dyskinesia. Clin Neuropharmacol 1992; 15 (Suppl. l, Pt b): 639B

    Article  Google Scholar 

  77. Akhtar S, Jajor TR, Kumar S. Vitamin E in the treatment of tardive dyskinesia. J Postgrad Med 1993; 39: 124–6

    PubMed  CAS  Google Scholar 

  78. Adler L, Peselow E, Rotrosen J, et al. Vitamin E treatment of tardive dyskinesia. Am J Psychiatry 1993; 150: 1405–7

    PubMed  CAS  Google Scholar 

  79. Lam LCW, Chiu HFK, Hung SF. Vitamin E in the treatment of tardive dyskinesia: a replication study. J Nerv Ment Dis 1994; 182: 113–4

    Article  PubMed  CAS  Google Scholar 

  80. Dabiri LM, Pasta D, Darby JK, et al. Effectiveness of vitamin E for treatment of long-term tardive dyskinesia. Am J Psychiatry 1994; 151: 925–6

    PubMed  CAS  Google Scholar 

  81. Lohr JB, Caligiuri MP. A double-blind placebo controlled study of vitamin E treatment of tardive dyskinesia. J Clin Psychiatry 1996; 57: 167–73

    PubMed  CAS  Google Scholar 

  82. Dorevitch A, Kalian M, Shlafman M, et al. Treatment of long-term tardive dyskinesia with vitamin E. Biol Psychiatry 1997; 41: 114–6

    Article  PubMed  CAS  Google Scholar 

  83. Sajjad SHA. Vitamin E in the treatment of tardive dyskinesia: a preliminary study over 7 months at different doses. Int Clin Psychopharmacol 1998; 13: 147–55

    Article  PubMed  CAS  Google Scholar 

  84. Adler LA, Edson R, Lavori P, et al. Long-term treatment effects of vitamin E for tardive dyskinesia. Biol Psychiatry 1998; 43: 868–72

    Article  PubMed  CAS  Google Scholar 

  85. Barak Y, Swartz M, Shamir E, et al. Vitamin E (α-tocopherol) in the treatment of tardive dyskinesia: a statistical meta-analysis. Ann Clin Psychiatry 1998; 10: 101–5

    PubMed  CAS  Google Scholar 

  86. Soares KVS, McGrath JJ. The treatment of tardive dyskinesia: a systematic review and meta-analysis. Schiz Res 1999; 39: 1–16

    Article  CAS  Google Scholar 

  87. Adler LA, Rotrosen J, Edson R, et al. Vitamin E treatment for tardive dyskinesia. Arch Gen Psychiatry 1999; 56: 836–41

    Article  PubMed  CAS  Google Scholar 

  88. Lohr JB, Lavori P. Whither vitamin E and tardive dyskinesia? Biol Psychiatry 1998; 43: 861–2

    Article  PubMed  CAS  Google Scholar 

  89. Goff DC, Renshaw PF, Sarld-Segal O, et al. A placebo-controlled trial of selegiline (L-deprenyl) in the treatment of tardive dyskinesia. Biol Psychiatry 1993; 33: 700–6

    Article  PubMed  CAS  Google Scholar 

  90. Shamir E, Barak Y, Shalman I, et al. Melatonin treatment for tardive dyskinesia: a double-blind, placebo-controlled, crossover study. Arch Gen Psychiatry 2001; 58: 1049–52

    Article  PubMed  CAS  Google Scholar 

  91. Andreassen OA, Jorgensen HA. Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats: implications for tardive dyskinesia? Prog Neurobiol 2000; 61: 525–41

    Article  PubMed  CAS  Google Scholar 

  92. Zeevalk GD, Bernard LP, Nicklas WJ. Oxidative stress during energy impairment in mesencephalic cultures is not a downstream consequence of a secondary excitotoxicity. Neuroscience 2000; 96: 309–16

    Article  PubMed  CAS  Google Scholar 

  93. Bailey LG, Maxwell S, Brandabur MM. Substance abuse as a risk factor for tardive dyskinesia: a retrospective analysis of 1027 patients. Psychopharmacol Bull 1997; 33: 177–81

    PubMed  CAS  Google Scholar 

  94. Harvey BH, Bester A. Withdrawal-associated changes in peripheral nitrogen oxides and striatal cyclic GMP after chronic haloperidol treatment. Behav Brain Res 2000; 111: 203–11

    Article  PubMed  CAS  Google Scholar 

  95. Bolkenius FN, Verne-Mismer J, Wagner J, et al. Amphiphilic α-tocopherol analogues as inhibitors of brain lipid peroxidation. Eur J Pharmacol 1996; 298: 37–43

    Article  PubMed  CAS  Google Scholar 

  96. Kitani K, Minami C, Yamamoto T, et al. Do antioxidant strategies work against aging and age-associated disorders? Pro-pargylamines: a possible antioxidant strategy. Ann N Y Acad Sci 2001; 928: 248–60

    Article  PubMed  CAS  Google Scholar 

  97. Le Bars PL, Katz MM, Berman N, et al. A placebo-controlled, double-blind, randomized trial of an extract of ginkgo biloba for dementia: the North American EGb Study Group. JAMA 1997; 278: 1327–32

    Article  PubMed  Google Scholar 

  98. Gutzmann H, Hadler D. Sustained efficacy and safety of idebenone in the treatment of Alzheimer’s disease: update on a 2-year double-blind multicentre study. J Neural Transm Suppl 1998; 54: 301–10

    PubMed  CAS  Google Scholar 

  99. McGrath JJ, Soares KV. Miscellaneous treatments for neuroleptic-induced tardive dyskinesia. The Cochrane Database of Systematic Reviews. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Oxford Update Software, 2000

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Mental Health Grant R01 57140 and by the Veterans Integrated Service Network (VISN)-22 Mental Illness Research Education and Clinical Center (MIRECC). The authors have provided no information on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Lohr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohr, J.B., Kuczenski, R. & Niculescu, A.B. Oxidative Mechanisms and Tardive Dyskinesia. Mol Diag Ther 17, 47–62 (2003). https://doi.org/10.2165/00023210-200317010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200317010-00004

Keywords

Navigation