Skip to main content
Log in

Simulation of the nanofluid viscosity coefficient by the molecular dynamics method

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The viscosity coefficient of several model nanofluids is simulated by the molecular dynamics method. As nanofluids, argon mixtures with aluminum and lithium particles are used. The size of nanoparticles is varied from 1 to 4 nm; their volume concentration, from 1% to 12%. It is shown that the viscosity of the nanofluids is considerably higher than that of the carrier fluid. The finer the particles, the higher the viscosity of the nanofluids with the volume concentration of the particles being the same. The reason for such an effect is explained qualitatively. It is also found that the viscosity of the nanofluids depends on the material of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Mahbubul, R. Saidur, and M. A. Amalina, Int. J. Heat Mass Transf. 55, 874 (2012).

    Article  Google Scholar 

  2. S. Sh. Hosseini, A. Shahrjerdi, and Y. Vazifeshenas, Aust. J. Basic Appl. Sci. 5, 417 (2011).

    Google Scholar 

  3. V. Ya. Rudyak, Adv. Nanopart. 2, 266 (2013).

    Article  Google Scholar 

  4. V. Ya. Rudyak, A. A. Belkin, and V. V. Egorov, in Proceedings of the All-Russia Seminar on Theoretical and Applied Mechanics, Novosibirsk, 2007, pp. 105–110.

  5. V. Ya. Rudyak, A. A. Belkin, E. A. Tomilina, and V. V. Egorov, Defect Diffusion Forum 273–276, 566 (2008).

    Google Scholar 

  6. V. Ya. Rudyak, A. A. Belkin, and V. V. Egorov, Tech. Phys. 54, 1102 (2009).

    Article  Google Scholar 

  7. V. Ya. Rudyak, S. V. Dimov, V. V. Kuznetsov, and S. P. Bardakhanov, Dokl. Ross. Akad. Nauk 450, 1 (2013).

    Google Scholar 

  8. V. Ya. Rudyak, S. V. Dimov, and V. V. Kuznetsov, Tech. Phys. Lett. 39, 779 (2013).

    Article  ADS  Google Scholar 

  9. E. V. Timofeeva, D. S. Smith, W. Yu, D. M. France, D. Singh, and J. L. Routbo, Nanotechnology 21, 215703 (2010).

    Article  ADS  Google Scholar 

  10. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, Int. J. Heat Mass Transf. 50, 2272 (2007).

    Article  MATH  Google Scholar 

  11. C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Marer, S. Boucher, and H. Mintsa, Int. J. Heat Fluid Flow 28, 1492 (2007).

    Article  Google Scholar 

  12. V. Rudyak, S. Dimov, S. Krasnolutskii, and D. Ivanov, in Proceedings of the NSTI Nanotechnology Conference and Exposition NSTI-Nanotechnology, Washington, 2013, Vol. 2, pp. 370–373.

  13. V. Ya. Rudyak and S. L. Krasnolutskii, Dokl. Phys. 48, 583 (2003).

    Article  ADS  Google Scholar 

  14. V. Ya. Rudyak and S. L. Krasnolutskii, Opt. Atmos. Okeana 17, 468 (2004).

    Google Scholar 

  15. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ., Cambridge, 1995).

    Google Scholar 

  16. G. E. Norman and V. V. Stegailov, Nanostrukt. Mat. Fiz. Model. 4, 31 (2011).

    Google Scholar 

  17. G. E. Norman and V. V. Stegailov, Mat. Model. 24(6), 3 (2012).

    MATH  Google Scholar 

  18. V. Ya. Rudyak and S. L. Krasnolutskii, in Proceedings of the 21st International Symposium on Rarefied Gas Dynamics, Toulouse, 1999, Vol. 1, pp. 263–270.

  19. V. Ya. Rudyak and S. L. Krasnolutskii, Dokl. Phys. 46, 897 (2001).

    Article  ADS  Google Scholar 

  20. V. Ya. Rudyak and S. L. Krasnolutskii, Tech. Phys. 47, 807 (2002).

    Article  Google Scholar 

  21. V. Ya. Rudyak, Statistical Aerohydromechanics of Inhomogeneous and Heterogeneous Media, Vol. 1: Kinetic Theory (NGASU, Novosibirsk, 2004).

    Google Scholar 

  22. V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov, Dokl. Phys. 57, 33 (2012).

    Article  ADS  Google Scholar 

  23. P. Schofield, Comput. Phys. Comm. 5, 17 (1973).

    Article  ADS  Google Scholar 

  24. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    MATH  Google Scholar 

  25. K. M. Aref’ev, Transfer Phenomena in Gas and Plasma (Energoatomizdat, Leningrad, 1983).

    Google Scholar 

  26. H. Heinz, R. A. Vaia, B. L. Farmer, and R. R. Naik, J. Phys. Chem. C 112, 17281 (2008).

    Article  Google Scholar 

  27. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Plenum, New York, 1974).

    Google Scholar 

  28. V. Ya. Rudyak, A. A. Belkin, D. A. Ivanov, and V. V. Egorov, Teplofiz. Vys. Temp. 46, 35 (2008).

    Google Scholar 

  29. V. Ya. Rudyak, Statistical Aerohydromechanics of Homogeneous and Geterogeneous Media, Vol. 2: Hydromechanics (NGASU, Novosibirsk, 2005).

    Google Scholar 

  30. G. K. Batchelor, J. Fluid Mech. 83, 97 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  31. V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov, Microfluid. Nanofluid. 11, 501 (2011).

    Article  Google Scholar 

  32. M. A. Bubenchikov, Izv. Vyssh. Uchebn. Zaved., Fiz. 54, 92 (2011).

    Google Scholar 

  33. A. I. Potekaev, A. M. Bubenchikov, and M. A. Bubenchikov, Izv. Vyssh. Uchebn. Zaved., Fiz. 55(12), 54 (2012).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Rudyak.

Additional information

Original Russian Text © V.Ya. Rudyak, S.L. Krasnolutskii, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 6, pp. 9–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudyak, V.Y., Krasnolutskii, S.L. Simulation of the nanofluid viscosity coefficient by the molecular dynamics method. Tech. Phys. 60, 798–804 (2015). https://doi.org/10.1134/S1063784215060237

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215060237

Keywords

Navigation