Skip to main content
Log in

Pharmacologically-Induced Metabolic Acidosis

A Review

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Metabolic acidosis may occasionally develop in the course of treatment with drugs used in everyday clinical practice, as well as with the exposure to certain chemicals. Drug-induced metabolic acidosis, although usually mild, may well be life-threatening, as in cases of lactic acidosis complicating antiretroviral therapy or treatment with biguanides. Therefore, a detailed medical history, with special attention to the recent use of culprit medications, is essential in patients with acid-base derangements. Effective clinical management can be handled through awareness of the adverse effect of certain pharmaceutical compounds on the acid-base status. In this review, we evaluate relevant literature with regard to metabolic acidosis associated with specific drug treatment, and discuss the clinical setting and underlying pathophysiological mechanisms. These mechanisms involve renal inability to excrete the dietaryH+ load (including types I and IV renal tubular acidoses), metabolic acidosis owing to increased H+ load (including lactic acidosis, ketoacidosis, ingestion of various substances, administration of hyperalimentation solutions and massive rhabdomyolysis) and metabolic acidosis due to HCO3 loss (including gastrointestinal loss and type II renal tubular acidosis). Determinations of arterial blood gases, the serum anion gap and, in some circumstances, the serum osmolar gap are helpful in delineating the pathogenesis of the acid-base disorder. In all cases of drug-related metabolic acidosis, discontinuation of the culprit medications and avoidance of readministration is advised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Table II
Table III

Similar content being viewed by others

References

  1. Adrogue HJ. Metabolic acidosis: pathophysiology, diagnosis and management. J Nephrol 2006 Mar–Apr; 19 Suppl. 9: S62–9

    PubMed  CAS  Google Scholar 

  2. Mitch WE. Metabolic and clinical consequences of metabolic acidosis. J Nephrol 2006 Mar–Apr; 19 Suppl. 9: S70–5

    PubMed  CAS  Google Scholar 

  3. Kreisberg RA, Wood BC. Drug and chemical-induced metabolic acidosis. Clin Endocrinol Metab 1983 Jul; 12(2): 391–411

    Article  PubMed  CAS  Google Scholar 

  4. Gabow PA. Disorders associated with an altered anion gap. Kidney Int 1985 Feb; 27(2): 472–83

    Article  PubMed  CAS  Google Scholar 

  5. Feldman M, Soni N, Dickson B. Influence of hypoalbuminemia or hyperalbuminemia on the serum anion gap. J Lab Clin Med 2005 Dec; 146(6): 317–20

    Article  PubMed  CAS  Google Scholar 

  6. Figge J, Jabor A, Kazda A, et al. Anion gap and hypoalbuminemia. Crit Care Med 1998 Nov; 26(11): 1807–10

    Article  PubMed  CAS  Google Scholar 

  7. Kraut JA, Kurtz I. Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment. Am J Kidney Dis 2005 Jun; 45(6): 978–93

    Article  PubMed  CAS  Google Scholar 

  8. Bailey JL. Metabolic acidosis: an unrecognized cause of morbidity in the patient with chronic kidney disease. Kidney Int Suppl 2005 Jul; (96): S15-23

  9. Gabow PA, Kaehny WD, Fennessey PV, et al. Diagnostic importance of an increased serum anion gap. N Engl J Med 1980 Oct 9; 303(15): 854–8

    Article  PubMed  CAS  Google Scholar 

  10. Wang F, Butler T, Rabbani GH, et al. The acidosis of cholera: contributions of hyperproteinemia, lactic acidemia, and hyperphosphatemia to an increased serum anion gap. N Engl J Med 1986 Dec 18; 315(25): 1591–5

    Article  PubMed  CAS  Google Scholar 

  11. Iberti TJ, Leibowitz AB, Papadakos PJ, et al. Low sensitivity of the anion gap as a screen to detect hyperlactatemia in critically ill patients. Crit Care Med 1990 Mar; 18(3): 275–7

    Article  PubMed  CAS  Google Scholar 

  12. Emmett M. Anion-gap interpretation: the old and the new. Nat Clin Pract Nephrol 2006 Jan; 2(1): 4–5

    Article  PubMed  Google Scholar 

  13. Goodkin DA, Krishna GG, Narins RG. The role of the anion gap in detecting and managing mixed metabolic acid-base disorders. Clin Endocrinol Metab 1984 Jul; 13(2): 333–49

    Article  PubMed  CAS  Google Scholar 

  14. Reddy P, Mooradian AD. Clinical utility of anion gap in deciphering acid-base disorders. Int J Clin Pract 2009 Oct; 63(10): 1516–25

    Article  PubMed  CAS  Google Scholar 

  15. Corey HE. Stewart and beyond: new models of acid-base balance. Kidney Int 2003 Sep; 64(3): 777–87

    Article  PubMed  CAS  Google Scholar 

  16. Moviat M, van Haren F, van der Hoeven H. Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit Care 2003 Jun; 7(3): R41–5

    Article  PubMed  Google Scholar 

  17. Martin M, Murray J, Berne T, et al. Diagnosis of acid-base derangements and mortality prediction in the trauma 387 intensive care unit: the physiochemical approach. J Trauma 2005 Feb; 58(2): 238–43

    Article  PubMed  Google Scholar 

  18. Boniatti MM, Cardoso PR, Castilho RK, et al. Acid-base disorders evaluation in critically ill patients: we can improve our diagnostic ability. Intensive Care Med 2009 Aug; 35(8): 1377–82

    Article  PubMed  Google Scholar 

  19. Dubin A, Menises MM, Masevicius FD, et al. Comparison of three different methods of evaluation of metabolic acid-base disorders. Crit Care Med 2007 May; 35(5): 1264–70

    Article  PubMed  CAS  Google Scholar 

  20. Sebastian A, Schambelan M, Lindenfeld S, et al. Amelioration of metabolic acidosis with fludrocortisone therapy in hyporeninemic hypoaldosteronism. N Engl J Med 1977 Sep 15; 297(11): 576–83

    Article  PubMed  CAS  Google Scholar 

  21. Szylman P, Better OS, Chaimowitz C, et al. Role of hyperkalemia in the metabolic acidosis of isolated hypoaldosteronism. N Engl J Med 1976 Feb 12; 294(7): 361–5

    Article  PubMed  CAS  Google Scholar 

  22. Jaeger P, Bonjour JP, Karlmark B, et al. Influence of acute potassium loading on renal phosphate transport in the rat kidney. Am J Physiol 1983 Nov; 245 (5 Pt 1): F601–5

    PubMed  CAS  Google Scholar 

  23. Holubek W, Stolbach A, Nurok S, et al. A report of two deaths from massive ibuprofen ingestion. J Med Toxicol 2007 Jun; 3(2): 52–5

    Article  PubMed  Google Scholar 

  24. Sakemi T, Ohchi N, Sanai T, et al. Captopril-induced metabolic acidosis with hyperkalemia. Am J Nephrol 1988; 8(3): 245–8

    Article  PubMed  CAS  Google Scholar 

  25. Henger A, Tutt P, Riesen WF, et al. Acid-base and endocrine effects of aldosterone and angiotensin II inhibition in metabolic acidosis in human patients. J Lab Clin Med 2000 Nov; 136(5): 379–89

    Article  PubMed  CAS  Google Scholar 

  26. Naka T, Egi M, Bellomo R, et al. Low-dose citrate continuous veno-venous hemofiltration (CVVH) and acid-base balance. Int J Artif Organs 2005 Mar; 28(3): 222–8

    PubMed  CAS  Google Scholar 

  27. Gabow PA, Moore S, Schrier RW. Spironolactone-induced hyperchloremic acidosis in cirrhosis. Ann Intern Med 1979 Mar; 90(3): 338–40

    PubMed  CAS  Google Scholar 

  28. Reyes AJ, Leary WP, Crippa G, et al. The aldosterone antagonist and facultative diuretic eplerenone: a critical review. Eur J Intern Med 2005 Feb; 16(1): 3–11

    Article  PubMed  CAS  Google Scholar 

  29. DuBose Jr TD. Molecular and pathophysiologic mechanisms of hyperkalemic metabolic acidosis. Trans Am Clin Climatol Assoc 2000; 111: 122–33, discussion 133–4

    Google Scholar 

  30. Heering P, Ivens K, Aker S, et al. Distal tubular acidosis induced by FK 506. Clin Transplant 1998 Oct; 12(5): 465–71

    PubMed  CAS  Google Scholar 

  31. Yakupoglu HY, Corsenca A, Wahl P, et al. Posttransplant acidosis and associated disorders of mineral metabolism in patients with a renal graft. Transplantation 2007 Nov 15; 84(9): 1151–7

    Article  PubMed  CAS  Google Scholar 

  32. Jick H. Adverse reactions to trimethoprim-sulfamethoxazole in hospitalized patients. Rev Infect Dis 1982 Mar–Apr; 4(2): 426–8

    Article  PubMed  CAS  Google Scholar 

  33. Venzin RM, Cohen CD, Maggiorini M, et al. Aliskiren-associated acute renal failure with hyperkalemia. Clin Nephrol 2009 Mar; 71(3): 326–8

    PubMed  CAS  Google Scholar 

  34. Alappan R, Perazella MA, Buller GK. Hyperkalemia in hospitalized patients treated with trimethoprim-sulfamethoxazole. Ann Intern Med 1996 Feb 1; 124(3): 316–20

    PubMed  CAS  Google Scholar 

  35. Walsh TJ, Finberg RW, Arndt C, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med 1999 Mar 11; 340(10): 764–71

    Article  PubMed  CAS  Google Scholar 

  36. Douglas JB, Healy JK. Nephrotoxic effects of amphotericin B, including renal tubular acidosis. Am J Med 1969 Jan; 46(1): 154–62

    Article  PubMed  CAS  Google Scholar 

  37. Gil FZ, Malnic G. Effect of amphotericin B on renal tubular acidification in the rat. Pflugers Arch 1989 Jan; 413(3): 280–6

    Article  PubMed  CAS  Google Scholar 

  38. Stamm AM, Diasio RB, Dismukes WE, et al. Toxicity of amphotericin B plus flucytosine in 194 patients with cryptococcal meningitis. Am J Med 1987 Aug; 83(2): 236–42

    Article  PubMed  CAS  Google Scholar 

  39. Bedford JJ, Weggery S, Ellis G, et al. Lithium-induced nephrogenic diabetes insipidus: renal effects of amiloride. Clin J Am Soc Nephrol 2008 Sep; 3(5): 1324–31

    Article  PubMed  CAS  Google Scholar 

  40. Grunfeld JP, Rossier BC. Lithium nephrotoxicity revisited. Nat Rev Nephrol 2009 May; 5(5): 270–6

    Article  PubMed  CAS  Google Scholar 

  41. Boton R, Gaviria M, Batlle DC. Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium therapy. Am J Kidney Dis 1987 Nov; 10(5): 329–45

    PubMed  CAS  Google Scholar 

  42. Vigeral P, Kanfer A, Kenouch S, et al. Nephrogenic diabetes insipidus and distal tubular acidosis in methicillin-induced interstitial nephritis. Adv Exp Med Biol 1987; 212: 129–34

    PubMed  CAS  Google Scholar 

  43. Navarro JF, Quereda C, Gallego N, et al. Nephrogenic diabetes insipidus and renal tubular acidosis secondary to foscarnet therapy. Am J Kidney Dis 1996 Mar; 27(3): 431–4

    Article  PubMed  CAS  Google Scholar 

  44. Gladden LB. A lactatic perspective on metabolism. Med Sci Sports Exerc 2008 Mar; 40(3): 477–85

    Article  PubMed  CAS  Google Scholar 

  45. Kreisberg RA. Lactate homeostasis and lactic acidosis. Ann Intern Med 1980 Feb; 92 (2 Pt 1): 227–37

    PubMed  CAS  Google Scholar 

  46. Madias NE. Lactic acidosis. Kidney Int 1986 Mar; 29(3): 752–74

    Article  PubMed  CAS  Google Scholar 

  47. Arieff AI, Park R, Leach WJ, et al. Pathophysiology of experimental lactic acidosis in dogs. Am J Physiol 1980 Aug; 239(2): F135–42

    PubMed  CAS  Google Scholar 

  48. Arieff AI, Graf H. Pathophysiology of type A hypoxic lactic acidosis in dogs. Am J Physiol 1987 Sep; 253 (3 Pt 1): E271–6

    PubMed  CAS  Google Scholar 

  49. Fimognari FL, Pastorelli R, Incalzi RA. Phenformin-induced lactic acidosis in an older diabetic patient: a recurrent drama (phenformin and lactic acidosis). Diabetes Care 2006 Apr; 29(4): 950–1

    Article  PubMed  Google Scholar 

  50. Strack T. Metformin: a review. Drugs Today (Barc) 2008 Apr; 44(4): 303–14

    Article  CAS  Google Scholar 

  51. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000 Jun 15; 348 Pt 3: 607–14

    Article  Google Scholar 

  52. Dykens JA, Jamieson J, Marroquin L, et al. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol Appl Pharmacol 2008 Dec 1; 233(2): 203–10

    Article  PubMed  CAS  Google Scholar 

  53. Peters N, Jay N, Barraud D, et al. Metformin-associated lactic acidosis in an intensive care unit. Crit Care 2008; 12(6): R149388

    Article  Google Scholar 

  54. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996 Feb 29; 334(9): 574–9

    Article  PubMed  CAS  Google Scholar 

  55. Hong YC, O’Boyle CP, Chen IC, et al. Metformin-associated lactic acidosis in a pregnant patient. Gynecol Obstet Invest 2008; 66(2): 138–41

    Article  PubMed  Google Scholar 

  56. Salpeter S, Greyber E, Pasternak G, et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 2006; (1): CD002967

  57. Bruijstens LA, van Luin M, Buscher-Jungerhans PM, et al. Reality of severe metformin-induced lactic acidosis in the absence of chronic renal impairment. Neth J Med 2008 May; 66(5): 185–90

    PubMed  CAS  Google Scholar 

  58. Nyirenda MJ, Sandeep T, Grant I, et al. Severe acidosis in patients taking metformin: rapid reversal and survival despite high APACHE score. Diabet Med 2006 Apr; 23(4): 432–5

    Article  PubMed  CAS  Google Scholar 

  59. Audia P, Feinfeld DA, Dubrow A, et al. Metformin-induced lactic acidosis and acute pancreatitis precipitated by diuretic, celecoxib, and candesartan-associated acute kidney dysfunction. Clin Toxicol (Phila) 2008 Feb; 46(2): 164–6

    Article  CAS  Google Scholar 

  60. Di Grande A, Vancheri F, Giustolisi V, et al. Metformin-induced lactic acidosis in a type 2 diabetic patient with acute renal failure. Clin Ter 2008 Mar–Apr; 159(2): 87–9

    PubMed  Google Scholar 

  61. El-Hennawy AS, Jacob S, Mahmood AK. Metformin-associated lactic acidosis precipitated by diarrhea. Am J Ther 2007 Jul–Aug; 14(4): 403–5

    Article  PubMed  Google Scholar 

  62. Silvestre J, Carvalho S, Mendes V, et al. Metformin-induced lactic acidosis: a case series. J Med Case Reports 2007; 1: 126

    Article  Google Scholar 

  63. Arenas-Pinto A, Grant AD, Edwards S, et al. Lactic acidosis in HIV infected patients: a systematic review of published cases. Sex Transm Infect 2003 Aug; 79(4): 340–3

    Article  PubMed  CAS  Google Scholar 

  64. Falco V, Rodriguez D, Ribera E, et al. Severe nucleoside-associated lactic acidosis in human immunodeficiency virus-infected patients: report of 12 cases and review of the literature. Clin Infect Dis 2002 Mar 15; 34(6): 838–46

    Article  PubMed  Google Scholar 

  65. Cote HC, Brumme ZL, Craib KJ, et al. Changes in mitochondrial DNA as a marker of nucleoside toxicity in HIV-infected patients. N Engl J Med 2002 Mar 14; 346(11): 811–20

    Article  PubMed  CAS  Google Scholar 

  66. Birkus G, Hitchcock MJ, Cihlar T. Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 2002 Mar; 46(3): 716–23

    Article  PubMed  CAS  Google Scholar 

  67. Moyle GJ, Datta D, Mandalia S, et al. Hyperlactataemia and lactic acidosis during antiretroviral therapy: relevance, reproducibility and possible risk factors. AIDS 2002 Jul 5; 16(10): 1341–9

    Article  PubMed  Google Scholar 

  68. Bonnet F, Bonarek M, Morlat P, et al. Risk factors for lactic acidosis in HIV-infected patients treated with nucleoside reverse-transcriptase inhibitors: a case-control study. Clin Infect Dis 2003 May 15; 36(10): 1324–8

    Article  PubMed  CAS  Google Scholar 

  69. Izzedine H, Launay-Vacher V, Deray G. Antiviral drug-induced nephrotoxicity. Am J Kidney Dis 2005 May; 45(5): 804–17

    Article  PubMed  CAS  Google Scholar 

  70. Nelson M, Azwa A, Sokwala A, et al. Fanconi syndrome and lactic acidosis associated with stavudine and lamivudine therapy. AIDS 2008 Jul 11; 22(11): 1374–6

    Article  PubMed  CAS  Google Scholar 

  71. Brickner SJ, Barbachyn MR, Hutchinson DK, et al. Linezolid (ZYVOX), the first member of a completely new class of antibacterial agents for treatment of serious gram-positive infections. J Med Chem 2008 Apr 10; 51(7): 1981–90

    Article  PubMed  CAS  Google Scholar 

  72. Wiener M, Guo Y, Patel G, et al. Lactic acidosis after treatment with linezolid. Infection 2007 Jun; 35(4): 278–81

    Article  PubMed  CAS  Google Scholar 

  73. Carson J, Cerda J, Chae JH, et al. Severe lactic acidosis associated with linezolid use in a patient with the mitochondrial DNA A2706G polymorphism. Pharmacotherapy 2007 May; 27(5): 771–4

    Article  PubMed  CAS  Google Scholar 

  74. Palenzuela L, Hahn NM, Nelson Jr RP, et al. Does linezolid cause lactic acidosis by inhibiting mitochondrial protein synthesis? Clin Infect Dis 2005 Jun 15; 40(12): e113–6

    Article  PubMed  Google Scholar 

  75. von der Lippe B, Sandven P, Brubakk O. Efficacy and safety of linezolid in multidrug resistant tuberculosis (MDR-TB): a report often cases. J Infect 2006 Feb; 52(2): 92–6

    Article  PubMed  Google Scholar 

  76. Scotton P, Fuser R, Torresan S, et al. Early linezolid-associated lactic acidosis in a patient treated for tuberculous spondylodiscitis. Infection 2008 Aug; 36(4): 387–8

    Article  PubMed  CAS  Google Scholar 

  77. Pea F, Scudeller L, Lugano M, et al. Hyperlactacidemia potentially due to linezolid overexposure in a liver transplant recipient. Clin Infect Dis 2006 Feb 1; 42(3): 434–5

    Article  PubMed  Google Scholar 

  78. Chin L, Sievers ML, Herrier RN, et al. Convulsions as the etiology of lactic acidosis in acute isoniazid toxicity in dogs. Toxicol Appl Pharmacol 1979 Jun 30; 49(2): 377–84

    Article  PubMed  CAS  Google Scholar 

  79. Alvarez FG, Guntupalli KK. Isoniazid overdose: four case reports and review of the literature. Intensive Care Med 1995 Aug; 21(8): 641–4

    Article  PubMed  CAS  Google Scholar 

  80. Kalaci A, Duru M, Karazincir S, et al. Thoracic spine compression fracture during isoniazid-induced seizures: case report. Pediatr Emerg Care 2008 Dec; 24(12): 842–4

    Article  PubMed  Google Scholar 

  81. Romero JA, Kuczler Jr FJ. Isoniazid overdose: recognition and management. Am Fam Physician 1998 Feb 15; 57(4): 749–52

    PubMed  CAS  Google Scholar 

  82. Al-Khafaji AH, Dewhirst WE, Manning HL. Propylene glycol toxicity associated with lorazepam infusion in a patient receiving continuous veno-venous hemofiltration with dialysis. Anesth Analg 2002 Jun; 94(6): 1583–5

    PubMed  Google Scholar 

  83. Wilson KC, Reardon C, Theodore AC, et al. Propylene glycol toxicity: a severe iatrogenic illness in ICU patients receiving IV benzodiazepines: a case series and prospective, observational pilot study. Chest 2005 Sep; 128(3): 1674–81

    Article  PubMed  CAS  Google Scholar 

  84. Zar T, Yusufzai I, Sullivan A, et al. Acute kidney injury, hyperosmolality and metabolic acidosis associated with lorazepam. Nat Clin Pract Nephrol 2007 Sep; 3(9): 515–20

    Article  PubMed  Google Scholar 

  85. Ganesh A, Audu P. Hyperosmolar, increased-anion-gap metabolic acidosis and hyperglycemia after etomidate infusion. J Clin Anesth 2008 Jun; 20(4): 290–3

    Article  PubMed  CAS  Google Scholar 

  86. Levy ML, Aranda M, Zelman V, et al. Propylene glycol toxicity following continuous etomidate infusion for the control of refractory cerebral edema. Neurosurgery 1995 Aug; 37(2): 363–9, discussion 369–71

    Article  PubMed  CAS  Google Scholar 

  87. Miller MA, Forni A, Yogaratnam D. Propylene glycol-induced lactic acidosis in a patient receiving continuous infusion pentobarbital. Ann Pharmacother 2008 Oct; 42(10): 1502–6389

    Article  PubMed  CAS  Google Scholar 

  88. Demey HE, Daelemans RA, Verpooten GA, et al. Propylene glycol-induced side effects during intravenous nitroglycerin therapy. Intensive Care Med 1988; 14(3): 221–6

    Article  PubMed  CAS  Google Scholar 

  89. Ruddick JA. Toxicology, metabolism, and biochemistry of 1,2-propanediol. Toxicol Appl Pharmacol 1972 Jan; 21(1): 102–11

    Article  PubMed  CAS  Google Scholar 

  90. Hayman M, Seidl EC, Ali M, et al. Acute tubular necrosis associated with propylene glycol from concomitant administration of intravenous lorazepam and trimethoprim-sulfamethoxazole. Pharmacotherapy 2003 Sep; 23(9): 1190–4

    Article  PubMed  Google Scholar 

  91. Reynolds HN, Teiken P, Regan ME, et al. Hyperlactatemia, increased osmolar gap, and renal dysfunction during continuous lorazepam infusion. Crit Care Med 2000 May; 28(5): 1631–4

    Article  PubMed  CAS  Google Scholar 

  92. Vanlersberghe C, Camu F. Propofol. Handb Exp Pharmacol 2008; (182): 227–52

  93. Bonhomme V, Demoitie J, Schaub I, et al. Acid-base status and hemodynamic stability during propofol and sevoflurane-based anesthesia in patients undergoing uncomplicated intracranial surgery. J Neurosurg Anesthesiol 2009 Apr; 21(2): 112–9

    Article  PubMed  Google Scholar 

  94. Cravens GT, Packer DL, Johnson ME. Incidence of propofol infusion syndrome during noninvasive radio-frequency ablation for atrial flutter or fibrillation. Anesthesiology 2007 Jun; 106(6): 1134–8

    Article  PubMed  CAS  Google Scholar 

  95. Fudickar A, Bein B, Tonner PH. Propofol infusion syndrome in anaesthesia and intensive care medicine. Curr Opin Anaesthesiol 2006 Aug; 19(4): 404–10

    Article  PubMed  Google Scholar 

  96. Vasile B, Rasulo F, Candiani A, et al. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med 2003 Sep; 29(9): 1417–25

    Article  PubMed  Google Scholar 

  97. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth 1998; 8(6): 491–9

    Article  PubMed  CAS  Google Scholar 

  98. Wolf A, Weir P, Segar P, et al. Impaired fatty acid oxidation in propofol infusion syndrome. Lancet 2001 Feb 24; 357(9256): 606–7

    Article  PubMed  CAS  Google Scholar 

  99. Veenith TV, Pearce A. A case of lactic acidosis complicating assessment and management of asthma. Int Arch Med 2008; 1(1): 3–5

    Article  PubMed  Google Scholar 

  100. Stratakos G, Kalomenidis J, Routsi C, et al. Transient lactic acidosis as a side effect of inhaled salbutamol. Chest 2002 Jul; 122(1): 385–6

    Article  PubMed  Google Scholar 

  101. Leventhal LJ, Kochar G, Feldman NH, et al. Lactic acidosis in theophylline overdose. Am J Emerg Med 1989 Jul; 7(4): 417–8

    Article  PubMed  CAS  Google Scholar 

  102. Judge BS. Differentiating the causes of metabolic acidosis in the poisoned patient. Clin Lab Med 2006 Mar; 26(1): 31–48, vii

    Article  PubMed  Google Scholar 

  103. Tobin AE, Pellizzer AM, Santamaria JD. Mechanisms by which systemic salbutamol increases ventilation. Respirology 2006 Mar; 11(2): 182–7

    Article  PubMed  Google Scholar 

  104. Braden GL, Johnston SS, Germain MJ, et al. Lactic acidosis associated with the therapy of acute bronchospasm. N Engl J Med 1985 Oct 3; 313(14): 890–1

    Article  PubMed  CAS  Google Scholar 

  105. Richards SR, Chang FE, Stempel LE. Hyperlactacidemia associated with acute ritodrine infusion. Am J Obstet Gynecol 1983 May 1; 146(1): 1–5

    PubMed  CAS  Google Scholar 

  106. Eizadi-Mood N. Nalidixic acid overdose and metabolic acidosis [letter]. CJEM 2006 Mar; 8(2): 78

    PubMed  Google Scholar 

  107. Suganthi AR, Ramanan AS, Pandit N, et al. Severe metabolic acidosis in nalidixic acid overdosage. Indian Pediatr 1993 Aug; 30(8): 1025–6

    PubMed  CAS  Google Scholar 

  108. Phillips PJ, Need AG, Thomas DW, et al. Nalidixic acid and lactic acidosis. Aust N Z J Med 1979 Dec; 9(6): 694–6

    Article  PubMed  CAS  Google Scholar 

  109. Neale R, Reynolds TM, Saweirs W. Statin precipitated lactic acidosis? J Clin Pathol 2004 Sep; 57(9): 989–90

    Article  PubMed  CAS  Google Scholar 

  110. Goli AK, Goli SA, Byrd Jr RP, et al. Simvastatin-induced lactic acidosis: a rare adverse reaction? Clin Pharmacol Ther 2002 Oct; 72(4): 461–4

    Article  PubMed  Google Scholar 

  111. Coronado BE, Opal SM, Yoburn DC. Antibiotic-induced D-lactic acidosis. Ann Intern Med 1995 Jun 1; 122(11): 839–42

    PubMed  CAS  Google Scholar 

  112. Ayub A, Faloon WW, Heinig RE. Encephalopathy following jejunoileostomy. JAMA 1981 Aug 28; 246(9): 970–3

    Article  PubMed  CAS  Google Scholar 

  113. Kitabchi AE, Umpierrez GE, Fisher JN, et al. Thirty years of personal experience in hyperglycemic crises: diabetic ketoacidosis and hyperglycemic hyperosmolar state. J Clin Endocrinol Metab 2008 May; 93(5): 1541–52

    Article  PubMed  CAS  Google Scholar 

  114. Wrenn KD, Slovis CM, Minion GE, et al. The syndrome of alcoholic ketoacidosis. Am J Med 1991 Aug; 91(2): 119–28

    Article  PubMed  CAS  Google Scholar 

  115. Elisaf M, Merkouropoulos M, Tsianos EV, et al. Acid-base and electrolyte abnormalities in alcoholic patients. Miner Electrolyte Metab 1994; 20(5): 274–81

    PubMed  CAS  Google Scholar 

  116. Yanagawa Y, Sakamoto T, Okada Y. Six cases of sudden cardiac arrest in alcoholic ketoacidosis. Intern Med 2008; 47(2): 113–7

    Article  PubMed  Google Scholar 

  117. Kreisberg RA, Owen WC, Siegal AM. Ethanol-induced hyperlacticacidemia: inhibition of lactate utilization. J Clin Invest 1971 Jan; 50(1): 166–74

    Article  PubMed  CAS  Google Scholar 

  118. Izzedine H, Launay-Vacher V, Deybach C, et al. Drug-induced diabetes mellitus. Expert Opin Drug Saf 2005 Nov; 4(6): 1097–109

    Article  PubMed  CAS  Google Scholar 

  119. Makhzoumi ZH, McLean LP, Lee JH, et al. Diabetic ketoacidosis associated with aripiprazole. Pharmacotherapy 2008 Sep; 28(9): 1198–202

    Article  PubMed  Google Scholar 

  120. Koller EA, Weber J, Doraiswamy PM, et al. A survey of reports of quetiapine-associated hyperglycemia and diabetes mellitus. J Clin Psychiatry 2004 Jun; 65(6): 857–63

    Article  PubMed  CAS  Google Scholar 

  121. Leslie DL, Rosenheck RA. Incidence of newly diagnosed diabetes attributable to atypical antipsychotic medications. Am J Psychiatry 2004 Sep; 161(9): 1709–11

    Article  PubMed  Google Scholar 

  122. Bobes J, Rejas J, Garcia-Garcia M, et al. Weight gain in patients with schizophrenia treated with risperidone, olanzapine, quetiapine or haloperidol: results of the EIRE study. Schizophr Res 2003 Jul 1; 62(1–2): 77–88

    Article  PubMed  CAS  Google Scholar 

  123. Ramaswamy K, Kozma CM, Nasrallah H. Risk of diabetic ketoacidosis after exposure to risperidone or olanzapine. Drug Saf 2007; 30(7): 589–99

    Article  PubMed  CAS  Google Scholar 

  124. Bottai T, Quintin P, Perrin E. Antipsychotics and the risk of diabetes: a general data review. Eur Psychiatry 2005 Dec; 20 Suppl. 4: S349–57

    Article  PubMed  Google Scholar 

  125. Newcomer JW. Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs 2005; 19 Suppl. 1: 1–93390

    Article  PubMed  CAS  Google Scholar 

  126. Bergman RN, Ader M. Atypical antipsychotics and glucose homeostasis. J Clin Psychiatry 2005 Apr; 66(4): 504–14

    Article  PubMed  CAS  Google Scholar 

  127. Koller EA, Doraiswamy PM. Olanzapine-associated diabetes mellitus. Pharmacotherapy 2002 Jul; 22(7): 841–52

    Article  PubMed  CAS  Google Scholar 

  128. Koller E, Schneider B, Bennett K, et al. Clozapine-associated diabetes. Am J Med 2001 Dec 15; 111(9): 716–23

    Article  PubMed  CAS  Google Scholar 

  129. McMartin KE, Ambre JJ, Tephly TR. Methanol poisoning in human subjects: role for formic acid accumulation in the metabolic acidosis. Am J Med 1980 Mar; 68(3): 414–8

    Article  PubMed  CAS  Google Scholar 

  130. Fujita M, Tsuruta R, Wakatsuki J, et al. Methanol intoxication: differential diagnosis from anion gap-increased acidosis. Intern Med 2004 Aug; 43(8): 750–4

    Article  PubMed  Google Scholar 

  131. Jacobsen D, Hewlett TP, Webb R, et al. Ethylene glycol intoxication: evaluation of kinetics and crystalluria. Am J Med 1988 Jan; 84(1): 145–52

    Article  PubMed  CAS  Google Scholar 

  132. Soghoian S, Sinert R, Wiener SW, et al. Ethylene glycol toxicity presenting with non-anion gap metabolic acidosis. Basic Clin Pharmacol Toxicol 2009 Jan; 104(1): 22–6

    Article  PubMed  CAS  Google Scholar 

  133. Linter CM, Linter SP. Severe lactic acidosis following paraldehyde administration. Br J Psychiatry 1986 Nov; 149: 650–1

    Article  PubMed  CAS  Google Scholar 

  134. Gutman RA, Burnell JM. Paraldehyde acidosis. Am J Med 1967 Mar; 42(3): 435–40

    Article  PubMed  CAS  Google Scholar 

  135. Pearlman BL, Gambhir R. Salicylate intoxication: a clinical review. Postgrad Med 2009 Jul; 121(4): 162–8

    Article  PubMed  Google Scholar 

  136. Mokhlesi B, Leikin JB, Murray P, et al. Adult toxicology in critical care: part II. Specific poisonings. Chest 2003 Mar; 123(3): 897–922

    Article  PubMed  CAS  Google Scholar 

  137. Temple AR. Acute and chronic effects of aspirin toxicity and their treatment. Arch Intern Med 1981 Feb 23; 141 (3 Spec No): 364–9

    Article  PubMed  CAS  Google Scholar 

  138. Tsimihodimos V, Psychogios N, Kakaidi V, et al. Salicylate-induced proximal tubular dysfunction. Am J Kidney Dis 2007 Sep; 50(3): 463–7

    Article  PubMed  CAS  Google Scholar 

  139. Pai AB, Shepler BM. Comparison of sevelamer hydrochloride and sevelamer carbonate: risk of metabolic acidosis and clinical implications. Pharmacotherapy 2009 May; 29(5): 554–61

    Article  PubMed  CAS  Google Scholar 

  140. Ramos R, Moreso F, Borras M, et al. Sevelamer hydrochloride in peritoneal dialysis patients: results of a multicenter cross-sectional study. Perit Dial Int 2007 Nov–Dec; 27(6): 697–701

    PubMed  CAS  Google Scholar 

  141. Carlisle EJ, Donnelly SM, Vasuvattakul S, et al. Gluesniffing and distal renal tubular acidosis: sticking to the facts. J Am Soc Nephrol 1991 Feb; 1(8): 1019–27

    PubMed  CAS  Google Scholar 

  142. Relman AS, Shelburne PF, Talman A. Profound acidosis resulting from excessive ammonium chloride in previously healthy subjects: a study of two cases. N Engl J Med 1961 Apr 27; 264: 848–52

    Article  PubMed  CAS  Google Scholar 

  143. Perera PM, Kularathne K, Gawarammana IB. Laryngeal edema and metabolic acidosis after Omnicide ingestion. Clin Toxicol (Phila) 2008 Nov; 46(9): 858–60

    Article  CAS  Google Scholar 

  144. Zabrodski RM, Schnurr LP. Anion gap acidosis with hypoglycemia in acetaminophen toxicity. Ann Emerg Med 1984 Oct; 13(10): 956–9

    Article  PubMed  CAS  Google Scholar 

  145. Humphreys BD, Forman JP, Zandi-Nejad K, et al. Acetaminophen-induced anion gap metabolic acidosis and 5-oxoprolinuria (pyroglutamic aciduria) acquired in hospital. Am J Kidney Dis 2005 Jul; 46(1): 143–6

    Article  PubMed  Google Scholar 

  146. Pitt J. Association between paracetamol and pyroglutamic aciduria. Clin Chem 1990 Jan; 36(1): 173–4

    PubMed  CAS  Google Scholar 

  147. Fenves AZ, Kirkpatrick III HM, Patel VV, et al. Increased anion gap metabolic acidosis as a result of 5-oxoproline (pyroglutamic acid): a role for acetaminophen. Clin J Am Soc Nephrol 2006 May; 1(3): 441–7

    Article  PubMed  CAS  Google Scholar 

  148. Pitt JJ, Hauser S. Transient 5-oxoprolinuria and high anion gap metabolic acidosis: clinical and biochemical findings in eleven subjects. Clin Chem 1998 Jul; 44(7): 1497–503

    PubMed  CAS  Google Scholar 

  149. Ookhtens M, Kaplowitz N. Role of the liver in interorgan homeostasis of glutathione and cyst(e)ine. Semin Liver Dis 1998; 18(4): 313–29

    Article  PubMed  CAS  Google Scholar 

  150. Martensson J, Gustafsson J, Larsson A. A therapeutic trial with N-acetylcysteine in subjects with hereditary glutathione synthetase deficiency (5-oxoprolinuria). J Inherit Metab Dis 1989; 12(2): 120–30

    Article  PubMed  CAS  Google Scholar 

  151. Croal BL, Glen AC, Kelly CJ, et al. Transient 5-oxoprolinuria (pyroglutamic aciduria) with systemic acidosis in an adult receiving antibiotic therapy. Clin Chem 1998 Feb; 44(2): 336–40

    PubMed  CAS  Google Scholar 

  152. Bonham JR, Rattenbury JM, Meeks A, et al. Pyroglutamic aciduria from vigabatrin. Lancet 1989 Jun 24; 1(8652): 1452–3

    Article  PubMed  CAS  Google Scholar 

  153. Kortmann W, van Agtmael MA, van Diessen J, et al. 5-Oxoproline as a cause of high anion gap metabolic acidosis: an uncommon cause with common risk factors. Neth J Med 2008 Sep; 66(8): 354–7

    PubMed  CAS  Google Scholar 

  154. Fraley DS, Adler S, Bruns F, et al. Metabolic acidosis after hyperalimentation with casein hydrolysate: occurrence in a starved patient. Ann Intern Med 1978 Mar; 88(3): 352–4

    PubMed  CAS  Google Scholar 

  155. Tsai IC, Huang JW, Chu TS, et al. Factors associated with metabolic acidosis in patients receiving parenteral nutrition. Nephrology (Carlton) 2007 Feb; 12(1): 3–7

    Article  CAS  Google Scholar 

  156. McCarron DA, Elliott WC, Rose JS, et al. Severe mixed metabolic acidosis secondary to rhabdomyolysis. Am J Med 1979 Nov; 67(5): 905–8

    Article  PubMed  CAS  Google Scholar 

  157. Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med 2009 Jul 2; 361(1): 62–72

    Article  PubMed  CAS  Google Scholar 

  158. Insull Jr W. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J 2006 Mar; 99(3): 257–73

    Article  PubMed  Google Scholar 

  159. Scheel Jr PJ, Whelton A, Rossiter K, et al. Cholestyramine-induced hyperchloremic metabolic acidosis. J Clin Pharmacol 1992 Jun; 32(6): 536–8

    Article  PubMed  Google Scholar 

  160. Fan FS, Chow KM, Szeto CC, et al. Hyperchloraemic metabolic acidosis. Emerg Med J 2008 Sep; 25(9): 613

    Article  PubMed  CAS  Google Scholar 

  161. Quigley R. Proximal renal tubular acidosis. J Nephrol 2006 Mar–Apr; 19 Suppl. 9: S41–5

    PubMed  CAS  Google Scholar 

  162. Heller I, Halevy J, Cohen S, et al. Significant metabolic acidosis induced by acetazolamide: not a rare complication. Arch Intern Med 1985 Oct; 145(10): 1815–7

    Article  PubMed  CAS  Google Scholar 

  163. Menon GJ, Vernon SA. Topical brinzolamide and metabolic acidosis. Br J Ophthalmol 2006 Feb; 90(2): 247–8

    Article  PubMed  CAS  Google Scholar 

  164. Elinav E, Ackerman Z, Gottehrer NP, et al. Recurrent life-threatening acidosis induced by acetazolamide in a patient with diabetic type IV renal tubular acidosis. Ann Emerg Med 2002 Aug; 40(2): 259–60

    Article  PubMed  Google Scholar 

  165. Chapron DJ, Gomolin IH, Sweeney KR. Acetazolamide blood concentrations are excessive in the elderly: propensity for acidosis and relationship to renal function. J Clin Pharmacol 1989 Apr; 29(4): 348–53

    PubMed  CAS  Google Scholar 

  166. De Marchi S, Cecchin E, Tesio F. Intraocular pressure changes during hemodialysis: prevention of excessive dialytic rise and development of severe metabolic acidosis following acetazolamide therapy. Ren Fail 1989; 11(2–3): 117–24

    Article  PubMed  Google Scholar 

  167. Sporn A, Scothorn DM, Terry JE. Metabolic acidosis induced by acetazolamide. J Am Optom Assoc 1991 Dec; 62(12): 934–7

    PubMed  CAS  Google Scholar 

  168. Shiber JR. Severe non-anion gap metabolic acidosis induced by topiramate: a case report. J Emerg Med. Epub 2009 Feb 18

  169. Garris SS, Oles KS. Impact of topiramate on serum bicarbonate concentrations in adults. Ann Pharmacother 2005 Mar; 39(3): 424–6

    Article  PubMed  CAS  Google Scholar 

  170. Stohr W, Paulides M, Bielack S, et al. Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the Late Effects Surveillance System. Pediatr Blood Cancer 2007 Apr; 48(4): 447–52

    Article  PubMed  CAS  Google Scholar 

  171. Rossi R, Pleyer J, Schafers P, et al. Development of ifosfamide-induced nephrotoxicity: prospective follow-up in 75 patients. Med Pediatr Oncol 1999 Mar; 32(3): 177–82

    Article  PubMed  CAS  Google Scholar 

  172. Skinner R, Pearson AD, English MW, et al. Risk factors for ifosfamide nephrotoxicity in children. Lancet 1996 Aug 31; 348(9027): 578–80

    Article  PubMed  CAS  Google Scholar 

  173. Benesic A, Schwerdt G, Freudinger R, et al. Chloro-acetaldehyde as a sulfhydryl reagent: the role of critical thiol groups in ifosfamide nephropathy. Kidney Blood Press Res 2006; 29(5): 280–93

    Article  PubMed  CAS  Google Scholar 

  174. Yaseen Z, Michoudet C, Baverel G, et al. In vivo mesna and amifostine do not prevent chloroacetaldehyde nephrotoxicity in vitro. Pediatr Nephrol 2008 Apr; 23(4): 611–8

    Article  PubMed  Google Scholar 

  175. Alexandridis G, Liberopoulos E, Elisaf M. Aminoglycoside-induced reversible tubular dysfunction. Pharmacology 2003 Mar; 67(3): 118–20

    Article  PubMed  CAS  Google Scholar 

  176. Ashouri OS. Hyperkalemic distal renal tubular acidosis and selective aldosterone deficiency: combination in a patient with lead nephropathy. Arch Intern Med 1985 Jul; 145(7): 1306–7

    Article  PubMed  CAS  Google Scholar 

  177. Kobayashi E, Suwazono Y, Honda R, et al. Changes in renal tubular and glomerular functions and biological acid-base balance after soil replacement in Cd-polluted rice paddies calculated with a general linear mixed model. Biol Trace Elem Res 2008 Aug; 124(2): 164–72

    Article  PubMed  CAS  Google Scholar 

  178. Husband P, McKellar WJ. Infantile renal tubular acidosis due to mercury poisoning. Arch Dis Child 1970 Apr; 45(240): 264–8

    Article  PubMed  CAS  Google Scholar 

  179. Wegienka LC, Weller JM. Renal tubular acidosis caused by degraded tetracycline. Arch Intern Med 1964 Aug; 114: 232–5

    Article  PubMed  CAS  Google Scholar 

  180. Perry DJ, Weiss RB. Nephrotoxicity of streptozocin [letter]. Ann Intern Med 1982 Jan; 96(1): 122

    PubMed  CAS  Google Scholar 

  181. Peterson BA, Collins AJ, Vogelzang NJ, et al. 5-Azacytidine and renal tubular dysfunction. Blood 1981 Jan; 57(1): 182–5

    PubMed  CAS  Google Scholar 

  182. Butler Jr HE, Morgan JM, Smythe CM. Mercaptopurine and acquired tubular dysfunction in adult nephrosis. Arch Intern Med 1965 Dec; 116(6): 853–6

    Article  PubMed  Google Scholar 

  183. Smith GC, Balfe JW, Kooh SW. Anticonvulsants as a cause of Fanconi syndrome. Nephrol Dial Transplant 1995; 10(4): 543–5

    PubMed  CAS  Google Scholar 

  184. Neelakantappa K, Gallo GR, Lowenstein J. Ranitidine-associated interstitial nephritis and Fanconi syndrome. Am J Kidney Dis 1993 Aug; 22(2): 333–6

    PubMed  CAS  Google Scholar 

  185. Garella S, Chang BS, Kahn SI. Dilution acidosis and contraction alkalosis: review of a concept. Kidney Int 1975 Nov; 8(5): 279–83

    Article  PubMed  CAS  Google Scholar 

  186. Mittal MK, Florin T, Perrone J, et al. Toxicity from the use of niacin to beat urine drug screening. Ann Emerg Med 2007 Nov; 50(5): 587–90

    Article  PubMed  Google Scholar 

  187. Earthman TP, Odom L, Mullins CA. Lactic acidosis associated with high-dose niacin therapy. South Med J 1991 Apr; 84(4): 496–7

    Article  PubMed  CAS  Google Scholar 

  188. Schwab RA, Bachhuber BH. Delirium and lactic acidosis caused by ethanol and niacin coingestion. Am J Emerg Med 1991 Jul; 9(4): 363–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review. All authors met the criteria for authorship and read and approved the final submitted version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haralampos J. Milionis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liamis, G., Milionis, H.J. & Elisaf, M. Pharmacologically-Induced Metabolic Acidosis. Drug-Safety 33, 371–391 (2010). https://doi.org/10.2165/11533790-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11533790-000000000-00000

Keywords

Navigation