Skip to main content
Log in

Simulation of the thermal conductivity of a nanofluid with small particles by molecular dynamics methods

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The thermal conductivity of nanoliquids has been simulated by molecular dynamics method. We consider nanofluids based on argon with aluminum and zinc particles with sizes of 1–4 nm. The volume concentration of nanoparticles is varied from 1 to 5%. The dependence of the thermal conductivity on the volume concentration of nanoparticles has been analyzed. It has been shown that the thermal conductivity of a nanofluid cannot be described by classical theories. In particular, it depends on the particle size and increases with it. However, it has been established that the thermal conductivity of nanofluids with small particles can even be lower than that of the carrier fluid. The behavior of the correlation functions responsible for the thermal conductivity has been studied systematically, and the reason for the increase in the thermal conductivity of nanofluid has been explained qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Masuda et al., Netsu Bussei 4, 227 (1993).

    Article  Google Scholar 

  2. X. Wang, X. Xu, and S. U. S. Choi, J. Thermophys. Heat Transfer 13, 474 (1999).

    Article  Google Scholar 

  3. K. V. Wong and O. De Leon, Adv. Mech. Eng. 2, 519659 (2010).

    Article  Google Scholar 

  4. V. Ya. Rudyak, A. A. Belkin, E. A. Tomilina, and V. V. Egorov, Defect Diffus. Forum 273–276, 566 (2008).

    Google Scholar 

  5. E. V. Timofeeva, D. S. Smith, W. Yu, D. M. France, D. Singh, and J. L. Routbo, Nanotechnology 21, 215703 (2010).

    Article  ADS  Google Scholar 

  6. I. M. Mahbubul, R. Saidur, and M. A. Amalina, Int. J. Heat Mass Transfer 55, 874 (2012).

    Article  Google Scholar 

  7. V. Ya. Rudyak, Adv. Nanopart. 2, 266 (2013).

    Article  Google Scholar 

  8. V. Ya. Rudyak and S. L. Krasnolutskii, Phys. Lett. A 378, 1845 (2014).

    Article  ADS  Google Scholar 

  9. V. Ya. Rudyak, Vestn. Novosib. Gos. Univ. Ser. Fiz. 10 (1), 5 (2015).

    MathSciNet  Google Scholar 

  10. H. T. Zhu, C. Y. Zhang, Y. M. Tang, and J. X. Wang, J. Phys. Chem. C 111, 1646 (2007).

    Article  Google Scholar 

  11. V. Rudyak, A. Belkin, and E. Tomilina, in Proc. 3rd European Conf. on Microfluidics, Heidelberg, 2012, μFlu-152.

    Google Scholar 

  12. P. M. Kumar, J. Kumar, R. Tamilarasan, S. Sendhilnathan, and S. Suresh, Eng. J. 19, 67 (2015).

    Article  Google Scholar 

  13. J. Eapen, J. Li, and S. Yip, Phys. Rev. Lett. 98, 028302 (2007).

    Article  ADS  Google Scholar 

  14. V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov, Microfluid. Nanofluid. 11, 501 (2011).

    Article  Google Scholar 

  15. V. Ya. Rudyak and S. L. Krasnolutskii, Phys. Lett. A 378, 1845 (2014).

    Article  ADS  Google Scholar 

  16. V. Ya. Rudyak and S. L. Krasnolutskii, Tech. Phys. 60, 798 (2015).

    Article  Google Scholar 

  17. V. Ya. Rudyak and S. L. Krasnolutskii, Tech. Phys. 47, 807 (2002).

    Article  Google Scholar 

  18. V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov, Dokl. Phys. 57, 33 (2012).

    Article  ADS  Google Scholar 

  19. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1967).

    MATH  Google Scholar 

  20. K. M. Aref’ev, Transport Phenomena in Gas and Plasma (Energoatomizdat, Leningrad, 1983).

    Google Scholar 

  21. H. Heinz, R. A. Vaia, B. L. Farmer, and R. R. Naik, J. Phys. Chem. C 112, 17281 (2008).

    Article  Google Scholar 

  22. V. Ya. Rudyak and D. A. Ivanov, Dokl. Akad. Nauk Vyssh. Shk. Ross., No. 1, 30 (2003).

    Google Scholar 

  23. G. E. Norman and V. V. Stegailov, Math. Models Comput. Simul. 5, 305 (2013).

    Article  MathSciNet  Google Scholar 

  24. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Nauka, Moscow, 1971).

    Google Scholar 

  25. V. Ya. Rudyak, A. A. Belkin, D. A. Ivanov, and V. V. Egorov, High Temp. 46, 30 (2008).

    Article  Google Scholar 

  26. V. Ya. Rudyak, G. V. Kharlamov, and A. A. Belkin, Tech. Phys. Lett. 26, 553 (2000).

    Article  ADS  Google Scholar 

  27. V. Ya. Rudyak and A. A. Belkin, Tech. Phys. Lett. 29, 560 (2003).

    Article  ADS  Google Scholar 

  28. V. Ya. Rudyak and A. A. Belkin, Thermophys. Aeromech. 11, 243 (2004).

    Google Scholar 

  29. V. Ya. Rudyak, A. A. Belkin, and E. A. Tomilina, Tech. Phys. Lett. 36, 660 (2010).

    Article  ADS  Google Scholar 

  30. P. Keblinski, S. R. Philpot, S. U. S. Choi, and J. A. Eastman, Int. J. Heat Mass Transfer 45, 855 (2002).

    Article  Google Scholar 

  31. P. Keblinski, R. Prasher, and J. T. Eapen, J. Nanopart. Res. 10, 1089 (2008).

    Article  ADS  Google Scholar 

  32. C. Kleinstreuer and Y. Feng, Nanoscale Res. Lett. 6, 229 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Rudyak.

Additional information

Original Russian Text © V.Ya. Rudyak, S.L. Krasnolutskii, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 10, pp. 1450–1458.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudyak, V.Y., Krasnolutskii, S.L. Simulation of the thermal conductivity of a nanofluid with small particles by molecular dynamics methods. Tech. Phys. 62, 1456–1465 (2017). https://doi.org/10.1134/S1063784217100206

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217100206

Navigation