Skip to main content
Log in

Improved endohedral fullerenelike structures of silicon clusters Si31–Si39 by density functional calculations

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

We extensively search for the endohedral silicon-fullerene structures of Si31–Si39 using the combination of a tight-binding potential with the density functional theory. The resulting structures of our best candidates characterize more compact features comparing to previous isomers [J. Am. Chem. Soc. 126, 13845 (2004); J. Chem. Phys. 124, 164311 (2006)]. Most of our best candidates belong to new families featuring different core/cage combinations or different original carbon fullerene cages with respect to those of previous isomers. Energy calculations reveal that our best candidates are more stable than the previous best ones at the PW91 level, except for n = 34 and 38. The predicted relative stabilities of these isomers remain even at finite temperatures. In addition, the densities of dangling-bond atoms in the surfaces of our Si33 and Si39 isomers are significantly lower than the previous best candidates, as well as lower than those of their neighbors. This finding together with the densities of the active sites in the surfaces of the previous best candidates of Si34 and Si38 is roughly consistent with the observed relative reactivities of the silicon clusters in the size range of n = 31-39.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.F. Jarrold, E.C. Honea, J. Phys. Chem. 95, 9181 (1991)

    Article  Google Scholar 

  • M.F. Jarrold, J.E. Bower, J. Chem. Phys. 96, 9180 (1992)

    Article  ADS  Google Scholar 

  • M.F. Jarrold, V.A. Constant, Phys. Rev. Lett. 67, 2994 (1991)

    Article  ADS  Google Scholar 

  • R.R. Hudgins, M. Imai, M.F. Jarrold, J. Chem. Phys. 111, 7865 (1999)

    Article  ADS  Google Scholar 

  • K. Fuke, K. Tsukamoto, F. Misaizu, M. Sanekata, J. Chem. Phys. 99, 7807 (1993)

    Article  ADS  Google Scholar 

  • M.F. Jarrold, E.C. Honea, J. Phys. Chem. 95, 9181 (1991)

    Article  Google Scholar 

  • J.L. Elkind, J.M. Alford, F.D. Weiss, R.T. Laaksonen, R.E. Smalley, J. Chem. Phys. 87, 2397 (1987); S. Maruyama, L.R. Anderson, R.E. Smalley, J. Chem. Phys. 93, 5349 (1990); M. Alford, R.T. Laaksonen, R.E. Smalley, J. Chem. Phys. 94, 2618 (1991); L.R. Anderson, S. Maruyama, R.E. Smalley, Chem. Phys. Lett. 176, 348 (1991)

    Article  ADS  Google Scholar 

  • F.S. Khan, J.Q. Broughton, Phys. Rev. B 43, 11754 (1991)

    Article  ADS  Google Scholar 

  • J. Song, S.E. Ulloa, D.A. Drabold, Phys. Rev. B 53, 8042 (1996)

    Article  ADS  Google Scholar 

  • B.X. Li, P.L. Cao, J. Phys. Cond. Mat. 13, 10865 (2001)

    Article  ADS  Google Scholar 

  • Z.F. Chen, H.J. Jiao, G. Seifert, A.H.C. Horn, D.K. Yu, T. Clark, W. Thiel, P.V.R. Schleyer, J. Comput. Chem. 24, 948 (2003)

    Article  ADS  Google Scholar 

  • E. Kaxiras, Chem. Phys. Lett. 163, 323 (1989); E. Kaxiras, Phys. Rev. Lett. 64, 551 (1990); E. Kaxiras, K. Jackson, Phys. Rev. Lett. 71, 727 (1993)

    Article  ADS  Google Scholar 

  • D.A. Jelski, B.L. Swift, T.T. Rantala, X. Xia, T.F. George, J. Chem. Phys. 95, 8552 (1991)

    Article  ADS  Google Scholar 

  • M.V. Ramakrishna, J. Pan, J. Chem. Phys. 101, 8108 (1994); J. Pan, M.V. Ramakrishna, Phys. Rev. B 50, 15431 (1994)

    Article  ADS  Google Scholar 

  • S. Yoo, J. Zhao, J. Wang, X.C. Zeng, J. Am. Chem. Soc 126, 13845 (2004)

    Article  Google Scholar 

  • S. Yoo, N. Shao, C. Koehler, T. Fraunhaum, X.C. Zeng, J. Chem. Phys. 124, 164311 (2006)

    Article  ADS  Google Scholar 

  • C.Z. Wang, B.C. Pan, K.M. Ho, J. Phys. Cond. Mat. 11, 2043 (1999)

    Article  ADS  Google Scholar 

  • B. Liu, Z.Y. Lu, B.C. Pan, C.Z. Wang, K.M. Ho, J. Chem. Phys. 109, 9401 (1998)

    Article  ADS  Google Scholar 

  • K.M. Ho, A.A. Shvartsburg, B.C. Pan, Z.Y. Lu, C.Z. Wang, J.G. Wacker, J.L. Fye, M.F. Jarrold, Nature 392, 582 (1998)

    Article  ADS  Google Scholar 

  • R.L. Zhou, B.C. Pan, Phys. Rev. B 73, 045417 (2006)

    Article  ADS  Google Scholar 

  • We compressed each isomer towards the masscenter by scaling all the coordinates with a factor of 0.8. Then the compressed isomers were fully optimized with the treatment of TB potential again. Generaly, compression will change distribution of the distances between atoms. Then force exists on each atom. Under the action of the forces, the compressed isomer may transfer to a more stable isomer.

  • D. Sánchez-Portal, P. Ordejón, E. Artacho, J.M. Soler, Int. J. Quant. Chem. 65, 453 (1997); N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  Google Scholar 

  • J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  • G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996); G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); J.P. Perdew, in Electronic Structure of Solid 91, edited by P. Ziesche and H. Eschrig (Academie Verlag, Berlin, 1991) p. 11

    Article  ADS  Google Scholar 

  • W. Hellmann, R.G. Hennig, S. Goedecker, C.J. Umrigar, B. Delley, T. Lenosky, Phys. Rev. B 75, 085411 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, R., Pan, B. Improved endohedral fullerenelike structures of silicon clusters Si31–Si39 by density functional calculations. Eur. Phys. J. D 47, 367–372 (2008). https://doi.org/10.1140/epjd/e2008-00049-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00049-7

PACS.

Navigation