Skip to main content
Log in

Experimental and Numerical Study of Multiphase, Multicomponent Flow in Porous Media with a Multiphase Mixture Model

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This article describes experimental results and the numerical validation for multiphase, multicomponent evaporation in porous media 1d flow. We apply the model of Lindner et al. (Transp. Porous Media 112(2):313–332, 2016. doi:10.1007/s11242-016-0646-6). The permeability of the porous medium is measured in an additional setup with a constant head permeameter to verify the validity of Darcy flow. The heat losses are considered in an analytical approach of correlating measured temperatures and heat inputs with enthalpies. A method of interpreting the experimental results is discussed to determine the phase state. We can show good qualitative agreement of the shift and position of the evaporation region when varying boundary conditions such as mass flux, concentration and heat input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(A^\alpha , B^\alpha , C^\alpha \) :

Coefficients of Antoine equation of component \(\alpha \) \((-)\)

\(A_{12}, A_{21}\) :

Coefficients for Margules equation \((-)\)

\(a_{s}\) :

Specific surface of pores (1/m)

\(b_{sf}\) :

Material-fluid parameter for boiling heat flux \((-)\)

\(c_{p,k}\) :

Isobaric specific heat capacity of k phase (J/kg K)

\(c_{p,k}^\alpha \) :

Isobaric specific heat capacity of component \(\alpha \) in phase k (J/kg K)

\(c_i\) :

Constants \((-)\)

f :

Friction factor \((-)\)

\(f^*\) :

Modified friction factor \((-)\)

\(\mathbf {g}\) :

Gravity vector (\(\hbox {m/s}^\mathrm{2}\))

h :

Specific enthalpy (J/kg)

\(h_k\) :

Specific enthalpy of phase k (J/kg)

\(h_k^\alpha \) :

Specific enthalpy of component \(\alpha \) in phase k (J/kg)

\(\Delta h_k^\alpha \) :

Excess enthalpy of mixing of component \(\alpha \) in phase k (J/kg)

H :

Volumetric enthalpy (\(\hbox {J/m}^\mathrm{3}\))

\(h_\text {hydr}\) :

Hydraulic head (m)

\(h_{fg}^\alpha \) :

Enthalpy of vaporization of component \(\alpha \) (J/kg)

\(\bar{h}_{sk}^\alpha \) :

Mean heat transfer coefficient of solid phase and k phase \((\hbox {W/m}^\mathrm{2}\)  K)

\(\mathbf {j}_l\) :

Diffusive mass flux of the liquid phase in the mixture \((\hbox {kg/s} \,m^2)\)

\(k_k\) :

Heat conductivity of phase k (W/m  K)

\(K \) :

Permeability \((\hbox {m}^2)\)

\(k_r \) :

Relative permeability \((-)\)

\(\dot{m} \) :

Mass flux (kg/s m\(^2\))

p :

Pressure (Pa)

\(p^{\alpha ,0}\) :

Equilibrium vapor pressure of component \(\alpha \) (Pa)

\(P_\text {el}\) :

Electrical input power (W)

\(p_c\) :

Capillary pressure (phase pressure difference) (Pa)

\(\dot{q}\) :

Heat source \((\hbox {W/m}^3)\)

\(\dot{q}_{sf}\) :

Heat exchange between solid and fluid phase \((\hbox {W/m}^3)\)

\(\dot{q}_ \text {boil,multicomponent} \) :

Additional heat exchange during boiling \((\hbox {W/m}^3)\)

\(\dot{Q}_\text {tot,corr.}\) :

Corrected total heat flow (W)

\(R_\text {cap}\) :

Capillary radius (m)

\(R_\text {fiber}\) :

Fiber radius (m)

s :

Saturation of the liquid phase \((-)\)

T :

Temperature (K)

\(T_f\) :

Average temperature of fluid phases (K)

\(T_H\) :

Measured temperature at heating foil (K)

\(T_s\) :

Solid temperature (K)

\(T_V\) :

Measured temperature at porous medium (K)

\(\mathbf {u}\) :

Velocity vector (m/s)

\(u_\text {Darcy}\) :

Darcy velocity (m/s)

\(\dot{V} \) :

Volume flow \((\hbox {m}^3/s)\)

\(w_k^\alpha \) :

Mass fraction of component \(\alpha \) in phase k \((-)\)

\(x^\alpha \) :

Mole fraction of component \(\alpha \) in the liquid phase \((-)\)

\(y^\alpha \) :

Mole fraction of component \(\alpha \) in the gas phase \((-)\)

z :

Coordinate (m)

Nu :

Nusselt number \((-)\)

Pr :

Prandtl number \((-)\)

Re :

Reynolds number \((-)\)

Re \({_K}\) :

Reynolds number with square root of permeability as characteristic length \((-)\)

St \(_v\) :

Stanton number of evaporation \((-)\)

\(\mathscr {L}\) :

Characteristic length (m)

\(\gamma ^\alpha \) :

Activity coefficient for component \(\alpha \) \((-)\)

\(\gamma _h\) :

Advection correction coefficient \((-)\)

\(\gamma _\rho \) :

Density correction coefficient \((-)\)

\(\mu \) :

Dynamic viscosity (Pa   s)

\(\nu \) :

Kinematic viscosity \((\hbox {m}^2/s)\)

\(\phi \) :

Porosity \((-)\)

\(\varrho \) :

Density \((\hbox {kg/m}^3)\)

\(\sigma \) :

Surface tension (N/m)

\(\alpha \) :

General component

\(\text {amb}\) :

At ambient state

\( \text {boil} \) :

Boiling

\( \text {bubble} \) :

At bubble point

\( \text {dew} \) :

At dew point

\( \text {dryout} \) :

At dryout state

\( \text {eff} \) :

Effective

f :

Fluid

i :

Discrete value

\( \text {in} \) :

Inflow

k :

General phase

l :

Liquid phase

\( \text {ref} \) :

At reference state

s :

Solid

\( \text {sat} \) :

At saturation state

v :

Superheated phase (vapor)

References

  • Bear, J.: Modelling and Applications of Transport Phenomena in Porous Media, vol. 5. Springer, New York (1991). doi:10.1007/978-94-011-2632-8

    Google Scholar 

  • Class, H., Helmig, R.: Numerical simulation of non-isothermal multiphase multicomponent processes in porous media. 2. Applications for the injection of steam and air. Adv. Water Resour. 25(5), 551–564 (2002). doi:10.1016/S0309-1708(02)00015-5

    Article  Google Scholar 

  • Easterday, O., Wang, C., Cheng, P.: A numerical and experimental study of two-phase flow and heat transfer in a porous formation with localized heating from below. In: Proceedings of ASME Heat Transfer and Fluid Engineering Divisions (1995)

  • Foreest, A.V., Sippel, M., Gülhan, A., Esser, B., Ambrosius, C., Sudmeijer, K.: Transpiration cooling using liquid water. J. Thermophys. Heat Transfer 23(4), 693–702 (2009). doi:10.2514/1.39070

    Article  Google Scholar 

  • He, F., Wang, J., Xu, L., Wang, X.: Modeling and simulation of transpiration cooling with phase change. Appl. Therm. Eng. 58, 173–180 (2013). doi:10.1016/j.applthermaleng.2013.04.017

    Article  Google Scholar 

  • He, F., Wang, J.: Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change. Energy Convers. Manag. 80, 591–597 (2014). doi:10.1016/j.enconman.2014.02.003

    Article  Google Scholar 

  • Lindner, F., Mundt, C., Pfitzner, M.: Fluid flow and heat transfer with phase change and local thermal non-equilibrium in vertical porous channels. Transp. Porous Media 106(1), 201–220 (2015). doi:10.1007/s11242-014-0396-2

    Article  Google Scholar 

  • Lindner, F., Pfitzner, M., Mundt, C.: Multiphase, Multicomponent Flow in Porous Media with Local Thermal Non-equilibrium in a Multiphase Mixture Model. Transp. Porous Media 112(2), 313–332 (2016). doi:10.1007/s11242-016-0646-6

    Article  Google Scholar 

  • Lüdecke, D., Lüdecke, C.: Thermodynamik: Physikalisch-Chemische Grundlagen der thermischen Verfahrenstechnik. Springer, Berlin (2000). doi:10.1007/978-3-642-56988-3

    Book  Google Scholar 

  • Masoodi R (2010) Modeling Imbibition of Liquids into Rigid and Swelling Porous Media. Ph.D. thesis, University of Wisconsin-Milwaukee

  • Naik, A., Dhir, V.: Forced flow evaporative cooling of a volumetrically heated porous layer. Int. J. Heat Mass Transf. 25(4), 541–552 (1982). doi:10.1016/0017-9310(82)90057-6

    Article  Google Scholar 

  • Rahli, O., Topin, F., Pantaloni, J.: Analysis of heat transfer with liquid-vapor phase change in a forced-flow fluid moving through porous media. Int. J. Heat Mass Transf. 39(18), 3959–3975 (1996). doi:10.1016/0017-9310(96)00053-1

    Article  Google Scholar 

  • Schladitz, K., Godehardt, M.: Analyse der Mikrostruktur gesinterter Metallfaserstrukturen. Tech. rep, ITWM Fraunhofer (2013)

  • Shi, J., Wang, J.: A numerical investigation of transpiration cooling with liquid coolant phase change. Transp. Porous Media 87, 703–716 (2011). doi:10.1007/s11242-010-9710-9

    Article  Google Scholar 

  • Tsai, T.P., Catton, I.: The effect of flow from below on dryout heat flux. J. Heat Transfer 109(2), 491–497 (1987). doi:10.1115/1.3248109

    Article  Google Scholar 

  • Udell, K.: Heat transfer in porous media considering phase change and capillarity-the heat pipe effect. Int. J. Heat Mass Transf. 28(2), 485–495 (1985). doi:10.1016/0017-9310(85)90082-1

    Article  Google Scholar 

  • Wang, J., Shi, J.: A discussion of boundary conditions of transpiration cooling problems using analytical solution of LTNE model. ASME J. Heat Transf. (2008). doi:10.1115/1.2780188

  • Wang, C., Cheng, P.: A multiphase mixture model for multiphase, multicomponent transport in capillary porous media. Part I: model development. Int. J. Heat Mass Transf. 39(17), 3607–3618 (1996). doi:10.1016/0017-9310(96)00036-1

    Article  Google Scholar 

  • Wang, J., Wang, H.: A discussion of transpiration cooling problems through an analytical solution of local thermal nonequilibrium model. J. Heat Transfer 128(10), 1093–1098 (2006). doi:10.1115/1.2345434

    Article  Google Scholar 

  • Yuki, K., Hashizume, H., Toda, S.: Key issues to enable high heat flux removal exceeding 10 MW/M\(^2\) by use of metal porous media as a latent heat-transfer device. Spec. Topics Rev. Porous Media Int. J. 1(1), 1–13 (2010). doi:10.1615/SpecialTopicsRevPorousMedia.v1.i1.10

    Article  Google Scholar 

  • Zhong, W., Tao, G., Li, X., Kawashima, K., Kagawa, T.: Determination of flow rate characteristics of porous media using charge method. Flow Meas. Instrum. 22(3), 201–207 (2011). doi:10.1016/j.flowmeasinst.2011.02.002

    Article  Google Scholar 

Download references

Acknowledgments

This work was developed during a research project with Institut für Technik Intelligenter Systeme (ITIS GmbH) and Institute for Thermodynamics at University of the Federal Armed Forces Munich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lindner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindner, F., Pfitzner, M. & Mundt, C. Experimental and Numerical Study of Multiphase, Multicomponent Flow in Porous Media with a Multiphase Mixture Model. Transp Porous Med 116, 143–161 (2017). https://doi.org/10.1007/s11242-016-0768-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0768-x

Keywords

Navigation