Skip to main content
Log in

Theoretical models for the thermo-gravitational separation process in porous media filled by N-component mixtures

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The aim of this work is to present a theoretical analysis of the separation of an N-component mixture. In this study, two analytical models explaining the thermo-gravitational separation of components in N-component mixtures for vertical cavity filled by a porous medium are presented and assessed. The basic state and the separation are expressed in terms of the separation ratio, and the Lewis, cross-diffusion and Rayleigh numbers. Our computational analysis confirms that, for the given values of the mass fractions, thermodiffusion can be measured with a thermo-gravitational column, strongly supporting the experimentally determined transport coefficients.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.R. Wilcox, Prog. Cryst. Growth Charact. Mater. 26, 153 (1993)

    Article  ADS  Google Scholar 

  2. J.S. Turner, Annu. Rev. Fluid Mech. 17, 11 (1985)

    Article  ADS  Google Scholar 

  3. H.E. Huppert, R.S.J. Sparks, Annu. Rev. Earth Planet. Sci. 12, 11 (1984)

    Article  ADS  Google Scholar 

  4. J.C. Legros, Y. Gaponenko, A. Mialdun, T. Triller, A. Hammon, C. Bauer, W. Khler, V. Shevtsova, Phys. Chem. Chem. Phys. 17, 27713 (2015)

    Article  Google Scholar 

  5. K. Vafai, Handbook of Porous Media (CRC Press, 2015). 0.5pt

  6. D.A. Nield, A. Bejan, Convection in Porous Media (Springer, 1998). 0.5pt

  7. A.C. Baytaş, I. Pop, Int. J. Therm. Sci. 41, 861 (2002)

    Article  Google Scholar 

  8. W.H. Furry, R.C. Jones, L. Onsager, Phys. Rev. 55, 1083 (1939)

    Article  ADS  Google Scholar 

  9. M. Lorenz, A.H. Emery, Chem. Eng. Sci. 11, 16 (1959)

    Article  Google Scholar 

  10. R. Bennacer, A. Mohamad, M. El-Ganaoui, Int. J. Therm. Sci. 48, 1870 (2009)

    Article  Google Scholar 

  11. P. Blanco, M. Bou-Ali, J.K. Platten, D.A. de Mezquia, J.A. Madariaga, C. Santamara, J. Chem. Phys. 132, 114506 (2010)

    Article  ADS  Google Scholar 

  12. P. Kolodner, H. Williams, C. Moe, J. Chem. Phys. 88, 6512 (1988)

    Article  ADS  Google Scholar 

  13. M. Gebhardt, W. Köhler, Eur. Phys. J. E 38, 24 (2015)

    Article  Google Scholar 

  14. M.M. Bou-Ali, A. Ahadi, D. Alonso de Mezquia, Q. Galand, M. Gebhardt, O. Khlybov, W. Köhler, M. Larrañaga, J. Legros, T. Lyubimova, A. Mialdun, I. Ryzhkov, M. Saghir, V. Shevtsova, S. Van Vaerenbergh, Phys. J. E 38, 30 (2015)

    Google Scholar 

  15. V. Sechenyh, J. Legros, A. Mialdun, J. Ortiz de Zrate, V. Shevtsova, J. Chem. Phys. 120, 535 (2016)

    Article  Google Scholar 

  16. J.K. Larre, J.K. Platten, G. Chavepeyer, Int. J. Heat Mass Transf. 40, 545 (1997)

    Article  Google Scholar 

  17. K. Haugen, A. Firoozabadi, J. Chem. Phys. 122, 014516 (2005)

    Article  ADS  Google Scholar 

  18. K. Haugen, A. Firoozabadi, J. Chem. Phys. 127, 154507 (2007)

    Article  ADS  Google Scholar 

  19. K. Haugen, A. Firoozabadi, J. Chem. Phys. 124, 054502 (2006)

    Article  ADS  Google Scholar 

  20. I.I. Ryzhkov, V.M. Shevtsova, Phys. Fluids 19, 027101 (2007)

    Article  ADS  Google Scholar 

  21. I.I. Ryzhkov, V.M. Shevtsova, Phys. Fluids 21, 014102 (2009)

    Article  ADS  Google Scholar 

  22. I.I. Ryzhkov I.I., V.M. Shevtsova, Phys. Rev. E 79, 026308 (2009)

    Article  ADS  Google Scholar 

  23. M.A. Larabi, D. Mutschler, A. Mojtabi, J. Chem. Phys. 144, 244902 (2016)

    Article  ADS  Google Scholar 

  24. V.M. Shevtsova, D.E. Melnikov, J.C. Legros, Phys. Rev. E 73, 047302 (2006)

    Article  ADS  Google Scholar 

  25. T. Lyubimova, N. Zubova, Eur. Phys. J. E 38, 19 (2015)

    Article  Google Scholar 

  26. K. Ghorayeb, A. Firoozabadi, SPE J. 5, 158 (2000)

    Article  Google Scholar 

  27. P. Costeseque, S. Gaillard, P. Jamet, Y. Thbault, Entropie 239, 149 (2002)

    Google Scholar 

  28. M. Larraaga, M., Bou-Ali, D. Alonso de Mezquia, D.A.S. Rees, J.A. Madariaga, C. Santamaria, J.K. Platten, Eur. Phys. J. E 38, 28 (2015)

    Article  Google Scholar 

  29. J.F. Dutrieux, J.K. Platten, G. Chavepeyer, M.M. Bou-Ali, J. Chem. Phys. B 106, 6104 (2002)

    Article  Google Scholar 

  30. M. Ouriemi, P. Vasseur, A. Bahloul, L. Robillard, Int. J. Therm. Sci. 45, 752 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Mojtabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutschler, D., Larabi, M.A. & Mojtabi, A. Theoretical models for the thermo-gravitational separation process in porous media filled by N-component mixtures. Eur. Phys. J. E 40, 49 (2017). https://doi.org/10.1140/epje/i2017-11538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11538-0

Keywords

Navigation