Skip to main content

Advertisement

Log in

Acid–base disorders evaluation in critically ill patients: we can improve our diagnostic ability

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

To determine whether Stewart’s approach can improve our ability to diagnose acid–base disorders compared to the traditional model.

Methods

This prospective cohort study took place in a university-affiliated hospital during the period of February–May 2007. We recorded clinical data and acid–base variables from one hundred seventy-five patients at intensive care unit admission.

Results

Of the 68 patients with normal standard base excess (SBE) (SBE between −4.9 and +4.9), most (n = 59; 86.8%) had a lower effective strong ion difference (SIDe), and of these, 15 (25.4%) had SIDe < 30 mEq/L. Thus, the evaluation according to Stewart’s method would allow an additional diagnosis of metabolic disorder in 33.7% patients.

Conclusions

The Stewart approach, compared to the traditional evaluation, results in identification of more patients with major acid–base disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gunnerson KJ, Kellum JA (2003) Acid-base and electrolyte analysis in critically ill patients: are we ready for the new millennium? Curr Opin Crit Care 9:468–473

    Article  PubMed  Google Scholar 

  2. Sirker AA, Rhodes A, Grounds RM, Bennett ED (2002) Acid-base physiology: the “traditional” and the “modern” approaches. Anaesthesia 57:348–356

    Article  PubMed  CAS  Google Scholar 

  3. Martin M, Murray J, Berne T, Demetriades D, Belzberg H (2005) Diagnosis of acid-base derangements and mortality prediction in the trauma intensive care unit: the physiochemical approach. J Trauma 58:238–243

    Article  PubMed  Google Scholar 

  4. Cusack RJ, Rhodes A, Lochhead P, Jordan B, Perry S, Ball JA, Grounds RM, Bennett ED (2002) The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU. Intensive Care Med 28:864–869

    Article  PubMed  CAS  Google Scholar 

  5. Balasubramanyan N, Havens P, Hoffman G (1999) Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med 27:1577–1581

    Article  PubMed  CAS  Google Scholar 

  6. Stewart PA (1981) How to understand acid base balance. In: Stewart PA (ed) A quantitative acid-base primer for biology and medicine. New York, Elsevier

    Google Scholar 

  7. Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1444–1461

    PubMed  CAS  Google Scholar 

  8. Figge J, Rossing TH, Fencl V (1991) The role of serum proteins in acid-base equilibria. J Lab Clin Med 117:453–467

    PubMed  CAS  Google Scholar 

  9. Figge J, Mydosh T, Fencl V (1992) Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med 120:713–719

    PubMed  CAS  Google Scholar 

  10. Moviat M, van Haren F, van der Hoeven H (2003) Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit Care 7:R41–R45

    Article  PubMed  Google Scholar 

  11. Murray DM, Olhsson V, Fraser JI (2004) Defining acidosis in postoperative cardiac patients using Stewart’s method of strong ion difference. Pediatr Crit Care Med 5:240–245

    Article  PubMed  Google Scholar 

  12. Figge J, Jabor A, Kazda A, Fencl V (1998) Anion gap and hypoalbuminemia. Crit Care Med 26:1807–1810

    PubMed  CAS  Google Scholar 

  13. Fencl V, Leith DE (1993) Stewart’s quantitative acid-base chemistry: application in biology and medicine. Respir Physiol 91:1–16

    Article  PubMed  CAS  Google Scholar 

  14. Gilfix BM, Bique M, Magder S (1993) A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 8:187–197

    Article  PubMed  CAS  Google Scholar 

  15. Fencl V, Jabor A, Kazda A, Figge J (2000) Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Resp Crit Care Med 162:2246–2251

    PubMed  CAS  Google Scholar 

  16. Kaplan LJ, Kellum JA (2004) Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med 32:1120–1124

    Article  PubMed  CAS  Google Scholar 

  17. Dondorp AM, Chau TT, Phu NH, Mai NT, Loc PP, Chuong LV, Sinh DX, Taylor A, Hien TT, White NJ, Day NP (2004) Unidentified acid of strong prognostic significance in severe malaria. Crit Care Med 32:1683–1688

    Article  PubMed  CAS  Google Scholar 

  18. Boniatti MM, Cardoso PC, Castilho RK, Vieira SR, Friedman G, Ribeiro SP, Fialkow L (2008) Prognostic value of unmeasured anions in critically ill patients. Intensive Care Med (Supplement 1):S241

  19. Henderson LJ (1908) The theory of neutrality regulation in the animal organism. Am J Physiol 21:427–428

    Google Scholar 

  20. Hasselbach KA (1916) Die Berechnung der Wasserstoffzahl des blutes auf der freien und gebundenen Kohlensaure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochem Z 78:112–144

    Google Scholar 

  21. Siggard-Andersen O, Wimberly PD, Fogh-Andersen N, Gøthgen IH (1988) Measured and derived quantities with modern pH and blood gas equipment: calculation algorithms with 54 equations. Scand J Clin Lab Inves 48(Supp 189):7–15

    Article  Google Scholar 

  22. Dubin A, Menises MM, Masevicius FD, Moseinco MC, Kutscherauer DO, Ventrice E, Laffaire E, Estenssoro E (2007) Comparison of three different methods of evaluation of metabolic acid-base disorders. Crit Care Med 35:1264–1270

    Article  PubMed  CAS  Google Scholar 

  23. Kellum JA (2007) Disorders of acid-base balance. Crit Care Med 35:2630–2636

    Article  PubMed  Google Scholar 

  24. Kellum JA (2003) Closing the gap on unmeasured anions. Crit Care 7:219–220

    Article  PubMed  Google Scholar 

  25. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829

    Article  PubMed  CAS  Google Scholar 

  26. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710

    Article  PubMed  CAS  Google Scholar 

  27. Funk G-C, Doberer D, Sterz F, Richling N, Kneidinger N, Lindner G, Schneeweiss B, Eisenburger P (2009) The strong ion gap and outcome after cardiac arrest in patients treated with therapeutic hypothermia: a retrospective study. Intensive Care Med 35:232–239

    Article  PubMed  Google Scholar 

  28. Rocktaeschel J, Morimatsu H, Uchino S, Bellomo R (2003) Unmeasured anions in critically ill patients: can they predict mortality? Crit Care Med 31:2131–2136

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Manozzo Boniatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boniatti, M.M., Cardoso, P.R.C., Castilho, R.K. et al. Acid–base disorders evaluation in critically ill patients: we can improve our diagnostic ability. Intensive Care Med 35, 1377–1382 (2009). https://doi.org/10.1007/s00134-009-1496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-009-1496-2

Keywords

Navigation