Skip to main content
Log in

Thermophysical properties of nanofluids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

This paper discusses the current state of knowledge of the thermophysical properties of nanofluids. The viscosity, thermal conductivity and heat transfer of nanofluids are considered. Experimental and molecular dynamics data are presented. It is shown that viscosity and thermal conductivity of nanofluids generally cannot be described by classical theories. The transport coefficients of nanofluids depend not only on the volume concentration of the particles but also on their size and material. The viscosity increases with decreasing the particle size while the thermal conductivity increases with increasing the particle size. The reasons for this behavior are discussed. The heat transfer coefficient is determined by the nanofluid flow mode (laminar or turbulent). The use of the nanofluids as a coolant significantly affects the magnitude of the heat transfer coefficient. In laminar flow the heat transfer coefficient of nanofluids in all cases is much more than that of base fluids. It is shown that a 2%-nanofluid intensifies the heat exchange more than twice compared to water. The effect of using nanofluids in turbulent mode depends not only on the thermal conductivity of the nanofluid, but also on its viscosity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 1995) p. 549

  2. V.Ya. Rudyak, S.L. Krasnolutskii, Dokl. Phys. 46, 897 (2011)

    Article  Google Scholar 

  3. V.Ya. Rudyak, S.L. Krasnolutskii, D.A. Ivanov, Dokl. Phys. 57, 33 (2012)

    Article  ADS  Google Scholar 

  4. A. Einstein, Ann. Phys. 19, 289 (1906)

    Article  Google Scholar 

  5. M. Mooney, J. Colloid Sci. 6, 162 (1951)

    Article  Google Scholar 

  6. I.M. Krieger, T.J. Dougherty, J. Rheol. 3, 137 (1959)

    ADS  Google Scholar 

  7. N.A. Frankel, A. Acrivos, Chem. Eng. Sci. 22, 847 (1967)

    Article  Google Scholar 

  8. I.M. Krieger, Adv. Colloid Interface Sci. 3, 111 (1972)

    Article  Google Scholar 

  9. G.K. Batchelor, J. Fluid Mech. 83, 97 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Acrivos, E.Y. Chang, Phys. Fluids 29, 459 (1986)

    Article  Google Scholar 

  11. S.Sh. Hosseini, A. Shahrjerdi, Y. Vazifeshenas, Aust. J. Basic Appl. Sci. 5, 417 (2011)

    Google Scholar 

  12. D.C. Venerus et al., Appl. Rheol. 20, 44582 (2010)

    Google Scholar 

  13. M. Mahbubul, R. Saidur, M.A. Amalina, Int. J. Heat Mass Transf. 55, 874 (2012)

    Article  Google Scholar 

  14. H. Chen et al., Chem. Phys. Lett. 444, 333 (2007)

    Article  ADS  Google Scholar 

  15. P.K. Namburu et al., Micro Nano Lett. 2, 67 (2007)

    Article  Google Scholar 

  16. C.T. Nguyen et al., Int. J. Therm. Sci. 47, 103 (2008)

    Article  Google Scholar 

  17. F.S. Oueslati, R. Bennace, Nanoscale Res. Lett. 6, 222 (2011)

    Article  ADS  Google Scholar 

  18. B.C. Pak, Y.I. Cho, Exp. Heat Transf. 11, 151 (1998)

    Article  ADS  Google Scholar 

  19. X. Wang, X. Xu, S.U.S. Choi, Thermophys. Heat Transf. 13, 474 (1999)

    Article  Google Scholar 

  20. V.Ya. Rudyak, preprint (NSUACE, Novosibirsk, 2006)

  21. V.Ya. Rudyak, A.A. Belkin, V.V. Egorov, Tech. Phys. 54, 1102 (2009)

    Article  Google Scholar 

  22. R. Prasher, D. Song, J. Wang, Appl. Phys. Lett. 89, 133108 (2006)

    Article  ADS  Google Scholar 

  23. Y. He et al., Int. J. Heat Mass Transf. 50, 2272 (2007)

    Article  Google Scholar 

  24. E.V. Timofeeva et al., Nanotechnology 21, 215703 (2010)

    Article  ADS  Google Scholar 

  25. V.Ya. Rudyak et al., Dokl. Phys. 58, 173 (2013)

    Article  ADS  Google Scholar 

  26. V.Ya. Rudyak, S.L. Krasnolutskii, Phys. Lett. A 378, 1845 (2014)

    Article  ADS  Google Scholar 

  27. V.Ya. Rudyak et al., Dokl. Phys. 61, 152 (2016)

    Article  ADS  Google Scholar 

  28. V.Ya. Rudyak, S.V. Dimov, V.V. Kuznetsov, Tech. Phys. Lett. 39, 779 (2013)

    Article  ADS  Google Scholar 

  29. V.Ya. Rudyak, Adv. Nanopart. 2, 266 (2013)

    Article  Google Scholar 

  30. V.Ya. Rudyak, S.L Krasnolutskii, Tech. Phys. 60, 798 (2015)

    Article  Google Scholar 

  31. X.-Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007)

    Article  Google Scholar 

  32. W. Yu et al., Heat Transf. Eng. 5, 432 (2008)

    Article  ADS  Google Scholar 

  33. K. Kleinstreuer, F. Yu, Nanoscale Res. Lett. 6, 1 (2011)

    Article  Google Scholar 

  34. C.H. Chon, Appl. Phys. Lett. 87, 153107 (2005)

    Article  ADS  Google Scholar 

  35. C.H. Li, G.P. Peterson, Appl. Phys. 101, 044312 (2007)

    Article  Google Scholar 

  36. H.A. Mintsa et al., Int. J. Therm. Sci. 48, 363 (2009)

    Article  Google Scholar 

  37. S.H. Kim, S.R. Choi, D. Kim, ASME J. Heat Transf. 129, 298 (2007)

    Article  Google Scholar 

  38. G. Chen et al., Nanopart. Res. 10, 1109 (2008)

    Article  Google Scholar 

  39. M.P. Beck et al., Nanopart. Res. 11, 1129 (2009)

    Article  Google Scholar 

  40. E.V. Timofeeva et al., Nanotechnology 21, 215703 (2010)

    Article  ADS  Google Scholar 

  41. J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1881)

  42. P.M. Kumar et al., Eng. J. 19, 67 (2015)

    Article  Google Scholar 

  43. W. Rashmi et al., Mater. Res. Express 1, 032001 (2014)

    Article  ADS  Google Scholar 

  44. A.V. Minakov et al., Eng. Phys. Thermophys. 88, 149 (2015)

    Article  Google Scholar 

  45. H.T. Zhu et al., Phys. Chem. C 111, 1646 (2007)

    Article  Google Scholar 

  46. V.Ya. Rudyak, A.A. Belkin, E.A. Tomilina, in Proceedings of the 3d European Conference on Microfluidics, Vol. 152 (2012) p. 8

  47. P. Keblinski, R. Prasher, J. Eapen, Nanopartart. Res. 10, 1089 (2008)

    Article  Google Scholar 

  48. M.I. Pryazhnikov et al., Int. J. Heat Mass Transf. 104, 1275 (2017)

    Article  Google Scholar 

  49. D. Ceotto, V.Ya. Rudyak, Colloid J. 78, 509 (2016)

    Article  Google Scholar 

  50. V.Ya. Rudyak, A.A. Belkin, Nanosyst.: Phys. Chem. Math. 1, 156 (2010)

    Google Scholar 

  51. V.Ya. Rudyak, A.A. Belkin, E.A. Tomilina, Tech. Phys. Lett. 36, 49 (2010)

    Article  Google Scholar 

  52. D. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974)

  53. V.Ya. Rudyak et al., High Temp. 46, 30 (2008)

    Article  Google Scholar 

  54. V.Ya. Rudyak, S.L Krasnolutskii, Tech. Phys. 62, 894 (2017)

    Article  Google Scholar 

  55. P. Keblinski et al., Int. J. Heat Mass Transf. 45, 855 (2002)

    Article  Google Scholar 

  56. C. Kleinstreuer, Y. Feng, Nanoscale Res. Lett. 6, 229 (2011)

    Article  ADS  Google Scholar 

  57. A.V. Minakov et al., High Temp. 53, 246 (2015)

    Article  Google Scholar 

  58. A.V. Minakov et al., Appl. Therm. Eng. 88, 140 (2015)

    Article  Google Scholar 

  59. V.Y. Rudyak, A.V. Minakov, M.I. Pryazhnikov, Tech. Phys. Lett. 43, 23 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Ya. Rudyak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudyak, V.Y., Minakov, A.V. Thermophysical properties of nanofluids. Eur. Phys. J. E 41, 15 (2018). https://doi.org/10.1140/epje/i2018-11616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11616-9

Keywords

Navigation