Skip to main content

Advertisement

Log in

Galantamine-Memantine Combination as an Antioxidant Treatment for Schizophrenia

  • Psychosis (A Ahmed, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The objective of this article is to highlight the potential role of the galantamine-memantine combination as a novel antioxidant treatment for schizophrenia.

Recent Findings

In addition to the well-known mechanisms of action of galantamine and memantine, these medications also have antioxidant activity. Furthermore, an interplay exists between oxidative stress, inflammation (redox-inflammatory hypothesis), and kynurenine pathway metabolites. Also, there is an interaction between brain-derived neurotrophic factor and oxidative stress in schizophrenia. Oxidative stress may be associated with positive, cognitive, and negative symptoms and impairments in white matter integrity in schizophrenia. The antipsychotic-galantamine-memantine combination may provide a novel strategy in schizophrenia to treat positive, cognitive, and negative symptoms.

Summary

A “single antioxidant” may be inadequate to counteract the complex cascade of oxidative stress. The galantamine-memantine combination as “double antioxidants” is promising. Hence, randomized controlled trials are warranted with the antipsychotic-galantamine-memantine combination with oxidative stress and antioxidant biomarkers in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Hoskins RG. Oxygen metabolism in schizophrenia. Arch Neurol Psychiatr. 1937;38(6):1261–70 This is presumably the first publication on oxygen metabolism in schizophrenia.

    Article  Google Scholar 

  2. • Hoffer A, Osmond H, Smythies J. Schizophrenia; a new approach. II. Result of a year’s research. J Ment Sci. 1954;100(418):29–45 This is one of the first publications on oxidative stress in schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  3. Mahadik SP, Scheffer RE. Oxidative injury and potential use of antioxidants in schizophrenia. Prostaglandins Leukot Essent Fatty Acids. 1996;55(1–2):45–54.

    Article  CAS  PubMed  Google Scholar 

  4. Ramchand CN, Davies JI, Tresman RL, Griffiths IC, Peet M. Reduced susceptibility to oxidative damage of erythrocyte membranes from medicated schizophrenic patients. Prostaglandins Leukot Essent Fatty Acids. 1996;55(1–2):27–31.

    Article  CAS  PubMed  Google Scholar 

  5. Reddy RD, Yao JK. Free radical pathology in schizophrenia: a review. Prostaglandins Leukot Essent Fatty Acids. 1996;55(1–2):33–43.

    Article  CAS  PubMed  Google Scholar 

  6. Wu JQ, Kosten TR, Zhang XY. Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;46:200–6.

    Article  CAS  Google Scholar 

  7. • Möller M, Swanepoel T, Harvey BH. Neurodevelopmental animal models reveal the convergent role of neurotransmitter systems, inflammation, and oxidative stress as biomarkers of schizophrenia: implications for novel drug development. ACS Chem Neurosci. 2015;6(7):987–1016 This article illustrated the interplay between inflammation, oxidative stress, and the kynurenine pathway and discussed the role of memantine as an antioxidant.

    Article  CAS  PubMed  Google Scholar 

  8. Fendri C, Mechri A, Khiari G, Othman A, Kerkeni A, Gaha L. Oxidative stress involvement in schizophrenia pathophysiology: a review. Encephale. 2006;32(2 Pt 1):244–52.

    Article  CAS  PubMed  Google Scholar 

  9. Ustundag B, Atmaca M, Kirtas O, Selek S, Metin K, Tezcan E. Total antioxidant response in patients with schizophrenia. Psychiatry Clin Neurosci. 2006;60(4):458–64.

    Article  CAS  PubMed  Google Scholar 

  10. Do KQ, Cabungcal JH, Frank A, Steullet P, Cuenod M. Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol. 2009;19(2):220–30.

    Article  CAS  PubMed  Google Scholar 

  11. Bošković M, Vovk T, Kores Plesničar B, Grabnar I. Oxidative stress in schizophrenia. Curr Neuropharmacol. 2011;9(2):301–12.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bitanihirwe BK, Woo TU. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev. 2011;35(3):878–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gysin R, Kraftsik R, Boulat O, Bovet P, Conus P, Comte-Krieger E, et al. Genetic dysregulation of glutathione synthesis predicts alteration of plasma thiol redox status in schizophrenia. Antioxid Redox Signal. 2011;15(7):2003–10.

    Article  CAS  PubMed  Google Scholar 

  14. Martins-de-Souza D, Harris LW, Guest PC, Bahn S. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal. 2011;15(7):2067–79.

    Article  CAS  PubMed  Google Scholar 

  15. • Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal. 2011;15(7):2011–35 This is a comprehensive review on oxidative stress in schizophrenia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fukushima T, Iizuka H, Yokota A, Suzuki T, Ohno C, Kono Y, et al. Quantitative analyses of schizophrenia-associated metabolites in serum: serum D-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients. PLoS One. 2014;9(7):e101652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sertan Copoglu U, Virit O, Hanifi Kokacya M, Orkmez M, Bulbul F, Binnur Erbagci A, et al. Increased oxidative stress and oxidative DNA damage in non-remission schizophrenia patients. Psychiatry Res. 2015;229(1–2):200–5.

    Article  CAS  PubMed  Google Scholar 

  18. Shim S, Shuman M, Duncan E. An emerging role of cGMP in the treatment of schizophrenia: a review. Schizophr Res. 2016;170(1):226–31.

    Article  PubMed  Google Scholar 

  19. Ali FT, Abd El-Azeem EM, Hamed MA, Ali MAM, Abd Al-Kader NM, Hassan EA. Redox dysregulation, immuno-inflammatory alterations and genetic variants of BDNF and MMP-9 in schizophrenia: pathophysiological and phenotypic implications. Schizophr Res. 2017;188:98–109.

    Article  PubMed  Google Scholar 

  20. Boll KM, Noto C, Bonifácio KL, Bortolasci CC, Gadelha A, Bressan RA, et al. Oxidative and nitrosative stress biomarkers in chronic schizophrenia. Psychiatry Res. 2017;253:43–8.

    Article  CAS  PubMed  Google Scholar 

  21. • Zhang M, Zhao Z, He L, Wan C. A meta-analysis of oxidative stress markers in schizophrenia. Sci China Life Sci. 2010;53(1):112–24 This is a meta-analysis of studies on oxidative stress in schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  22. • Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74(6):400–9 This is a meta-analysis of 44 studies of oxidative stress in schizophrenia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. •• Koola MM, Buchanan RW, Pillai A, Aitchison KJ, Weinberger DR, Aaronson ST, et al. Potential role of the combination of galantamine and memantine to improve cognition in schizophrenia. Schizophr Res. 2014;157(1–3):84–9 This article was the first to shed light on the potential role of the galantamine-memantine combination in schizophrenia and described how the combination may counteract the effects of kynurenic acid.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Koola MM. Kynurenine pathway and cognitive impairments in schizophrenia: pharmacogenetics of galantamine and memantine. SchizophrRes Cogn. 2016;4:4–9.

    Article  Google Scholar 

  25. •• Koola MM. Potential role of antipsychotic-galantamine-memantine combination for the treatment of positive, cognitive and negative symptoms of schizophrenia. Mol Neuropsychiatry. 2018;4:134–48 This article reviewed how the antipsychotic-galantamine-memantine combination may improve positive, cognitive, and negative symptoms concurrently.

    Article  CAS  PubMed  Google Scholar 

  26. Noto C, Ota VK, Gadelha A, Noto MN, Barbosa DS, Bonifácio KL, et al. Oxidative stress in drug naïve first episode psychosis and antioxidant effects of risperidone. J Psychiatr Res. 2015;68:210–6.

    Article  PubMed  Google Scholar 

  27. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15(4):316–28.

    Article  PubMed  Google Scholar 

  28. Ganfornina MD, Do Carmo S, Lora JM, Torres-Schumann S, Vogel M, Allhorn M, et al. Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell. 2008;7(4):506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. • Golse B, Debray Q, Puget K, Michelson AM. Superoxide dismutase 1 and glutathione peroxidase levels in erythrocytes of adult schizophrenics. Nouv Press Med. 1978;7(23):2070–1 This is one of the earliest articles showing oxidative stress biomarkers in schizophrenia.

    CAS  Google Scholar 

  30. Li HC, Chen QZ, Ma Y, Zhou JF. Imbalanced free radicals and antioxidant defense systems in schizophrenia: a comparative study. J Zhejiang Univ Sci B. 2006;7(12):981–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Do KQ, Trabesinger AH, Kirsten-Krüger M, Lauer CJ, Dydak U, Hell D, et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci. 2000;12(10):3721–8.

    Article  CAS  PubMed  Google Scholar 

  32. Leipnitz G, Schumacher C, Scussiato K, Dalcin KB, Wannmacher CM, Wyse AT, et al. Quinolinic acid reduces the antioxidant defenses in cerebral cortex of young rats. Int J Dev Neurosci. 2005;23(8):695–701.

    Article  CAS  PubMed  Google Scholar 

  33. Akyol O, Herken H, Uz E, Fadillioğlu E, Unal S, Söğüt S, et al. The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients. The possible role of oxidant/antioxidant imbalance. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(5):995–1005.

    Article  CAS  PubMed  Google Scholar 

  34. Dietrich-Muszalska A, Olas B, Głowacki R, Bald E. Oxidative/nitrative modifications of plasma proteins and thiols from patients with schizophrenia. Neuropsychobiology. 2009;59(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  35. Kano S, Colantuoni C, Han F, Zhou Z, Yuan Q, Wilson A, et al. Genome-wide profiling of multiple histone methylations in olfactory cells: further implications for cellular susceptibility to oxidative stress in schizophrenia. Mol Psychiatry. 2013;18(7):740–2.

    Article  CAS  PubMed  Google Scholar 

  36. •• Pandya CD, Howell KR, Pillai A. Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;46:214–23 This comprehensive review showed all the oxidative stress and antioxidant biomarkers in schizophrenia that have been validated.

    Article  CAS  Google Scholar 

  37. Matsuzawa D, Obata T, Shirayama Y, Nonaka H, Kanazawa Y, Yoshitome E, et al. Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3T 1H-MRS study. PLoS One. 2008;3(4):e1944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Albayrak Y, Ünsal C, Beyazyüz M, Ünal A, Kuloğlu M. Reduced total antioxidant level and increased oxidative stress in patients with deficit schizophrenia: a preliminary study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;45:144–9.

    Article  CAS  Google Scholar 

  39. Monin A, Baumann PS, Griffa A, Xin L, Mekle R, Fournier M, et al. Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients. Mol Psychiatry. 2015;20(7):827–38.

    Article  CAS  PubMed  Google Scholar 

  40. Alameda L, Fournier M, Khadimallah I, Griffa A, Cleusix M, Jenni R, et al. Redox dysregulation as a link between childhood trauma and psychopathological and neurocognitive profile in patients with early psychosis. Proc Natl Acad Sci U S A. 2018;115(49):12495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chittiprol S, Venkatasubramanian G, Neelakantachar N, Babu SV, Reddy NA, Shetty KT, et al. Oxidative stress and neopterin abnormalities in schizophrenia: a longitudinal study. J Psychiatr Res. 2010;44:310–3.

    Article  PubMed  Google Scholar 

  42. Sagara Y. Induction of reactive oxygen species in neurons by haloperidol. J Neurochem. 1998;71(3):1002–12.

    Article  CAS  PubMed  Google Scholar 

  43. Reinke A, Martins MR, Lima MS, Moreira JC, Dal-Pizzol F, Quevedo J. Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain. Neurosci Lett. 2004;372(1–2):157–60.

    Article  CAS  PubMed  Google Scholar 

  44. Jeding I, Evans PJ, Akanmu D, Dexter D, Spencer JD, Aruoma OI, et al. Characterization of the potential antioxidant and pro-oxidant actions of some neuroleptic drugs. Biochem Pharmacol. 1995;49(3):359–65.

    Article  CAS  PubMed  Google Scholar 

  45. Pillai A, Parikh V, Terry AV Jr, Mahadik SP. Long-term antipsychotic treatments and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res. 2007;41(5):372–86.

    Article  PubMed  Google Scholar 

  46. Kriisa K, Haring L, Vasar E, Koido K, Janno S, Vasar V, et al. Antipsychotic treatment reduces indices of oxidative stress in first-episode psychosis patients. Oxidative Med Cell Longev. 2016;2016:9616593.

    Article  Google Scholar 

  47. Hill VM, O'Connor RM, Sissoko GB, Irobunda IS, Leong S, Canman JC, et al. A bidirectional relationship between sleep and oxidative stress in Drosophila. PLoS Biol. 2018;16(7):e2005206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. •• Traykova M, Traykov T, Hadjimitova V, Krikorian K, Bojadgieva N. Antioxidant properties of galantamine hydrobromide. Z Naturforsch C. 2003;58(5–6):361–5 This article highlighted the antioxidant properties of galantamine.

    Article  CAS  PubMed  Google Scholar 

  49. •• Ezoulin MJ, Ombetta JE, Dutertre-Catella H, Warnet JM, Massicot F. Antioxidative properties of galantamine on neuronal damage induced by hydrogen peroxide in SK-N-SH cells. Neurotoxicology. 2008;29(2):270–7 This article sheds light on the antioxidant properties of galantamine.

    Article  CAS  PubMed  Google Scholar 

  50. •• Melo JB, Sousa C, Garção P, Oliveira CR, Agostinho P. Galantamine protects against oxidative stress induced by amyloid-beta peptide in cortical neurons. Eur J Neurosci. 2009;29(3):455–64 This study showed the antioxidant activity of galantamine.

    Article  PubMed  Google Scholar 

  51. •• Triana-Vidal LE, Carvajal-Varona SM. Protective effect of galantamine against oxidative damage using human lymphocytes: a novel in vitro model. Arch Med Res. 2013;44(2):85–92 This article described galantamine’s antioxidant properties.

    Article  CAS  PubMed  Google Scholar 

  52. •• Tsvetkova D, Obreshkova D, Zheleva-Dimitrova D, Saso L. Antioxidant activity of galantamine and some of its derivatives. Curr Med Chem. 2013;20(36):4595–608 This article illustrated the antioxidant properties of galantamine.

    Article  CAS  PubMed  Google Scholar 

  53. Tanović A, Alfaro V. Glutamate-related excitotoxicity neuroprotection with memantine, an uncompetitive antagonist of NMDA-glutamate receptor, in Alzheimer’s disease and vascular dementia. Rev Neurol. 2006;42(10):607–16.

    PubMed  Google Scholar 

  54. De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem. 2007;282(15):11590–601.

    Article  CAS  PubMed  Google Scholar 

  55. •• Pietá Dias C, Martins de Lima MN, Presti-Torres J, Dornelles A, Garcia VA, Siciliani Scalco F, et al. Memantine reduces oxidative damage and enhances long-term recognition memory in aged rats. Neuroscience. 2007;146(4):1719–25 This study demonstrated that memantine enhanced cognition by reducing oxidative stress.

    Article  CAS  PubMed  Google Scholar 

  56. Liu W, Xu Z, Deng Y, Xu B, Wei Y, Yang T. Protective effects of memantine against methylmercury-induced glutamate dyshomeostasis and oxidative stress in rat cerebral cortex. Neurotox Res. 2013;24(3):320–37.

    Article  CAS  PubMed  Google Scholar 

  57. •• Sozio P, Cerasa LS, Laserra S, Cacciatore I, Cornacchia C, Di Filippo ES, et al. Memantine-sulfur containing antioxidant conjugates as potential prodrugs to improve the treatment of Alzheimer’s disease. Eur J Pharm Sci. 2013;49(2):187–98 This article demonstrated the antioxidant role of memantine.

    Article  CAS  PubMed  Google Scholar 

  58. Rajasekar N, Nath C, Hanif K, Shukla R. Inhibitory effect of memantine on streptozotocin-induced insulin receptor dysfunction, neuroinflammation, amyloidogenesis, and neurotrophic factor decline in astrocytes. Mol Neurobiol. 2016;53(10):6730–44.

    Article  CAS  PubMed  Google Scholar 

  59. Lewerenz J, Letz J, Methner A. Activation of stimulatory heterotrimeric G proteins increases glutathione and protects neuronal cells against oxidative stress. J Neurochem. 2003;87(2):522–31.

    Article  CAS  PubMed  Google Scholar 

  60. Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P, Methner A. Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system xc- as a neuroprotective drug target. CNS Neurol Disord Drug Targets. 2010;9(3):373–82.

    Article  CAS  PubMed  Google Scholar 

  61. Conrad M, Sato H. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (−) : cystine supplier and beyond. Amino Acids. 2012;42(1):231–46.

    Article  CAS  PubMed  Google Scholar 

  62. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et al. The cystine/glutamate antiporter system x(c)(−) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013;18(5):522–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu X, Albano R, Lobner D. FGF-2 induces neuronal death through upregulation of system xc. Brain Res. 2014;1547:25–33.

    Article  CAS  PubMed  Google Scholar 

  64. Kong L, Albano R, Madayag A, Raddatz N, Mantsch JR, Choi S, et al. Pituitary adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc. J Neurochem. 2016;137(3):384–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lewerenz J, Klein M, Methner A. Cooperative action of glutamate transporters and cystine/glutamate antiporter system xc- protects from oxidative glutamate toxicity. J Neurochem. 2006;98(3):916–25.

    Article  CAS  PubMed  Google Scholar 

  66. •• Okada M, Fukuyama K, Kawano Y, Shiroyama T, Ueda Y. Memantine protects thalamocortical hyper-glutamatergic transmission induced by NMDA receptor antagonism via activation of system xc. Pharmacol Res Perspect. 2019;7(1):e00457 This is the first article to show that memantine (in addition to action on the NMDA receptors) has action via activation of system xc (glutamate/cystine-antiporter).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. •• Lorrio S, Negredo P, Roda JM, García AG, López MG. Effects of memantine and galantamine given separately or in association, on memory and hippocampal neuronal loss after transient global cerebral ischemia in gerbils. Brain Res. 2009;1254:128–37 This study demonstrated that the combination of galantamine and memantine had synergistic effect on the antioxidant biomarker; a finding that was not seen with either medication alone.

    Article  CAS  PubMed  Google Scholar 

  68. Fujisaki K, Tsuruya K, Yamato M, Toyonaga J, Noguchi H, Nakano T, et al. Cerebral oxidative stress induces spatial working memory dysfunction in uremic mice: neuroprotective effect of tempol. Nephrol Dial Transplant. 2014;29(3):529–38.

    Article  CAS  PubMed  Google Scholar 

  69. Praticò D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci. 2008;29(12):609–15.

    Article  CAS  PubMed  Google Scholar 

  70. Mezeiova E, Spilovska K, Nepovimova E, Gorecki L, Soukup O, Dolezal R, et al. Profiling donepezil template into multipotent hybrids with antioxidant properties. J Enzyme Inhib Med Chem. 2018;33(1):583–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. •• Koola MM, Nikiforuk A, Pillai A, Parsaik AK. Galantamine-memantine combination superior to donepezil-memantine combination in Alzheimer’s disease: critical dissection with an emphasis on kynurenic acid and mismatch negativity. Journal of Geriatric Care and Research. 2018;5(2):57–67 This comprehensive review illustrated how the galantamine-memantine combination may have synergistic action on oxidative stress.

    PubMed  PubMed Central  Google Scholar 

  72. Sawa A, Sedlak TW. Oxidative stress and inflammation in schizophrenia. Schizophr Res. 2016;176(1):1–2.

    Article  PubMed  Google Scholar 

  73. Müller N, Myint AM, Schwarz MJ. Kynurenine pathway in schizophrenia: pathophysiological and therapeutic aspects. Curr Pharm Des. 2011;17(2):130–6.

    Article  PubMed  Google Scholar 

  74. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kanchanatawan B, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Ormstad H, et al. Deficit, but not nondeficit, schizophrenia is characterized by mucosa-associated activation of the tryptophan catabolite (TRYCAT) pathway with highly specific increases in IgA responses directed to picolinic, xanthurenic, and quinolinic acid. Mol Neurobiol. 2018;55(2):1524–36.

    Article  CAS  PubMed  Google Scholar 

  76. •• Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz P, Carrillo-Mora P, Pedraza-Chaverrí J, Silva-Adaya D, et al. On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol. 2011;33(5):538–47 This article discussed the antioxidant activity of kynurenic acid.

    Article  CAS  PubMed  Google Scholar 

  77. Christen S, Peterhans E, Stocker R. Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci U S A. 1990;87(7):2506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, et al. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry. 2000;39(24):7266–75.

    Article  CAS  PubMed  Google Scholar 

  79. Giles GI, Collins CA, Stone TW, Jacob C. Electrochemical and in vitro evaluation of the redox-properties of kynurenine species. Biochem Biophys Res Commun. 2003;300(3):719–24.

    Article  CAS  PubMed  Google Scholar 

  80. Leipnitz G, Schumacher C, Dalcin KB, Scussiato K, Solano A, Funchal C, et al. In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem Int. 2007;50(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  81. Sas K, Robotka H, Toldi J, Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci. 2007;257(1–2):221–39.

    Article  CAS  PubMed  Google Scholar 

  82. Thevandavakkam MA, Schwarcz R, Muchowski PJ, Giorgini F. Targeting kynurenine 3-monooxygenase (KMO): implications for therapy in Huntington’s disease. CNS Neurol Disord Drug Targets. 2010;9(6):791–800.

    Article  CAS  PubMed  Google Scholar 

  83. Pérez-De La Cruz V, Carrillo-Mora P, Santamaría A. Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int J Tryptophan Res. 2012;5:1–8.

    PubMed  Google Scholar 

  84. Kubicova L, Hadacek F, Chobot V. Quinolinic acid: neurotoxin or oxidative stress modulator? Int J Mol Sci. 2013;14(11):21328–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Blanco Ayala T, Lugo Huitrón R, Carmona Aparicio L, Ramírez Ortega D, González Esquivel D, Pedraza Chaverrí J, et al. Alternative kynurenic acid synthesis routes studied in the rat cerebellum. Front Cell Neurosci. 2015;9:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhuravlev AV, Zakharov GA, Shchegolev BF, Savvateeva-Popova EV. Antioxidant properties of kynurenines: density functional theory calculations. PLoS Comput Biol. 2016;12(11):e1005213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Réus GZ, Becker IRT, Scaini G, Petronilho F, Oses JP, Kaddurah-Daouk R, et al. The inhibition of the kynurenine pathway prevents behavioral disturbances and oxidative stress in the brain of adult rats subjected to an animal model of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;81:55–63.

    Article  CAS  Google Scholar 

  88. Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun. 2009;23(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  89. Shifrin H, Nadler-Milbauer M, Shoham S, Weinstock M. Rivastigmine alleviates experimentally induced colitis in mice and rats by acting at central and peripheral sites to modulate immune responses. PLoS One. 2013;8(2):e57668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wazea SA, Wadie W, Bahgat AK, El-Abhar HS. Galantamine anti-colitic effect: role of alpha-7 nicotinic acetylcholine receptor in modulating Jak/STAT3, NF-κB/HMGB1/RAGE and p-AKT/Bcl-2 pathways. Sci Rep. 2018;8(1):5110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gallowitsch-Puerta M, Tracey KJ. Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine alpha 7 receptor. Ann N Y Acad Sci. 2005;1062:209–19.

    Article  PubMed  Google Scholar 

  92. Liu Y, Zhang Y, Zheng X, Fang T, Yang X, Luo X, et al. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J Neuroinflammation. 2018;15(1):112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang T, Zhu H, Hou Y, Gu W, Wu H, Luan Y, et al. Galantamine reversed early postoperative cognitive deficit via alleviating inflammation and enhancing synaptic transmission in mouse hippocampus. Eur J Pharmacol. 2019;846:63–72.

    Article  CAS  PubMed  Google Scholar 

  94. Wang Z, He X, Fan X. Postnatal administration of memantine rescues TNF-α-induced decreased hippocampal precursor proliferation. Neurosci Lett. 2018;662:173–80.

    Article  CAS  PubMed  Google Scholar 

  95. Lee SY, Chen SL, Chang YH, Chen PS, Huang SY, Tzeng NS, et al. The effects of add-on low-dose memantine on cytokine levels in bipolar II depression: a 12-week double-blind, randomized controlled trial. J Clin Psychopharmacol. 2014;34(3):337–43.

    Article  CAS  PubMed  Google Scholar 

  96. Pillai A. Brain-derived neurotropic factor/TrkB signaling in the pathogenesis and novel pharmacotherapy of schizophrenia. Neurosignals. 2008;16(2–3):183–93.

    Article  CAS  PubMed  Google Scholar 

  97. Pandya CD, Kutiyanawalla A, Pillai A. BDNF-TrkB signaling and neuroprotection in schizophrenia. Asian J Psychiatr. 2013;6(1):22–8.

    Article  PubMed  Google Scholar 

  98. Golime R, Palit M, Acharya J, Dubey DK. Neuroprotective effects of galantamine on nerve agent-induced neuroglial and biochemical changes. Neurotox Res. 2018;33(4):738–48.

    Article  CAS  PubMed  Google Scholar 

  99. Amin SN, El-Aidi AA, Ali MM, Attia YM, Rashed LA. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior. NeuroMolecular Med. 2015;17(2):121–36.

    Article  CAS  PubMed  Google Scholar 

  100. Kuipers SD, Bramham CR. Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Curr Opin Drug Discov Devel. 2006;9(5):580–6.

    CAS  PubMed  Google Scholar 

  101. Pillai A, Mahadik SP. Increased truncated TrkB receptor expression and decreased BDNF/TrkB signaling in the frontal cortex of reeler mouse model of schizophrenia. Schizophr Res. 2008;100(1–3):325–33.

    Article  PubMed  Google Scholar 

  102. Autio H, Mätlik K, Rantamäki T, Lindemann L, Hoener MC, Chao M, et al. Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus. Neuropharmacology. 2011;61(8):1291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhu G, Li J, He L, Wang X, Hong X. MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway. Br J Pharmacol. 2015;172(9):2354–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Amidfar M, Kim YK, Wiborg O. Effectiveness of memantine on depression-like behavior, memory deficits and brain mRNA levels of BDNF and TrkB in rats subjected to repeated unpredictable stress. Pharmacol Rep. 2018;70(3):600–6.

    Article  CAS  PubMed  Google Scholar 

  105. Khalil OS, Forrest CM, Pisar M, Smith RA, Darlington LG, Stone TW. Prenatal activation of maternal TLR3 receptors by viral-mimetic poly(I:C) modifies GluN2B expression in embryos and sonic hedgehog in offspring in the absence of kynurenine pathway activation. Immunopharmacol Immunotoxicol. 2013;35(5):581–93.

    Article  CAS  PubMed  Google Scholar 

  106. Gibney SM, McGuinness B, Prendergast C, Harkin A, Connor TJ. Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav Immun. 2013;28:170–81.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang XY, Chen DC, Tan YL, Tan SP, Wang ZR, Yang FD, et al. The interplay between BDNF and oxidative stress in chronic schizophrenia. Psychoneuroendocrinology. 2015;51:201–8.

    Article  CAS  PubMed  Google Scholar 

  108. Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL. Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J. 2010;24(7):2533–45.

    Article  CAS  PubMed  Google Scholar 

  109. Schwieler L, Larsson MK, Skogh E, Kegel ME, Orhan F, Abdelmoaty S, et al. Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia--significance for activation of the kynurenine pathway. J Psychiatry Neurosci. 2015;40(2):126–33.

    PubMed  PubMed Central  Google Scholar 

  110. Erhardt S, Olsson SK, Engberg G. Pharmacological manipulation of kynurenic acid: potential in the treatment of psychiatric disorders. CNS Drugs. 2009;23(2):91–101.

    Article  CAS  PubMed  Google Scholar 

  111. Wonodi I, Schwarcz R. Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in schizophrenia. Schizophr Bull. 2010;36:211–8.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Koola MM, Sklar J, Davis W, Nikiforuk A, Meissen JK, Sawant-Basak A, et al. Kynurenine pathway in schizophrenia: Galantamine-memantine combination for cognitive impairments. Schizophr Res. 2018;193:459–60.

    Article  PubMed  Google Scholar 

  113. Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, et al. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry. In press.

  114. Mikkelsen JD, Thomsen MS, Hansen HH, Lichota J. Use of biomarkers in the discovery of novel anti-schizophrenia drugs. Drug Discov Today. 2010;15(3–4):137–41.

    Article  CAS  PubMed  Google Scholar 

  115. Koola MM. Galantamine-memantine combination for cognitive impairments due to electroconvulsive therapy, traumatic brain injury, and neurologic and psychiatric disorders: kynurenic acid and mismatch negativity target engagement. Prim Care Companion CNS Disord. 2018;20(2). https://doi.org/10.4088/PCC.17nr02235.

  116. •• Koola MM. Attenuated mismatch negativity in attenuated psychosis syndrome predicts psychosis: can galantamine-memantine combination prevent psychosis? Mol Neuropsychiatry. 2018;4:71–4 This article discussed how enhancing mismatch negativity may prevent schizophrenia. The combination has an additional advantage of having antioxidant activity.

    Article  CAS  PubMed  Google Scholar 

  117. Alkondon M, Albuquerque EX. Nicotinic acetylcholine receptor alpha7 and alpha4beta2 subtypes differentially control GABAergic input to CA1 neurons in rat hippocampus. J Neurophysiol. 2001;86(6):3043–55.

    Article  CAS  PubMed  Google Scholar 

  118. Buhler AV, Dunwiddie TV. alpha7 nicotinic acetylcholine receptors on GABAergic interneurons evoke dendritic and somatic inhibition of hippocampal neurons. J Neurophysiol. 2002;87(1):548–57.

    Article  CAS  PubMed  Google Scholar 

  119. Lewis DA, Moghaddam B. Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol. 2006;63(10):1372–6.

    Article  PubMed  Google Scholar 

  120. Balla A, Nattini ME, Sershen H, Lajtha A, Dunlop DS, Javitt DC. GABAB/NMDA receptor interaction in the regulation of extracellular dopamine levels in rodent prefrontal cortex and striatum. Neuropharmacology. 2009;56(5):915–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Beggiato S, Tanganelli S, Fuxe K, Antonelli T, Schwarcz R, Ferraro L. Endogenous kynurenic acid regulates extracellular GABA levels in the rat prefrontal cortex. Neuropharmacology. 2014;82:11–8.

    Article  CAS  PubMed  Google Scholar 

  122. Townsend M, Whyment A, Walczak JS, Jeggo R, van den Top M, Flood DG, et al. α7-nAChR agonist enhances neural plasticity in the hippocampus via a GABAergic circuit. J Neurophysiol. 2016;116(6):2663–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Flores-Barrera E, Thomases DR, Cass DK, Bhandari A, Schwarcz R, Bruno JP, et al. Preferential disruption of prefrontal GABAergic function by nanomolar concentrations of the α7nACh negative modulator kynurenic acid. J Neurosci. 2017;37(33):7921–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bali ZK, Nagy LV, Hernádi I. Alpha7 nicotinic acetylcholine receptors play a predominant role in the cholinergic potentiation of N-methyl-D-aspartate evoked firing responses of hippocampal CA1 pyramidal cells. Front Cell Neurosci. 2017;11:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Steullet P, Cabungcal JH, Monin A, Dwir D, O'Donnell P, Cuenod M, et al. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: a “central hub” in schizophrenia pathophysiology? Schizophr Res. 2016;176(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  126. •• Keshavan MS, Lawler AN, Nasrallah HA, Tandon R. New drug developments in psychosis: challenges, opportunities and strategies. Prog Neurobiol. 2017;152:3–20 This article argues for a paradigm shift in the pharmacological treatment of schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  127. Koola MM, Parsaik AK. Galantamine-memantine combination effective in dementia: translate to dementia praecox? Schizophr Res Cogn. 2018;12:8–10.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Koola MM. Galantamine and memantine combination for cognition: enough or more than enough to translate from murines and macaques to men with schizophrenia? Asian J Psychiatr. In press.

  129. Aramakis VB, Metherate R. Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. J Neurosci. 1998;18(20):8485–95.

    Article  CAS  PubMed  Google Scholar 

  130. Neumeister KL, Riepe MW. Synergistic effects of antidementia drugs on spatial learning and recall in the APP23 transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis. 2012;30(2):245–51.

    Article  CAS  PubMed  Google Scholar 

  131. Nikiforuk A, Potasiewicz A, Kos T, Popik P. The combination of memantine and galantamine improves cognition in rats: the synergistic role of the α7 nicotinic acetylcholine and NMDA receptors. Behav Brain Res. 2016;313:214–8.

    Article  CAS  PubMed  Google Scholar 

  132. Gmiro VE, Serdiuk SE. The search for selective blockers of NMDA and AMPA/kainate receptors in a series of bis-ammonium compounds with adamantyl radicals. Eksp Klin Farmakol. 2000;63(1):7–13.

    CAS  PubMed  Google Scholar 

  133. Geerts H, Grossberg GT. Pharmacology of acetylcholinesterase inhibitors and N-methyl-D-aspartate receptors for combination therapy in the treatment of Alzheimer’s disease. J Clin Pharmacol. 2006;46(7 Suppl 1):8S–16S.

    Article  CAS  PubMed  Google Scholar 

  134. Bali ZK, Bruszt N, Tadepalli SA, Csurgyók R, Nagy LV, Tompa M, et al. Cognitive enhancer effects of low Memantine doses are facilitated by an alpha7 nicotinic acetylcholine receptor agonist in scopolamine-induced amnesia in rats. Front Pharmacol. 2019;10:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Knott V, Shah D, Millar A, McIntosh J, Fisher D, Blais C, et al. Nicotine, auditory sensory memory, and sustained attention in a human ketamine model of schizophrenia: moderating influence of a hallucinatory trait. Front Pharmacol. 2012;3:172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hamilton HK, D'Souza DC, Ford JM, Roach BJ, Kort NS, Ahn KH, et al. Interactive effects of an N-methyl-d-aspartate receptor antagonist and a nicotinic acetylcholine receptor agonist on mismatch negativity: implications for schizophrenia. Schizophr Res. 2018;191:87–94.

    Article  PubMed  Google Scholar 

  137. Beggiato S, Antonelli T, Tomasini MC, Tanganelli S, Fuxe K, Schwarcz R, et al. Kynurenic acid, by targeting α7 nicotinic acetylcholine receptors, modulates extracellular GABA levels in the rat striatum in vivo. Eur J Neurosci. 2013;37(9):1470–7.

    Article  PubMed  Google Scholar 

  138. Dashniani MG, Burdzhanadze MA, Naneĭshvili TL, Kruashvili LB, Sephashvili MM. Effects of chronic memantine treatment on hippocampal extracellular glutamate and GABA levels during spatial alternation testing. Georgian Med News. 2012;202:68–75.

    Google Scholar 

  139. Ahnaou A, Huysmans H, Jacobs T, Drinkenburg WH. Cortical EEG oscillations and network connectivity as efficacy indices for assessing drugs with cognition enhancing potential. Neuropharmacology. 2014;86:362–77.

    Article  CAS  PubMed  Google Scholar 

  140. Ma J, Mufti A, Stan Leung L. Effects of memantine on hippocampal long-term potentiation, gamma activity, and sensorimotor gating in freely moving rats. Neurobiol Aging. 2015;36(9):2544–54.

    Article  CAS  PubMed  Google Scholar 

  141. Gascoyne LE, Mullinger KJ, Robson SE, Kumar J, O'Neill GC, Palaniyappan L, et al. Changes in electrophysiological markers of cognitive control after administration of galantamine. Neuroimage Clin. 2018;20:228–35.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Light GA, Zhang W, Joshi YB, Bhakta S, Talledo JA, Swerdlow NR. Single-dose memantine improves cortical oscillatory response dynamics in patients with schizophrenia. Neuropsychopharmacology. 2017;42(13):2633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shao S, Li M, Du W, Shao F, Wang W. Galantamine, an acetylcholine inhibitor, prevents prepulse inhibition deficits induced by adolescent social isolation or MK-801 treatment. Brain Res. 2014;1589:105–11.

    Article  CAS  PubMed  Google Scholar 

  144. Swerdlow NR, Bhakta S, Chou HH, Talledo JA, Balvaneda B, Light GA. Memantine effects on sensorimotor gating and mismatch negativity in patients with chronic psychosis. Neuropsychopharmacology. 2016;41(2):419–30.

    Article  CAS  PubMed  Google Scholar 

  145. Giunta B, Ehrhart J, Townsend K, Sun N, Vendrame M, Shytle D, et al. Galantamine and nicotine have a synergistic effect on inhibition of microglial activation induced by HIV-1 gp120. Brain Res Bull. 2004;64(2):165–70.

    Article  CAS  PubMed  Google Scholar 

  146. Wu HM, Tzeng NS, Qian L, Wei SJ, Hu X, Chen SH, et al. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology. 2009;34(10):2344–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gil-Bea FJ, Solas M, Mateos L, Winblad B, Ramírez MJ, Cedazo-Mínguez A. Cholinergic hypofunction impairs memory acquisition possibly through hippocampal arc and BDNF downregulation. Hippocampus. 2011;21(9):999–1009.

    CAS  PubMed  Google Scholar 

  148. Marvanová M, Lakso M, Pirhonen J, Nawa H, Wong G, Castrén E. The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol Cell Neurosci. 2001;18(3):247–58.

    Article  CAS  PubMed  Google Scholar 

  149. Massey KA, Zago WM, Berg DK. BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons. Mol Cell Neurosci. 2006;33(4):381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Navakkode S, Korte M. Cooperation between cholinergic and glutamatergic receptors are essential to induce BDNF-dependent long-lasting memory storage. Hippocampus. 2012;22(2):335–46.

    Article  CAS  PubMed  Google Scholar 

  151. Penadés R, García-Rizo C, Bioque M, González-Rodríguez A, Cabrera B, Mezquida G, et al. The search for new biomarkers for cognition in schizophrenia. Schizophr Res Cogn. 2015;2(4):172–8.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Rowland LM, Pradhan S, Korenic S, Wijtenburg SA, Hong LE, Edden RA, et al. Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study. Transl Psychiatry. 2016;6(11):e967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sobrado M, Roda JM, López MG, Egea J, García AG. Galantamine and memantine produce different degrees of neuroprotection in rat hippocampal slices subjected to oxygen-glucose deprivation. Neurosci Lett. 2004;365(2):132–6.

    Article  CAS  PubMed  Google Scholar 

  154. Hodgkins PS, Schwarcz R. Interference with cellular energy metabolism reduces kynurenic acid formation in rat brain slices: reversal by lactate and pyruvate. Eur J Neurosci. 1998;10(6):1986–94.

    Article  CAS  PubMed  Google Scholar 

  155. Chen Y, Brew BJ, Guillemin GJ. Characterization of the kynurenine pathway in NSC-34 cell line: implications for amyotrophic lateral sclerosis. J Neurochem. 2011;118(5):816–25.

    Article  CAS  PubMed  Google Scholar 

  156. Regenold WT, Phatak P, Marano CM, Sassan A, Conley RR, Kling MA. Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry. 2009;65(6):489–94.

    Article  CAS  PubMed  Google Scholar 

  157. Sullivan CR, Mielnik CA, Funk A, O'Donovan SM, Bentea E, Pletnikov M, et al. Measurement of lactate levels in postmortem brain, iPSCs, and animal models of schizophrenia. Sci Rep. 2019; 9(1):5087

  158. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9(7):684–97, 643.

    Article  CAS  PubMed  Google Scholar 

  159. Park C, Park SK. Molecular links between mitochondrial dysfunctions and schizophrenia. Mol Cells. 2012;33(2):105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Flippo KH, Strack S. An emerging role for mitochondrial dynamics in schizophrenia. Schizophr Res. 2017;187:26–32.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Singh N, Hroudová J, Fišar Z. In vitro effects of cognitives and nootropics on mitochondrial respiration and monoamine oxidase activity. Mol Neurobiol. 2017;54(8):5894–904.

    Article  CAS  PubMed  Google Scholar 

  162. Lee NY, Choi HO, Kang YS. The acetylcholinesterase inhibitors competitively inhibited an acetyl L-carnitine transport through the blood-brain barrier. Neurochem Res. 2012;37(7):1499–507.

    Article  CAS  PubMed  Google Scholar 

  163. Paul C, Bolton C. Modulation of blood-brain barrier dysfunction and neurological deficits during acute experimental allergic encephalomyelitis by the N-methyl-D-aspartate receptor antagonist memantine. J Pharmacol Exp Ther. 2002;302(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  164. Arias E, Alés E, Gabilan NH, Cano-Abad MF, Villarroya M, García AG, et al. Galantamine prevents apoptosis induced by beta-amyloid and thapsigargin: involvement of nicotinic acetylcholine receptors. Neuropharmacology. 2004;46(1):103–14.

    Article  CAS  PubMed  Google Scholar 

  165. Miguel-Hidalgo JJ, Paul IA, Wanzo V, Banerjee PK. Memantine prevents cognitive impairment and reduces Bcl-2 and caspase 8 immunoreactivity in rats injected with amyloid β1-40. Eur J Pharmacol. 2012;692(1–3):38–45.

    Article  CAS  PubMed  Google Scholar 

  166. Noda Y, Mouri A, Ando Y, Waki Y, Yamada SN, Yoshimi A, et al. Galantamine ameliorates the impairment of recognition memory in mice repeatedly treated with methamphetamine: involvement of allosteric potentiation of nicotinic acetylcholine receptors and dopaminergic-ERK1/2 systems. Int J Neuropsychopharmacol. 2010;13(10):1343–54.

    Article  CAS  PubMed  Google Scholar 

  167. Almeida RC, Souza DG, Soletti RC, López MG, Rodrigues AL, Gabilan NH. Involvement of PKA, MAPK/ERK and CaMKII, but not PKC in the acute antidepressant-like effect of memantine in mice. Neurosci Lett. 2006;395(2):93–7.

    Article  CAS  PubMed  Google Scholar 

  168. Unger C, Svedberg MM, Yu WF, Hedberg MM, Nordberg A. Effect of subchronic treatment of memantine, galantamine, and nicotine in the brain of Tg2576 (APPswe) transgenic mice. J Pharmacol Exp Ther. 2006;317(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  169. Unger C, Svedberg MM, Schutte M, Bednar I, Nordberg A. Effect of memantine on the alpha 7 neuronal nicotinic receptors, synaptophysin- and low molecular weight MAP-2 levels in the brain of transgenic mice over-expressing human acetylcholinesterase. J Neural Transm (Vienna). 2005;112(2):255–68.

    Article  CAS  Google Scholar 

  170. Osimo EF, Beck K, Reis Marques T, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry. 2019 Apr;24(4):549–61.

  171. Koola MM, Pillai A, Looney SW. Targeting nicotinic and NMDA receptors concurrently: Rocket science, common sense or game changer? Schizophr. Bull. 2019 Apr;45(2):S248-S248·

  172. Spedding M. New directions for drug discovery. Dialogues Clin Neurosci. 2006;8(3):295-301

  173. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008;31(5):234–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Díez Á, Suazo V, Casado P, Martín-Loeches M, Molina V. Gamma power and cognition in patients with schizophrenia and their first-degree relatives. Neuropsychobiology. 2014;69(2):120–8.

    Article  PubMed  Google Scholar 

  175. Sun C, Zhou P, Wang C, Fan Y, Tian Q, Dong F, et al. Defects of gamma oscillations in auditory steady-state evoked potential of schizophrenia. Shanghai Arch Psychiatry. 2018;30(1):27–38.

    PubMed  Google Scholar 

  176. Zhou TH, Mueller NE, Spencer KM, Mallya SG, Lewandowski KE, Norris LA, et al. Auditory steady state response deficits are associated with symptom severity and poor functioning in patients with psychotic disorder. Schizophr Res. 2018;201:278–86.

    Article  PubMed  Google Scholar 

  177. Leicht G, Vauth S, Polomac N, Andreou C, Rauh J, Mußmann M, et al. EEG-informed fMRI reveals a disturbed gamma-band-specific network in subjects at high risk for psychosis. Schizophr Bull. 2016;42(1):239–49.

    PubMed  Google Scholar 

  178. Gandal MJ, Edgar JC, Klook K, Siegel SJ. Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology. 2012;62(3):1504–18.

    Article  CAS  PubMed  Google Scholar 

  179. Uhlhaas PJ, Singer W. High-frequency oscillations and the neurobiology of schizophrenia. Dialogues Clin Neurosci. 2013;15(3):301–13.

    PubMed  PubMed Central  Google Scholar 

  180. O'Donnell BF, Vohs JL, Krishnan GP, Rass O, Hetrick WP, Morzorati SL. The auditory steady-state response (ASSR): a translational biomarker for schizophrenia. Suppl Clin Neurophysiol. 2013;62:101–12.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Phillips KG, Uhlhaas PJ. Neural oscillations as a translational tool in schizophrenia research: rationale, paradigms and challenges. J Psychopharmacol. 2015;29(2):155–68.

    Article  PubMed  Google Scholar 

  182. Tada M, Nagai T, Kirihara K, Koike S, Suga M, Araki T, et al. Differential alterations of auditory gamma oscillatory responses between pre-onset high-risk individuals and first-episode schizophrenia. Cereb Cortex. 2016;26(3):1027–35.

    Article  PubMed  Google Scholar 

  183. Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 1995;378(6552):75–8.

    Article  CAS  PubMed  Google Scholar 

  184. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459(7247):698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Whittington MA, Traub RD, Jefferys JG. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature. 1995;373(6515):612–5.

    Article  CAS  PubMed  Google Scholar 

  186. Carlén M, Meletis K, Siegle JH, Cardin JA, Futai K, Vierling-Claassen D, et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry. 2012;17(5):537–48.

    Article  CAS  PubMed  Google Scholar 

  187. Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull. 2012;38(5):950–7.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Sullivan EM, Timi P, Hong LE, O'Donnell P. Effects of NMDA and GABA-A receptor antagonism on auditory steady-state synchronization in awake behaving rats. Int J Neuropsychopharmacol. 2015;18(7):pyu118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Stoiljkovic M, Kelley C, Nagy D, Leventhal L, Hajós M. Selective activation of α7 nicotinic acetylcholine receptors augments hippocampal oscillations. Neuropharmacology. 2016;110:102–8.

    Article  CAS  PubMed  Google Scholar 

  190. Zhang X, Ge XY, Wang JG, Wang YL, Wang Y, Yu Y, et al. Induction of long-term oscillations in the γ frequency band by nAChR activation in rat hippocampal CA3 area. Neuroscience. 2015;301:49–60.

    Article  CAS  PubMed  Google Scholar 

  191. Hasam-Henderson LA, Gotti GC, Mishto M, Klisch C, Gerevich Z, Geiger JRP, et al. NMDA-receptor inhibition and oxidative stress during hippocampal maturation differentially alter parvalbumin expression and gamma-band activity. Sci Rep. 2018;8(1):9545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ballesteros A, Summerfelt A, Du X, Jiang P, Chiappelli J, Tagamets M, et al. Electrophysiological intermediate biomarkers for oxidative stress in schizophrenia. Clin Neurophysiol. 2013;124(11):2209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  193. • Hafizi S, Da Silva T, Meyer JH, Kiang M, Houle S, Remington G, et al. Interaction between TSPO-a neuroimmune marker-and redox status in clinical high risk for psychosis: a PET-MRS study. Neuropsychopharmacology. 2018;43(8):1700–5 This study showed that the redox system is abnormal in clinical high risk for psychosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lavoie S, Berger M, Schlögelhofer M, Schäfer MR, Rice S, Kim SW, et al. Erythrocyte glutathione levels as long-term predictor of transition to psychosis. Transl Psychiatry. 2017;7(3):e1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Stojanovic A, Martorell L, Montalvo I, Ortega L, Monseny R, Vilella E, et al. Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychoneuroendocrinology. 2014;41:23–32.

    Article  CAS  PubMed  Google Scholar 

  196. Zeni-Graiff M, Rizzo LB, Mansur RB, Maurya PK, Sethi S, Cunha GR, et al. Peripheral immuno-inflammatory abnormalities in ultra-high risk of developing psychosis. Schizophr Res. 2016;176(2–3):191–5.

    Article  PubMed  Google Scholar 

  197. Kantrowitz JT, Woods SW, Petkova E, Cornblatt B, Corcoran CM, Chen H, et al. D-serine for the treatment of negative symptoms in individuals at clinical high risk of schizophrenia: a pilot, double-blind, placebo-controlled, randomised parallel group mechanistic proof-of-concept trial. Lancet Psychiatry. 2015;2(5):403–12.

    Article  PubMed  Google Scholar 

  198. Perkins DO, Jeffries CD, Addington J, Bearden CE, Cadenhead KS, Cannon TD, et al. Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: preliminary results from the NAPLS project. Schizophr Bull. 2015;41(2):419–28.

    Article  PubMed  Google Scholar 

  199. Koola MM. Can N-acetylcysteine, varenicline, or the combination prevent psychosis by enhancing mismatch negativity? Schizophr Res. In press.

  200. Demro C, Rowland L, Wijtenburg SA, Waltz J, Gold J, Kline E, et al. Glutamatergic metabolites among adolescents at risk for psychosis. Psychiatry Res. 2017;257:179–85.

    Article  CAS  PubMed  Google Scholar 

  201. Egerton A, Fusar-Poli P, Stone JM. Glutamate and psychosis risk. Curr Pharm Des. 2012;18(4):466–78.

    Article  CAS  PubMed  Google Scholar 

  202. Lavoie S, Murray MM, Deppen P, Knyazeva MG, Berk M, Boulat O, et al. Glutathione precursor, N-acetylcysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology. 2008;33(9):2187–99.

    Article  CAS  PubMed  Google Scholar 

  203. Conus P, Seidman LJ, Fournier M, Xin L, Cleusix M, Baumann PS, et al. N-acetylcysteine in a double-blind randomized placebo-controlled trial: toward biomarker-guided treatment in early psychosis. Schizophr Bull. 2018;44(2):317–27.

    Article  PubMed  Google Scholar 

  204. • Nelson B, Yuen HP, Wood SJ, Lin A, Spiliotacopoulos D, Bruxner A, et al. Long-term follow-up of a group at ultra high risk (“prodromal”) for psychosis: the PACE 400 study. JAMA Psychiatry. 2013;70(8):793–802 This article showed that there is adequate time to intervene in patients at ultra high risk for psychosis because of the long prodromal phase.

    Article  PubMed  Google Scholar 

  205. Löffler W, Häfner H. Long prodromal phase in schizophrenia. By recognizing it, the prognosis of the patient can be significantly improved. MMW Fortschr Med. 2000;142(10):26–9.

    PubMed  Google Scholar 

  206. Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M, et al. Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res. 2003;60(1):21–32.

    Article  PubMed  Google Scholar 

  207. Do KQ, Cuenod M, Hensch TK. Targeting oxidative stress and aberrant critical period plasticity in the developmental trajectory to schizophrenia. Schizophr Bull. 2015;41(4):835–46.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Rowland LM, Summerfelt A, Wijtenburg SA, Du X, Chiappelli JJ, Krishna N, et al. Frontal glutamate and γ-aminobutyric acid levels and their associations with mismatch negativity and digit sequencing task performance in schizophrenia. JAMA Psychiatry. 2016;73(2):166–74.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Cabungcal JH, Counotte DS, Lewis E, Tejeda HA, Piantadosi P, Pollock C, et al. Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia. Neuron. 2014;83(5):1073–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. •• Sawa A, Seidman LJ. Is prophylactic psychiatry around the corner? Combating adolescent oxidative stress for adult psychosis and schizophrenia. Neuron. 2014;83(5):991–3 This article argues the importance of antioxidant treatment in the prevention of schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  211. Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res. 2016;176(1):52–71.

    Article  PubMed  Google Scholar 

  212. Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP. Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res. 2003;62(3):195–204.

    Article  PubMed  Google Scholar 

  213. Atmaca M, Tezcan E, Kuloglu M, Ustundag B, Kirtas O. The effect of extract of ginkgo biloba addition to olanzapine on therapeutic effect and antioxidant enzyme levels in patients with schizophrenia. Psychiatry Clin Neurosci. 2005;59(6):652–6.

    Article  CAS  PubMed  Google Scholar 

  214. Zhang XY, Zhou DF, Cao LY, Wu GY. The effects of Ginkgo biloba extract added to haloperidol on peripheral T cell subsets in drug-free schizophrenia: a double-blind, placebo-controlled trial. Psychopharmacology. 2006;188(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  215. Ritsner MS, Gibel A, Shleifer T, Boguslavsky I, Zayed A, Maayan R, et al. Pregnenolone and dehydroepiandrosterone as an adjunctive treatment in schizophrenia and schizoaffective disorder: an 8-week, double-blind, randomized, controlled, 2-center, parallel-group trial. J Clin Psychiatry. 2010;71(10):1351–62.

    Article  CAS  PubMed  Google Scholar 

  216. Bodkin JA, Siris SG, Bermanzohn PC, Hennen J, Cole JO. Double-blind, placebo-controlled, multicenter trial of selegiline augmentation of antipsychotic medication to treat negative symptoms in outpatients with schizophrenia. Am J Psychiatry. 2005;162(2):388–90.

    Article  PubMed  Google Scholar 

  217. Magalhães PV, Dean O, Andreazza AC, Berk M, Kapczinski F. Antioxidant treatments for schizophrenia. Cochrane Database Syst Rev. 2016;2:CD008919.

    PubMed  Google Scholar 

  218. Berk M, Copolov D, Dean O, Lu K, Jeavons S, Schapkaitz I, et al. N-acetyl cysteine as a glutathione precursor for schizophrenia--a double-blind, randomized, placebo-controlled trial. Biol Psychiatry. 2008;64(5):361–8.

    Article  CAS  PubMed  Google Scholar 

  219. Brunstein MG, Ghisolfi ES, Ramos FL, Lara DR. A clinical trial of adjuvant allopurinol therapy for moderately refractory schizophrenia. J Clin Psychiatry. 2005;66(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  220. Dickerson FB, Stallings CR, Origoni AE, Sullens A, Khushalani S, Sandson N, et al. A double-blind trial of adjunctive allopurinol for schizophrenia. Schizophr Res. 2009;109(1–3):66–9.

    Article  PubMed  Google Scholar 

  221. Fenton WS, Dickerson F, Boronow J, Hibbeln JR, Knable M. A placebo-controlled trial of omega-3 fatty acid (ethyl eicosapentaenoic acid) supplementation for residual symptoms and cognitive impairment in schizophrenia. Am J Psychiatry. 2001;158(12):2071–4.

    Article  CAS  PubMed  Google Scholar 

  222. Ehrenreich H, Hinze-Selch D, Stawicki S, Aust C, Knolle-Veentjer S, Wilms S, et al. Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Mol Psychiatry. 2007;12(2):206–20.

    Article  CAS  PubMed  Google Scholar 

  223. Zeinoddini A, Ahadi M, Farokhnia M, Rezaei F, Tabrizi M, Akhondzadeh S. L-lysine as an adjunct to risperidone in patients with chronic schizophrenia: a double-blind, placebo-controlled, randomized trial. J Psychiatr Res. 2014;59:125–31.

    Article  PubMed  Google Scholar 

  224. Kelly DL, Sullivan KM, McEvoy JP, McMahon RP, Wehring HJ, Gold JM, et al. Adjunctive minocycline in clozapine-treated schizophrenia patients with persistent symptoms. J Clin Psychopharmacol. 2015;35(4):374–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Deakin B, Suckling J, Barnes TRE, Byrne K, Chaudhry IB, Dazzan P, et al. The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): a randomised, double-blind, placebo-controlled trial. Lancet Psychiatry. 2018;5(11):885–94.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Weiser M, Levi L, Burshtein S, Chiriță R, Cirjaliu D, Gonen I, et al. The effect of minocycline on symptoms in schizophrenia: results from a randomized controlled trial. Schizophr Res. in press.

  227. Keefe RS, Buchanan RW, Marder SR, Schooler NR, Dugar A, Zivkov M, et al. Clinical trials of potential cognitive-enhancing drugs in schizophrenia: what have we learned so far? Schizophr Bull. 2013;39(2):417–35.

    Article  PubMed  Google Scholar 

  228. Bumb JM, Enning F, Leweke FM. Drug repurposing and emerging adjunctive treatments for schizophrenia. Expert Opin Pharmacother. 2015;16(7):1049–67.

    Article  CAS  PubMed  Google Scholar 

  229. Kantrowitz JT. Managing negative symptoms of schizophrenia: how far have we come? CNS Drugs. 2017;31(5):373–88.

    Article  PubMed  Google Scholar 

  230. •• Girgis RR, Zoghbi AW, Javitt DC, Lieberman JA. The past and future of novel, non-dopamine-2 receptor therapeutics for schizophrenia: a critical and comprehensive review. J Psychiatr Res J Psychiatr Res. 2019;108:57–83 This is a comprehensive review of 250 randomized controlled trials with one add-on medication, highlighting that one add-on medication is inadequate to treat three domains of psychopathology.

    Article  PubMed  Google Scholar 

  231. Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry. 2012;17(12):1206–27.

    Article  CAS  PubMed  Google Scholar 

  232. Sommer IE, van Westrhenen R, Begemann MJ, de Witte LD, Leucht S, Kahn RS. Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull. 2014;40(1):181–91.

    Article  PubMed  Google Scholar 

  233. Chen AT, Chibnall JT, Nasrallah HA. Placebo-controlled augmentation trials of the antioxidant NAC in schizophrenia: a review. Ann Clin Psychiatry. 2016;28(3):190–6.

    PubMed  Google Scholar 

  234. Zheng W, Zhang QE, Cai DB, Yang XH, Qiu Y, Ungvari GS, et al. N-acetylcysteine for major mental disorders: a systematic review and meta-analysis of randomized controlled trials. Acta Psychiatr Scand. 2018;137(5):391–400.

    Article  CAS  PubMed  Google Scholar 

  235. Solmi M, Veronese N, Thapa N, Facchini S, Stubbs B, Fornaro M, et al. Systematic review and meta-analysis of the efficacy and safety of minocycline in schizophrenia. CNS Spectr. 2017;22(5):415–26.

    Article  PubMed  Google Scholar 

  236. Xiang YQ, Zheng W, Wang SB, Yang XH, Cai DB, Ng CH, et al. Adjunctive minocycline for schizophrenia: a meta-analysis of randomized controlled trials. Eur Neuropsychopharmacol. 2017;27(1):8–18.

    Article  CAS  PubMed  Google Scholar 

  237. Kelly DL, Wehring HJ. Minocycline as an evidence-based adjunct treatment in schizophrenia. Psychiatr Ann. 2018;48(5):224–31.

    Article  Google Scholar 

  238. Abdel Baki SG, Schwab B, Haber M, Fenton AA, Bergold PJ. Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats. PLoS One. 2010;5(8):e12490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Haber M, Abdel Baki SG, Grin'kina NM, Irizarry R, Ershova A, Orsi S, et al. Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury. Exp Neurol. 2013;249:169–77.

    Article  CAS  PubMed  Google Scholar 

  240. Haber M, James J, Kim J, Sangobowale M, Irizarry R, Ho J, et al. Minocycline plus N-acteylcysteine induces remyelination, synergistically protects oligodendrocytes and modifies neuroinflammation in a rat model of mild traumatic brain injury. J Cereb Blood Flow Metab. 2018;38(8):1312–26.

    Article  CAS  PubMed  Google Scholar 

  241. Sangobowale M, Nikulina E, Bergold PJ. Minocycline plus N-acetylcysteine protect oligodendrocytes when first dosed 12 hours after closed head injury in mice. Neurosci Lett. 2018;682:16–20.

    Article  CAS  PubMed  Google Scholar 

  242. Sangobowale MA, Grin'kina NM, Whitney K, Nikulina E, St Laurent-Ariot K, Ho JS, et al. Minocycline plus N-acetylcysteine reduce behavioral deficits and improve histology with a clinically useful time window. J Neurotrauma. in press.

  243. Koola MM. Antipsychotic-minocycline-acetylcysteine combination for positive, cognitive, and negative symptoms of schizophrenia. Asian J Psychiatr. 2019;40:100–2.

    Article  PubMed  Google Scholar 

  244. Sahoo AK, Dandapat J, Dash UC, Kanhar S. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer’s disease. J Ethnopharmacol. 2018;215:42–73.

    Article  CAS  PubMed  Google Scholar 

  245. •• Sullivan EM, O'Donnell P. Inhibitory interneurons, oxidative stress, and schizophrenia. Schizophr Bull. 2012;38(3):373–6 This article argued that a combination treatment may be needed to target oxidative stress in schizophrenia and prodrome.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. Joshua Kantrowitz, Laura Rowland, and Iris Sommer for their valuable comments. This material was presented at the 57th American College of Neuropsychopharmacology meeting, December 9–13, 2018, Hollywood, Florida, USA; at the Schizophrenia International Research Society conference, April 10–14, 2019, Orlando, Florida, USA, and at the 74th Annual Society of Biological Psychiatry Scientific Conference, May 16-18, 2019, Chicago, Illinois, USA. The authors thank Ms. Sasha Koola for preparing Fig. 1.

Funding

The funding support to Pillai from NIH/NIMH (MH 097060) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maju Mathew Koola.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Psychosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koola, M.M., Praharaj, S.K. & Pillai, A. Galantamine-Memantine Combination as an Antioxidant Treatment for Schizophrenia. Curr Behav Neurosci Rep 6, 37–50 (2019). https://doi.org/10.1007/s40473-019-00174-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-019-00174-5

Keywords

Navigation